JPS60189708A - Photocoupler - Google Patents

Photocoupler

Info

Publication number
JPS60189708A
JPS60189708A JP4482984A JP4482984A JPS60189708A JP S60189708 A JPS60189708 A JP S60189708A JP 4482984 A JP4482984 A JP 4482984A JP 4482984 A JP4482984 A JP 4482984A JP S60189708 A JPS60189708 A JP S60189708A
Authority
JP
Japan
Prior art keywords
film
grating
substrate
hydrophobic
cumulative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4482984A
Other languages
Japanese (ja)
Other versions
JPH0481161B2 (en
Inventor
Yukio Nishimura
征生 西村
Mamoru Miyawaki
守 宮脇
Tetsushi Nose
哲志 野瀬
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4482984A priority Critical patent/JPS60189708A/en
Priority to US06/709,300 priority patent/US4691982A/en
Publication of JPS60189708A publication Critical patent/JPS60189708A/en
Publication of JPH0481161B2 publication Critical patent/JPH0481161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings

Abstract

PURPOSE:To obtain an inexpensive photocoupler which is manufactured easily and has high precision and good efficiency by forming a grating, optical waveguide, and buffer layer of an LB film. CONSTITUTION:The LB film 31 having a plane type grating formed is adhered to a substrate 31. An LB film 33 is provided in recesses of the grating part of the LB film 31, and the LB film 31 and LB film 33 are in level with each other, thereby forming a plane type, i.e. phase difference type grating 36. Further, the LB films 31 and 33 have the same surface property. When the surface of the LB film 31 is hydrophilic, the surface of the LB film 33 is also made hydrophilic. When the surface of the LB film 31 is hydrophobic, on the other hand, the surface of the LB film 34 is also made hydrophobic. A reflecting layer 35 is formed by vapor-depositing an Al film. The film thickness of the LB film 34 is so set that light 36-b which is diffracted by the grating and projected directly on the substrate side 32 and light 36-a which is projected on the LB film side 34, reflected by a reflecting layer 35, and projected on the substrate side 32 interfere with and intensify each other. In this case, an LB film 34 functions as a buffer layer. The projection light beams 36-a and 36-b intensity each other when their optical path difference is an integral multiple of the wavelength.

Description

【発明の詳細な説明】 本発明は光結合器、更に詳しくは光導波路にグレーティ
ングを設置した光結合器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical coupler, and more particularly to an optical coupler in which a grating is installed in an optical waveguide.

近年、光集積回路の発達に伴って、高精度で、かつ効率
の良い光結合器が望まれている。
In recent years, with the development of optical integrated circuits, there has been a demand for highly accurate and efficient optical couplers.

しかしながら、従来、所望の精度の結合器を得るために
は高度の微細加工技術を必要とするため、いきおい歩留
りの低丁、したがってコスト高さを招くといった欠陥が
あった。
However, in the past, in order to obtain a coupler with desired precision, a high degree of microfabrication technology was required, which resulted in a drawback of low yield and, therefore, high cost.

ここで従来のグレーティング型光結合器について説明す
る。第1図は従来の平面型グレーティング型光結合器の
断面図で、この図において2は基板であって、例えば、
ガラス、プラスチック又はニオブ酸リチウム(LiNb
O3)等の透明基板又はシリPン、セラミックス等の不
透明基板が用いられる。基板2の表面に光導波路lが配
設される。光導波路lは基板2よりも屈折率が高いもの
が用いられる。例えば、ニオブ酸リチウムを基板として
用いる場合には、その表面にチタン(Ti)を熱拡散す
ることによって0.5〜5川程用の膜厚の光導波路lが
得られる。或いは、屈折率が 1.5のガラスを基板と
して用いる場合には、その表面に屈折率が1.55 (
波長6328A)のガラス(例えば、コーニング社商品
名C−70511)をスパッタリングにより膜厚0.5
〜5に程度に成膜し、先導波路lを得る。
Here, a conventional grating type optical coupler will be explained. FIG. 1 is a cross-sectional view of a conventional planar grating type optical coupler. In this figure, 2 is a substrate, for example,
glass, plastic or lithium niobate (LiNb)
A transparent substrate such as O3) or an opaque substrate such as silicon or ceramics is used. An optical waveguide l is provided on the surface of the substrate 2. The optical waveguide l has a higher refractive index than the substrate 2. For example, when lithium niobate is used as a substrate, an optical waveguide l having a film thickness of about 0.5 to 5 mm can be obtained by thermally diffusing titanium (Ti) onto its surface. Alternatively, if glass with a refractive index of 1.5 is used as a substrate, a surface with a refractive index of 1.55 (
A glass with a wavelength of 6328A (for example, Corning Co., Ltd. product name C-70511) is sputtered to a film thickness of 0.5A.
A film is formed to a degree of 5 to 5 to obtain a leading wavepath l.

6はグレーティングで1通常ピッチ0.3〜1μ、深さ
0.1〜0.2にである。このように構成された光結合
器に入射光3が入ると、導波路内を光4が全反射により
伝播し、グレーティング6によって回折され射出光5が
とり出される。
Reference numeral 6 denotes a grating having a pitch of 0.3 to 1 μm and a depth of 0.1 to 0.2 μm. When the incident light 3 enters the optical coupler configured in this way, the light 4 propagates through the waveguide by total reflection, is diffracted by the grating 6, and the emitted light 5 is taken out.

この場合、一般にグレーティングの製作が困難である。In this case, it is generally difficult to manufacture the grating.

平面型はレリーフ型に較べてさらに困難である。グレー
ティング6の機能をより効果的に発揮するためには完全
に矩形のグレーティングが好ましいか、そのような完全
矩形のグレーティングを得ることは一般に容易でないか
らである。
The flat type is more difficult than the relief type. This is because a completely rectangular grating is preferable in order to more effectively exhibit the function of the grating 6, or it is generally not easy to obtain such a completely rectangular grating.

本発明はかかる点に鑑みてなされたもので、製作が容易
で、かつ安価な光結合器を提供することを目的とするも
のである。
The present invention has been made in view of these points, and it is an object of the present invention to provide an optical coupler that is easy to manufacture and inexpensive.

更に、本発明は高精度で、かつ効率の良い光結合器を提
供することを目的とするものである。
A further object of the present invention is to provide a highly accurate and efficient optical coupler.

また更に、本発明はレリーフ型グレーティング上には構
築しにくい(後述する)他の構凌要素(バッファ層)を
容易に構築できるようにするため、平面型グレーティン
グを有する光結合器を提供することを目的とするもので
ある。
Furthermore, the present invention provides an optical coupler having a planar grating so that other structural elements (buffer layer) that are difficult to construct on the relief grating (described later) can be easily constructed. The purpose is to

本発明は以下に示す単分子累積法を用いることにより、
単分子累積膜を得ることを基本とし、さらにグレーティ
ングの形式を可能にするため改良を施したものである。
The present invention uses the single molecule accumulation method shown below to
The basic idea is to obtain a monomolecular stacked film, and further improvements have been made to enable a grating format.

以F、本発明の基本となる単分子累積法およびそれによ
って形成される単分子累積膜について説明する。
Hereinafter, the single molecule accumulation method which is the basis of the present invention and the single molecule accumulation film formed thereby will be explained.

単分子累積法とは水面上に形成した単分子膜を基板表面
に移し取り、1枚ずつ重ねて超薄膜を作る方法であり、
発明者にちなんでラングミュア・プロジェット(LB)
法とも呼ばれる。ここで、qt分子膜とは一分子の厚さ
の均一な膜をいい、これを累積した膜を累積膜という。
The monomolecular accumulation method is a method in which a monomolecular film formed on the water surface is transferred to the substrate surface and layered one by one to create an ultra-thin film.
Langmuir Prodget (LB) named after the inventor
Also called law. Here, the qt molecular film refers to a uniform film with a thickness of one molecule, and a film obtained by accumulating this film is called a cumulative film.

かかる単分子膜及び累8I膜を構成する分子は必ず同一
化学構造内に少なくとも疎水性部分と親水性部分とを併
有していることか必要である。疎水性部分として最も代
表的なものは長鎖アルキル基であって、一般に炭素数が
5〜30位いのものが用いられるが、好ましくは、炭素
数10〜25位いである。又、アルキル鎖の長さが適当
であれば、直鎖状アルキル基、及び枝わかれ状アルキル
基、共に有用である。その他の疎水性部分を構成する基
としては、例えば、ビニレン、ビニリデン、アセチレン
等のオレフィン系炭化水素基、フェニル、ナフチル、ア
ントラニルの如き縮合多環フェニル基、ビフェニル、タ
ーフェニル、等の鎖状多速フェニル基等があり、これら
は各々単独又は複数の組合せによる場合やL述のアルキ
ル基の末端や中間に位置している場合もある。親水性部
分として最も代表的なものは、例えば、カルボキシル基
及びその金属塩並びにアミン塩、スルホン酸基及びその
金属塩並びにアミン塩、スルホンアミド基、アミド基、
アミノ基、イミノ基、ヒドロキシル基、4級アミノ基、
オキシアミノ基1オキシイミ7基、ジアゾニウム基、グ
アニジン基、ヒドラジン基、リン酸基、ケイ酸基、アル
ミン酸基、等がある。しかしながら疎水性部分と親水性
部分との任意の組合せで、常に単分子膜及び累積膜が形
成yれるとは限らない。単分子累積法によって単分子膜
及び累積膜を得るためには、後述のように作製上程ヒ、
まず水面上に単分子膜を形成させなければならないが、
もし、疎水性よりも親水性の方が強ければ分子は水に溶
解して水溶液となり逆に疎水性の方が勝てば2相に分離
する。水面上で中分子膜ができるのは疎水性と親木性が
適度に釣合うときである。そのとき分子は全体として浮
きも沈みもせず、親水性部分を水相に向けて気水界面に
吸着されて単分子膜を形成する。したがって、単分子膜
及び累積膜を構成する分子は疎水性部分と親木性部分が
適度にバランスしていることが要求される。
The molecules constituting such a monomolecular film and a composite film must necessarily have at least a hydrophobic part and a hydrophilic part in the same chemical structure. The most typical hydrophobic moiety is a long-chain alkyl group, which generally has 5 to 30 carbon atoms, preferably 10 to 25 carbon atoms. Furthermore, both straight-chain alkyl groups and branched alkyl groups are useful as long as the length of the alkyl chain is appropriate. Examples of groups constituting other hydrophobic moieties include olefinic hydrocarbon groups such as vinylene, vinylidene, and acetylene, condensed polycyclic phenyl groups such as phenyl, naphthyl, and anthranyl, and chain polycyclic groups such as biphenyl and terphenyl. There are phenyl groups, etc., and these may be used alone or in combination, or may be located at the end or in the middle of the alkyl group mentioned above. The most typical hydrophilic moieties include, for example, carboxyl groups and their metal salts and amine salts, sulfonic acid groups and their metal salts and amine salts, sulfonamide groups, amide groups,
Amino group, imino group, hydroxyl group, quaternary amino group,
Examples include 1 oxyamino group and 7 oxyimine groups, diazonium group, guanidine group, hydrazine group, phosphoric acid group, silicate group, aluminate group, and the like. However, it is not always possible to form a monomolecular film or a cumulative film with any combination of hydrophobic and hydrophilic parts. In order to obtain a monomolecular film and a cumulative film by the single molecule accumulation method, the steps in the manufacturing process are as follows:
First, a monomolecular film must be formed on the water surface,
If hydrophilicity is stronger than hydrophobicity, the molecule dissolves in water and becomes an aqueous solution; conversely, if hydrophobicity is stronger, it separates into two phases. A medium molecular film is formed on the water surface when hydrophobicity and phyllophilicity are appropriately balanced. At this time, the molecules as a whole do not float or sink, but instead direct their hydrophilic parts toward the water phase and are adsorbed at the air-water interface, forming a monomolecular film. Therefore, the molecules constituting the monomolecular film and the cumulative film are required to have a proper balance of hydrophobic parts and woody parts.

つぎに第2図(A)、 (B)を参照してLB膜製作装
置および製作方法について説明する。ここでLB膜とは
単分子累積法によって作製された単分子膜および累積膜
をいう。第2図(A)(B)に例示したLB膜製作装置
は、前述のランクミュアブロジェット法(LB法)の原
理に基づき、Kuhnの研究グループが考案したもので
ある。浅くて広い角型水槽14の内側にポリプロピレン
製の枠15が水平に吊ってあり、水面23を仕切ってい
る。枠15は後述のように2次元シリンダーとして機能
する。枠15の内側にはポリプロピレン製の浮子16が
浮カベられている。浮子16の幅は枠15の内側より僅
かに狭く作ってあり2次元ピストンとして左右に滑らか
に動けるようになっている。浮子1Gを右方に引張るた
めに滑東18を介しておもり17が結びつけられている
。浮子16を停めたり左方に押し戻すのは一般に磁石の
反発力が利用される。そのために、浮子16にに固定し
た磁石19と左右に動かせる対磁イー+20が設けられ
ている。即ち、押し戻すときは、対磁石20を磁石19
に近づければ、斥力が働き、浮子1Bは押し戻ごれる。
Next, the LB film manufacturing apparatus and manufacturing method will be explained with reference to FIGS. 2(A) and 2(B). Here, the LB film refers to a monomolecular film and a cumulative film produced by a single-molecule accumulation method. The LB film manufacturing apparatus illustrated in FIGS. 2(A) and 2(B) was devised by Kuhn's research group based on the principle of the aforementioned Rankmuir-Blodgett method (LB method). A frame 15 made of polypropylene is suspended horizontally inside a shallow and wide rectangular water tank 14 to partition a water surface 23. The frame 15 functions as a two-dimensional cylinder as described below. A polypropylene float 16 is floating inside the frame 15. The width of the float 16 is made slightly narrower than the inside of the frame 15 so that it can move smoothly from side to side as a two-dimensional piston. A weight 17 is tied to the float 1G via a slider 18 in order to pull the float 1G to the right. Generally, the repulsive force of a magnet is used to stop the float 16 or push it back to the left. For this purpose, a magnet 19 fixed to the float 16 and a counter magnet 20 that can be moved left and right are provided. That is, when pushing back, the counter magnet 20 is
If it is brought close to , a repulsive force will work and the float 1B will be pushed back.

このようなおもりや磁石18.20の代りに、回転モー
タやプーリーを用いて直接浮子16を左右に動かすこと
もOr能である。左右の吸引ノズル22はそれぞれ吸引
パイプ21を介して不図示の吸引ポンプに接続される。
Instead of such weights and magnets 18, 20, it is also possible to directly move the float 16 from side to side using a rotary motor or pulley. The left and right suction nozzles 22 are connected to a suction pump (not shown) via suction pipes 21, respectively.

中分子累積法に於いては単分子膜、累積膜の内部に不純
物の混入を防1トするために、清浄な純水が使用される
が、水面23の清掃や不要になった単分子膜の迅速除去
に不図示の吸引ポンプ及び吸引ノズル22が活用される
。その場合、浮子16で不要になった中分子層等を掃き
寄せながら、吸引ノズル22で迅速にすすり出すことに
よって水面23を浄化する。こうして、清浄になった水
面23の左端に浮子I6を寄せて〜 5X10−3mo
l/lの濃度で、ヘンゼン・クロロホルム等の揮発性溶
媒に溶かした薄い膜構成物質の溶液を数滴水面にたらす
と、溶媒が揮発したあとに単分子膜が水面231に残さ
れる。この単分子膜は水面23−Lで2次元系の挙動を
示す。分子の面密度が低いときは2次元気体の気体膜と
呼ばれ、−分子あたりの占有面積と表面圧との間に2次
冗理想気体の状態方程式が成ケする。占有面積と表面圧
は不図示の測定器によって自動的かつ持続的に計測され
る。占有面積及びその変化量は浮子16の左右の動きか
らめられる。表面圧の測定器としては純水及び中分子膜
でおおわれた水面の表面張力の差から間接的にめる方法
を応用したもの、純水表面と単分子膜面を区切るように
浮かべた浮子16にかかる2次元的圧力を直接測定する
もの等があり、それぞれ特色がある。、気体膜の状態か
ら、徐々に浮子Iθを右方に動かし中分子膜が展開する
水面の広がりを次第に縮めて面密度を増してゆくと、分
−1−間相−ゲ作用が強まり、2次元液体の液体膜をへ
て2次元固体の固体膜へと変わる。該固体膜になると、
分子の配列耐高はきれいにそろい、光学材料に要求され
る高度の秩序性及び均一な超薄膜性をもつにいたる。而
して、該固体膜の状態を維持したまま、該単分子膜を清
浄な基板24(例えば、ガラス、セラミック、プラスチ
ック又は金属等の基板が用いられる)の表面に移すこと
がIif能となる。基板24に付着した単分子膜の一ヒ
にさらに何層にでも単分子膜を累積することもできる。
In the middle molecule accumulation method, clean pure water is used to prevent impurities from entering the monomolecular film and the cumulative film, but cleaning the water surface 23 and cleaning the monomolecular film that is no longer needed A suction pump and a suction nozzle 22 (not shown) are utilized for quick removal of. In that case, the water surface 23 is purified by quickly sucking it out with the suction nozzle 22 while sweeping away the middle molecular layer and the like that are no longer needed with the float 16. In this way, move the float I6 to the left end of the clean water surface 23 ~ 5X10-3mo
When a few drops of a thin solution of a film constituent material dissolved in a volatile solvent such as Hensen's chloroform at a concentration of 1/1 are dropped on the water surface, a monomolecular film is left on the water surface 231 after the solvent evaporates. This monomolecular film exhibits two-dimensional behavior at the water surface 23-L. When the areal density of molecules is low, it is called a gas film of a second-order gas, and the equation of state of a second-order redundant ideal gas holds between the occupied area per molecule and the surface pressure. The occupied area and surface pressure are automatically and continuously measured by a measuring device (not shown). The occupied area and the amount of change thereof can be determined from the left and right movement of the float 16. The surface pressure measuring device uses a method to measure the surface pressure indirectly from the difference in surface tension between pure water and the water surface covered with a medium molecular film, and a float 16 floating to separate the pure water surface and the monomolecular film surface. There are methods that directly measure the two-dimensional pressure applied to the surface, and each has its own characteristics. From the gas film state, when the float Iθ is gradually moved to the right to gradually reduce the extent of the water surface where the middle molecular film develops and increase the areal density, the minute-1-interphase-ge action becomes stronger, and 2 It passes through a liquid film of dimensional liquid and turns into a solid film of two-dimensional solid. When it comes to the solid film,
The molecular alignment and height are well aligned, resulting in the high degree of order and uniform ultra-thin film properties required for optical materials. Therefore, it becomes possible to transfer the monomolecular film to the surface of a clean substrate 24 (for example, a substrate made of glass, ceramic, plastic, or metal is used) while maintaining the state of the solid film. . It is also possible to accumulate any number of additional monolayers on top of the monolayer deposited on the substrate 24.

一般に、累積操作に好適な単分子膜の表面圧は 15〜
30dyne/c11である。その範囲外では分子の配
列配向秩序が乱れたり、膜の剥がれが生じたりするので
、不適当である。もっとも、特別の場合、例えば、膜構
造物質の化学構造、及び温度条件等によっては、好適な
表面圧の値が上述の範囲からはみでる場合もあるので、
−上述の範囲は一応の目安である。単分子膜が累積操作
に好適な条件の範囲内で選ばれた一定の表面圧を常に維
持できるように、対磁石20を左右に駆動させる不図示
の駆動装置が不図示の表面圧制御装置によって制御され
る。例えば、累積操作過程に於いて、単分子膜が基板2
4に移し取られると、当然表面圧は低ドするから対磁石
20を動かして、従って浮子16を動かして、展開膜面
積を圧縮し、表面H:低ド分を補正して一定表面圧を維
持する操作が自動的になされる。単分子膜26(第3図
参照)を水面23−Lから基板24表面に移し取る方法
は大別して2種類ある。
In general, the surface pressure of a monolayer suitable for cumulative operation is 15~
It is 30dyne/c11. Outside this range, the arrangement and orientation of molecules may be disturbed and the film may peel off, which is inappropriate. However, in special cases, for example, depending on the chemical structure of the membrane structure material, temperature conditions, etc., the suitable surface pressure value may fall outside the above range.
-The above range is just a guideline. A driving device (not shown) that drives the counter magnet 20 from side to side is controlled by a surface pressure control device (not shown) so that the monomolecular film can always maintain a constant surface pressure selected within the range of conditions suitable for cumulative operation. controlled. For example, during the cumulative operation process, the monolayer is deposited on the substrate 2.
4, the surface pressure will naturally be low, so move the counter magnet 20 and accordingly move the float 16 to compress the area of the developed film and correct the low surface pressure to maintain a constant surface pressure. The maintenance operation is done automatically. There are roughly two types of methods for transferring the monomolecular film 26 (see FIG. 3) from the water surface 23-L to the surface of the substrate 24.

−は垂直浸漬法で他は水平付着法である。垂直浸漬法と
は水面23上の申分−r膜26に累積操作に好適な一定
の表面圧をかけながら、膜を横切る方向、即ち、垂直方
向に基板24を一ヒトさせることにより単分子膜26を
移し取る方法である。水平付着法とは基板を水平に保ち
ながらトから水面23にできるだけ近づけわずかに傾け
て一端から単分子膜26に触れて付着する方法である。
- is the vertical immersion method, and the others are the horizontal attachment method. The vertical immersion method is a monomolecular film formed by dipping the substrate 24 in the direction across the film, that is, in the vertical direction, while applying a constant surface pressure suitable for cumulative operation to the monolayer film 26 on the water surface 23. This is a method of transferring 26. The horizontal adhesion method is a method in which the substrate is held horizontally, brought as close as possible to the water surface 23 from the top, slightly tilted, and the monomolecular film 26 is touched from one end for adhesion.

それぞれ向き不向きがある。垂直浸漬法の場合は、膜を
構成する分子や膜作製条件によって第3図に示すように
3種類の膜構造ができる。第3図(A)のように浸漬時
だけ膜が付着するX型、第3図(B)のように浸漬時に
も引き上げ時にも付着するY型、第3図(C)のように
引き上げ時のみ膜が付着するX型、等がある。
Each has its pros and cons. In the case of the vertical dipping method, three types of membrane structures can be formed as shown in FIG. 3 depending on the molecules constituting the membrane and the conditions for manufacturing the membrane. Figure 3 (A) shows an X type in which the film adheres only during immersion; Figure 3 (B) shows a Y type in which the film adheres both during immersion and lifting; Figure 3 (C) shows a Y type in which the film adheres during pulling up. There is an X-type, in which only a film is attached.

従って、X型は疎水性部分りを基板24表面に向は親水
性部分を外側に向けて付着する。X型は親木性部分Qを
基板24表面に向は疎水性部分Pを外に向けて付着する
。これに対して水平付着法の場合にはX型の累積膜しか
できないが、垂直浸漬法よりも後述する累積比のすぐれ
たX型の累積膜を比較的簡単に作りやすい。又、蛋白中
分子膜の作製にはこの水平刺着法が適している。
Therefore, the X type is attached with the hydrophobic portion facing the surface of the substrate 24 and the hydrophilic portion facing outward. The X type is attached with the woodphilic portion Q facing the surface of the substrate 24 and the hydrophobic portion P facing outward. On the other hand, in the case of the horizontal deposition method, only an X-shaped cumulative film can be produced, but it is relatively easier to produce an X-shaped cumulative film with a superior cumulative ratio, which will be described later, than in the vertical dipping method. Moreover, this horizontal pricking method is suitable for producing a protein medium molecule film.

しかしながら、いずれの方法による場合でも、基板24
表面は界面化学的に充分清浄でなければならない。基板
24の表面の清浄が不充分であれば膜の剥がれが生じ、
累積膜を作製することが困難となる。
However, in either method, the substrate 24
The surface must be sufficiently clean interfacially. If the surface of the substrate 24 is insufficiently cleaned, the film may peel off,
It becomes difficult to produce a cumulative film.

例えば、ガラス基板はクロム酸混液中に浸し、蒸留水で
洗った後に、清浄な気流中で乾燥すると、その表面は完
全に親水性になる。
For example, if a glass substrate is immersed in a chromic acid mixture, washed with distilled water, and then dried in a clean air stream, its surface becomes completely hydrophilic.

例えば、清浄にした固体表面に融解したステアリン酸鉄
(m)をよく塗り付けて、ガーゼのような清浄な布で強
く十分にこすりとると、その後には親木基を固体面に向
けたステアリン酸鉄(m)の中分子膜が形成され、表面
は完全に疎水性になる。
For example, if you thoroughly apply molten iron stearate (m) to a cleaned solid surface and rub it thoroughly with a clean cloth such as gauze, then apply stearate with the mother wood group facing the solid surface. A medium molecular film of iron acid (m) is formed and the surface becomes completely hydrophobic.

累積操作をさらに具体的に明らかにするため、第4図に
従って、垂直浸漬法によりY型累積膜を作製する操作に
ついて説明する。図示例(第4図)は親木性基板24を
用いた場合である。親水性基板24に付着する単分子膜
2Bの第1層目は第4図(A)にボすように引き上げ上
程時に付くから、実際の操作としては、まず基板を深く
水中に漬け、それからnり構成物質の薄い溶液を滴下す
る順序になる。それから、表面圧を上げて行き、累積膜
作製に好適な表面圧に達した後、基板24を引きトげる
。累積膜作製に好適な引き1−げ(引き一ドげ)速度は
0.1〜locm/winである。ただし、膜構成物質
や膜作製条件によってはこの範囲外に好適条件が存在す
る場合もある。
In order to clarify the accumulation operation more specifically, the operation of producing a Y-shaped accumulation film by the vertical dipping method will be explained according to FIG. The illustrated example (FIG. 4) is a case where a tree-friendly substrate 24 is used. The first layer of the monomolecular film 2B attached to the hydrophilic substrate 24 is attached during the lifting process as shown in FIG. This is the order in which dilute solutions of the constituents are added dropwise. Then, the surface pressure is increased, and after reaching a surface pressure suitable for producing a cumulative film, the substrate 24 is pulled out. A suitable pulling rate for cumulative film production is 0.1 to locm/win. However, suitable conditions may exist outside this range depending on the film constituent materials and film manufacturing conditions.

最初の引き上げ行程で、第1層重分子膜が親木性部分Q
を基板24の表面に向け、疎水性部分Pを外側に同けて
41着する。
In the first lifting process, the first layer of heavy molecular film
41, with the hydrophobic portion P facing the surface of the substrate 24 and the hydrophobic portion P on the outside.

次の浸漬(引きドげ)行程(第4図 (B))で、第2
層中分子膜が疎水性部分Pを基板14表面に向は親水性
部分Qを外側に向けて付着する。なお、第1層目 28
aを付けた後、充分空中で乾がし水分その他溶媒を除去
してから、2層目 28b以上を付けた方が累積膜に剥
がれが生じず、累積操作がうまくいくことが判った。3
層目28c以上は同様の操作の繰り返えしにより(第4
図(C)参照)、任;dの暦数の累積膜を作製すること
ができる。
In the next immersion (pulling) process (Fig. 4 (B)), the second
The molecular film in the layer is attached with the hydrophobic portion P facing the surface of the substrate 14 and the hydrophilic portion Q facing outward. In addition, the first layer 28
After applying A, it was found that if a second layer of 28b or more was applied after sufficiently drying in the air to remove moisture and other solvents, the cumulative film would not peel off and the cumulative operation would be more successful. 3
For layers 28c and above, repeat the same operation (4th
(see Figure (C)), it is possible to fabricate a cumulative film with a calendar number of d.

[Δボ例に於けるY型膜の奇数番目の層は常に親水性の
部分Qが基板24表面に向き、疎水性部分Pか外側を向
く。
[In the odd-numbered layers of the Y-type film in the ΔV example, the hydrophilic portion Q always faces the surface of the substrate 24, and the hydrophobic portion P faces outward.

このようにして作製された累積膜の厚みは分子の長さく
10〜80A)に累積回数(t@分子膜の層数)を乗し
たものに等しいことが多くの実験によって確認されてい
る。膜の付き方に影響を及ぼすその他の因子としては、
(1)膜構成物質の化学構造、(2)水相のPHや含有
塩類の種類・濃度、(3)温度、(4)基板の種類等が
ある。
It has been confirmed through many experiments that the thickness of the cumulative film produced in this manner is equal to the length of the molecule (10 to 80 A) times the cumulative number of times (t@number of layers of the molecular film). Other factors that affect the way the film adheres are:
These include (1) the chemical structure of the membrane constituents, (2) the pH of the aqueous phase and the type and concentration of salts contained, (3) temperature, and (4) the type of substrate.

例えば、純粋な直鎖脂肪酸よりも脂肪酸塩の方が安定な
累積膜を作りゃすく、特にカルシウム、バリウム、カド
ミウム等の塩がすぐれる。この場合、水相のPHによっ
て累積膜の組成や付き方が異なる。即ち、一般にPH4
以下であれば純粋な脂肪酸8分になり PH9以1;だ
と金属塩の膜になり、中間のPHではこれらの混ざった
累積膜が得られる。なお、累積膜の付き方を足駐的に表
示するために累積比という指標が用いられる。累積比と
は基板上の所定の面積に対する実際に水面23がら移し
取られた膜面積の比をいう。なお、水面から移し取られ
た膜面積は浮子16の移動間を計測することによりめら
れる。例えば、累積比0は全く膜が付がなかった場合、
累積比lは理想的に膜が移し取られた場合を示す。一般
には、遊離酸よりも金属塩の方が累積比が大きい。
For example, fatty acid salts form more stable cumulative films than pure straight-chain fatty acids, and salts of calcium, barium, cadmium, etc. are particularly good. In this case, the composition and deposition of the cumulative film differ depending on the pH of the aqueous phase. That is, generally PH4
If the pH is below 8, it will be pure fatty acid; if the pH is 9 or higher, it will be a film of metal salts; if the pH is in the middle, a cumulative film containing these will be obtained. Note that an index called cumulative ratio is used to visually display how the cumulative film is attached. The cumulative ratio refers to the ratio of the area of the film actually transferred from the water surface 23 to a predetermined area on the substrate. Note that the membrane area transferred from the water surface can be determined by measuring the time during which the float 16 moves. For example, a cumulative ratio of 0 means that no film was attached at all.
The cumulative ratio l indicates the case where the membrane is ideally transferred. Generally, the metal salt has a higher cumulative ratio than the free acid.

本発明において使用される基板24は任意の適当な基板
でよく、基板寸法も特に限定されない。本発明における
LB膜の厚みは、−L述した累積の繰り返えしにより 
0.5〜5pLの範囲である。本発明のグレーティング
型光結合器に適した物質は、適切な光学的特性を有し、
かつLB膜形成物質であればよい。
The substrate 24 used in the present invention may be any suitable substrate, and the dimensions of the substrate are not particularly limited. The thickness of the LB film in the present invention is determined by the repeated accumulation described above.
It is in the range of 0.5-5 pL. A material suitable for the grating type optical coupler of the present invention has appropriate optical properties,
Any material that forms an LB film may be used.

特に適当なもの、例えば脂肪酸、殊に10〜30個の炭
素原子を含む直鎖脂肪酸(ステアリン酸、アラキシン酸
)及びそれらの塩(カドミウムam)、後述する重合性
LB膜である。これらの物質の屈折率はCH2鎖の長さ
を適宜選択することによりあるいは金属イオンの付加に
より容易に制御される。
Particularly suitable are, for example, fatty acids, especially straight-chain fatty acids containing 10 to 30 carbon atoms (stearic acid, araxic acid) and their salts (cadmium am), the polymerizable LB membranes described below. The refractive index of these materials is easily controlled by appropriately selecting the length of the CH2 chain or by adding metal ions.

成膜されたLB膜は公知手段によってパターニングされ
る。また本出願人の他の特許出願人(出願人番号未定)
に係る新規なパターニング形成方法1こよって所望の形
状にパターニングされる。パターニングされたLB膜は
導波路として機能する。
The formed LB film is patterned by known means. Also, other patent applicants of this applicant (applicant number undetermined)
According to the novel patterning method 1, a desired shape is patterned. The patterned LB film functions as a waveguide.

次に本発明に係る平面型グレーティングの形成方法につ
いて、第5図を参照して説明する。LB膜材料としては
光重合性のものを使用する。この場合LB膜としては前
述のY型膜を前提とする。
Next, a method for forming a planar grating according to the present invention will be explained with reference to FIG. A photopolymerizable material is used as the LB film material. In this case, the LB film is assumed to be the aforementioned Y-type film.

まず重合性LB膜7を前述した中分子累積法により、ガ
ラス、セラミックス、プラスチックス又は酸化シリコン
等の基板2上に成膜する。次に、光結合器の所望の形状
を得るために、光又は電子によるパターニング露光(第
5図(1))の後、現像(現像液:アルコール、クロロ
ホルム、ベンゼンS)により末露光部のLB膜を除去す
る(第5図(1)、 (2))。この最重合部分は現像
液によって溶出されない(第5図(2))。
First, the polymerizable LB film 7 is formed on the substrate 2 of glass, ceramics, plastics, silicon oxide, etc. by the above-mentioned medium molecule accumulation method. Next, in order to obtain the desired shape of the optical coupler, after patterning exposure with light or electrons (Fig. 5 (1)), the LB of the last exposed part is Remove the film (Fig. 5 (1), (2)). This most polymerized portion is not eluted by the developer (FIG. 5(2)).

次に重合LB膜9の1−に重合性LB膜lOを単分子累
積法により成膜する。重合性LB膜lOは重合性LB膜
7と同種のものが好ましいが、光学的条件を満たすなら
異種のものでもよい。
Next, a polymerizable LB film 1O is formed on 1- of the polymerized LB film 9 by a single molecule accumulation method. The polymerizable LB film IO is preferably of the same type as the polymerizable LB film 7, but may be of a different type as long as it satisfies the optical conditions.

この場合、重合L B H# 9の表面(重合性LB膜
XOと接する面)が親木性なら、重合性LB膜10の表
面が疎水性になるように、或いは重合性LB膜9の表面
が疎水性なら重合性LB膜10の表面が親水性になるよ
うに重合性LBIlIIOの厚みを調整する必要がある
In this case, if the surface of the polymerizable LB H# 9 (the surface in contact with the polymerizable LB film If it is hydrophobic, it is necessary to adjust the thickness of the polymerizable LBIIIO so that the surface of the polymerizable LB film 10 becomes hydrophilic.

前述した単分子累積法により明らかなように、L B 
Hの表面は必らず、親木性か疎水性かのいずれかをとり
、その制御は極めて容易である。所望の形状のLBBO
2表面に積層されたL B Il*のみか残るように、
前述のパターニング露光を施す。
As is clear from the single molecule accumulation method described above, L B
The surface of H is necessarily either lignophilic or hydrophobic, and it is extremely easy to control this. LBBO of desired shape
2, so that only the L B Il* layered on the surface remains.
The patterning exposure described above is performed.

その際グレーティングのパターンも、同時に又は相前後
して露光する。これを現像後、第5図(4)に示す歌合
LBHMIlのレリーフ−パターンが得られる。この時
、グレーティング11の四部は重合L B H’J、 
9の表面であり、凸部はLBIIりlOの表面であるか
ら、一方か親木性表面のとき、他方は疎水性表面となっ
ている。次いで重合LB膜11のヒにLBBi12び1
3を前述した単分子累積法により形成する。このとS、
重合LBIIj!11の凹部低面が親水性なら、LBB
i12第1層目は親木基が基板側を向くように付着させ
る。したがって、凸部では疎水基と親水基(LBBi1
2第1層目)とが向いあうことになる。反対に重合LB
膜11の凹部低面か疎水性なら、LBBi12第1層目
は疎水性が基板側を向くように付着させる。LBBi1
2厚みがブレーティングの深みと同じになるようにする
(即ち、11の凸部の表面と13の表面が同一面になる
ようにする。)第5図(4))。LBBi12膜厚制御
か極めて容易であることは単分子を繰り返えし累積する
一口程をとる単分子累積法の特徴より明らかである。
In this case, the grating pattern is also exposed simultaneously or one after the other. After developing this, a relief pattern of LBHMIL shown in FIG. 5(4) is obtained. At this time, the four parts of the grating 11 are polymerized L B H'J,
9, and the convex portions are the surfaces of LBII and IO, so when one is a woody surface, the other is a hydrophobic surface. Next, LBBi12 and 1 are applied to the polymerized LB film 11.
3 is formed by the single molecule accumulation method described above. This and S,
Polymerization LBIIj! If the lower surface of the recess in No. 11 is hydrophilic, LBB
The first layer of i12 is attached so that the parent wood base faces the substrate side. Therefore, in the convex part, a hydrophobic group and a hydrophilic group (LBBi1
2 (first layer) will face each other. On the contrary, polymerized LB
If the lower surface of the concave portion of the film 11 is hydrophobic, the first layer of LBBi 12 is deposited with the hydrophobic side facing the substrate side. LBBi1
2. The thickness should be the same as the depth of the brating (that is, the surface of the convex portion 11 and the surface 13 should be on the same plane) (Fig. 5 (4)). The fact that the LBBi12 film thickness is extremely easy to control is clear from the characteristics of the single molecule accumulation method, which takes about the same amount of repeated accumulation of single molecules.

重合LB膜11−Lに積層されるLBBi12び13は
重合性であると否とを問わないが、屈折率は重合LB膜
のそれより、小であることが要求される。
The LBBi 12 and 13 laminated on the polymerized LB film 11-L may or may not be polymerizable, but the refractive index is required to be smaller than that of the polymerized LB film.

次に、第5図(4)の構成のものを不図示の超音防水槽
につけ、適当な条件下で超音波を発生させると、接合力
の弱い(@水幕と親木基が向い合っているからLBBi
1212の接触面で剥#(除去)か生ずる。LB膜目と
13の接触面では親水基同志(又は疎水基同志)が向き
合っているので、比較的接合力が強いため、剥離が生し
ない。かくして選択的剥離(除去)により次に、本発明
を、一実施例により、第6図を参照して説明する。この
図において、基板32には平面型グレーティングの形成
されたLBBa2O着設される。LBBa2Oグレーテ
ィング部36の凹にはLB[33が装着されLBBa2
O33との表面は同一平面にあって、上部型、すなわち
位相差型グレーティング36が形成されている。またL
BBa2Oよび33は表面の性質が同じである。すなわ
ち、LBBa2O表面が親水性なら、LBBa2O表面
も親水性にする必要がる。
Next, when the structure shown in Fig. 5 (4) is attached to an ultrasonic waterproof tank (not shown) and ultrasonic waves are generated under appropriate conditions, the bonding force is weak (@The water curtain and parent tree base face each other). Because I am LBBi
Peeling (removal) occurs at the contact surface of 1212. Since the hydrophilic groups (or hydrophobic groups) face each other at the contact surface between the LB film and 13, the bonding force is relatively strong, and no peeling occurs. Thus, selective exfoliation (removal) The invention will now be described by way of one embodiment with reference to FIG. In this figure, a substrate 32 is provided with LBBa2O on which a planar grating is formed. LB[33 is attached to the concave of the LBBa2O grating part 36, and the LBBa2
The surface with O33 is on the same plane, and an upper type, that is, a phase difference type grating 36 is formed. Also L
BBa2O and 33 have the same surface properties. That is, if the LBBa2O surface is hydrophilic, the LBBa2O surface must also be made hydrophilic.

反対にLBBa2O表面が疎水性なら、LBBa2O表
面も疎水性にする必要がある。
Conversely, if the LBBa2O surface is hydrophobic, the LBBa2O surface must also be made hydrophobic.

グレーティング上にLBBa2O成膜されている。LB
Ba2O屈折率はLBBa2O屈折率より低いことが条
件である。LBBa2OLBBa2O同一材料であるか
、又は屈折率が同じものが好適である。LBBa2Oバ
ッファ層として機能する。LB膜(ハンファ層)34の
上面には反射層35が装着される。反射層35はAI膜
を蒸着したものである。
A LBBa2O film is formed on the grating. LB
The condition is that the Ba2O refractive index is lower than the LBBa2O refractive index. LBBa2OLBBa2O are preferably made of the same material or have the same refractive index. Functions as a LBBa2O buffer layer. A reflective layer 35 is attached to the upper surface of the LB film (Hanwha layer) 34. The reflective layer 35 is formed by depositing an AI film.

LBnり34はLB成膜 3 、、hに一様に成膜され
ていてもよいが第6図のようにグレーティングFにのみ
構築されるように選択付着してもよい。その際、重合0
成LB膜の場合は、パターン霧光により、非重合成し成
膜の場合は、本出願人の他の特許出願(出願番号未定)
に係るパターニング形成方法によっそ所望の形状にパタ
ーニングされる。LBBa2O膜厚はグレーティングに
よって回折され、直接基板側32に射出する光36−b
と、LB成膜34側射出し反射層35によって反射され
基板側32に射出する光36−aとが干渉によってtL
いに強めあうように設定される必要がある。この場合L
B膜34は前述のようにバッファ層として機能する。
The LBn film 34 may be uniformly formed on the LB films 3, . At that time, polymerization is 0
In the case of a formed LB film, in the case of a non-polymerized film formed by pattern fog light, another patent application of the present applicant (application number undetermined)
A desired shape is patterned by the patterning method according to the above. The thickness of the LBBa2O film is such that light 36-b is diffracted by the grating and directly emitted to the substrate side 32.
and the light 36-a reflected by the LB film forming 34 side emission reflection layer 35 and emitted to the substrate side 32 due to interference.
They need to be set so that they strengthen each other. In this case L
The B film 34 functions as a buffer layer as described above.

射出光36−aと36−bとが干渉により強め合う岐適
のLBBa2O膜厚条件は公知の光学的法則により容易
に導かれる。但し光の波長以下の膜厚制御が要求yれる
。射出光36−aと36−bとは第6図に示すように光
路長が異なる。この光路差が波長の整数倍のとき強めあ
う。
An appropriate LBBa2O film thickness condition under which the emitted light beams 36-a and 36-b strengthen each other due to interference can be easily derived from known optical laws. However, film thickness control below the wavelength of light is required. The emitted light beams 36-a and 36-b have different optical path lengths as shown in FIG. When this optical path difference is an integral multiple of the wavelength, they become stronger.

このように、第6図に示すLB層により構成されたグレ
ーティングと先導波路とバッファ層に反射層を設けた本
発明の光結合器は基板32の反射側に射出する光を利用
できるので射出効率の向りを図ることができるという効
果がある。さらに本発明は安価な光結合器を提供し、バ
ッファ層を容易に構築できる平面型グレーティングを有
する光結合器を提供する。
In this way, the optical coupler of the present invention, which includes a grating constituted by the LB layer shown in FIG. 6, a leading waveguide, and a reflective layer provided with a reflective layer, can utilize the light emitted to the reflective side of the substrate 32, so that the output efficiency can be improved. This has the effect of being able to determine the direction of the Furthermore, the present invention provides an inexpensive optical coupler and provides an optical coupler having a planar grating in which a buffer layer can be easily constructed.

〈実施例〉 ・基板〜白板ガラス、lommX IQmm 、 0.
3mm(Si0281%、820313%、 Na2O
4%t’ AIz032%)・グレーティングピッチ 
200人 深さ0.IJL・LB成膜の膜厚 0.9井 tt IQ // 0,1用 /l 12.13 /l O,1pL ” 14 tt O,2゜ ・入射光−He−NeLz−ザ(111328人)・半
導体レーザ(8300A) ・オレフィン系(光重合性) ・ステアリン酸ビニルにγ線をあてて重合。
<Example> - Substrate ~ White plate glass, lommX IQmm, 0.
3mm (Si0281%, 820313%, Na2O
4%t' AIz032%)・Grating pitch
200 people depth 0. Thickness of IJL/LB film formation 0.9 well tt IQ // For 0,1/l 12.13 /l O,1 pL ” 14 tt O,2°・Incident light -He-NeLz-The (111328 people) - Semiconductor laser (8300A) - Olefin type (photopolymerizable) - Polymerizes vinyl stearate by exposing it to gamma rays.

・末露光部アルコールに溶ける。・Dissolves in alcohol at the end of exposure.

−w−トリコセン酸に電子線(10〜100KeV)を
あてて重合。
-w-Trichosenic acid is polymerized by applying an electron beam (10 to 100 KeV).

・電子ビーム露光装置(日本電子TEBX−2B) ・ジアセチレン誘導体は紫外線で重合。・Electron beam exposure equipment (JEOL TEBX-2B) ・Diacetylene derivatives are polymerized by ultraviolet light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光結合器の断面図、第2図(A)。 (B)はLB成膜作装置の斜視図および断面図、第3図
(A)、 (B)、 (C)はLB膜の3種類の構成を
説明する図、第4図(A)、 (B)、 (C)はLB
膜の形成を説明する図、第5図は(+)、 (2)、 
(3)、 (4)。 (5)は本発明のモ面型クレーティングを形成するJ二
程説明図、第6図は本発明の実施例の断面図である。 2−m= 基板 7−−− モノマL成膜 8−−一 露光 9−m= 重合LB膜 10−一−モノマL成膜 +1−−一 重合LB膜 12、13−〜− モノマL成膜 14−−− 水槽 15− 枠 16−−− 浮子 19、20−−一磁石 23−m= 水面 24−m−基板 26−−− 単分子膜 31−−一 光導波路 32−−一 基板 33、34−−− LB膜 35−m−反射層 特、作出願人 キャノン株式会社 第 1 図 王 第 6 図 第 2 図 (a) 1111 2 (1(b) (A) 第3図 j$4図 11!511
FIG. 1 is a sectional view of a conventional optical coupler, and FIG. 2 (A). (B) is a perspective view and a cross-sectional view of the LB film forming apparatus, Figures 3 (A), (B), and (C) are diagrams explaining three types of LB film configurations; Figure 4 (A), (B), (C) are LB
A diagram explaining the formation of a film, Figure 5 is (+), (2),
(3), (4). (5) is an explanatory diagram of the second step of forming the movable type crating of the present invention, and FIG. 6 is a sectional view of an embodiment of the present invention. 2-m=Substrate 7-- Monomer L film formation 8--1 Exposure 9-m=Polymerized LB film 10-1-Monomer L film formation+1--1 Polymerized LB film 12, 13-- Monomer L film formation 14-- Water tank 15- Frame 16-- Float 19, 20--One magnet 23-m=Water surface 24-m-Substrate 26-- Monomolecular film 31--One Optical waveguide 32--One Substrate 33, 34---- LB film 35-m-Reflection layer Particularly created by Canon Co., Ltd. Figure 1 Figure 6 Figure 2 (a) 1111 2 (1 (b) (A) Figure 3 j$ 4 11!511

Claims (1)

【特許請求の範囲】[Claims] グレーティングを設置した光導波路と、バッファ層と、
反射層とからなる光結合器において、該グレーティング
、該光導波路およびバッファ層かLB膜によって構成さ
れていることを特徴とする光結合器。 ・
An optical waveguide equipped with a grating, a buffer layer,
1. An optical coupler comprising a reflective layer, the grating, the optical waveguide, and a buffer layer or LB film.・
JP4482984A 1984-03-10 1984-03-10 Photocoupler Granted JPS60189708A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4482984A JPS60189708A (en) 1984-03-10 1984-03-10 Photocoupler
US06/709,300 US4691982A (en) 1984-03-10 1985-03-07 Optical coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4482984A JPS60189708A (en) 1984-03-10 1984-03-10 Photocoupler

Publications (2)

Publication Number Publication Date
JPS60189708A true JPS60189708A (en) 1985-09-27
JPH0481161B2 JPH0481161B2 (en) 1992-12-22

Family

ID=12702342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4482984A Granted JPS60189708A (en) 1984-03-10 1984-03-10 Photocoupler

Country Status (1)

Country Link
JP (1) JPS60189708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038689A (en) * 2012-08-10 2014-02-27 Hgst Netherlands B V Thermally-assisted recording (tar) head with reflection layer for near-field transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038689A (en) * 2012-08-10 2014-02-27 Hgst Netherlands B V Thermally-assisted recording (tar) head with reflection layer for near-field transducer

Also Published As

Publication number Publication date
JPH0481161B2 (en) 1992-12-22

Similar Documents

Publication Publication Date Title
KR100845565B1 (en) Methods and devices for fabricating three-dimensional nanoscale structures
US8709317B2 (en) Mold for nanoimprinting, its production process, and processes for producing molded resin having fine concavo-convex structure on its surface and wire-grid polarizer
KR100965682B1 (en) Method for the production of optical elements with gradient structures
JP4507891B2 (en) Resist laminate for immersion lithography
JPS60173842A (en) Forming method of pattern
US4691982A (en) Optical coupler
US20200319382A1 (en) Plasmonic lithography for patterning high aspect-ratio nanostructures
US20100297564A1 (en) Polymerizable fluorine-containing monomer, fluorine-containing polymer and method of forming resist pattern
WO2008055110A2 (en) Photonic crystal euv photoresists
Zhang et al. Thick UV-patternable hybrid sol-gel films prepared by spin coating
EP0022618B1 (en) Photographic or photolithographic article and method of forming a photoresist
JPH02131202A (en) Manufacture of optical waveguide
JPS60189708A (en) Photocoupler
JPS60189712A (en) Manufacture of optical coupler
KR101280710B1 (en) Method for manufacturing water repellent glass and water repellent glass manufactured by the method
Kanamori et al. Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate
JPS60189709A (en) Photocoupler
JPS60189711A (en) Manufacture of optical coupler
JPS60189710A (en) Optical coupler
JPS60189707A (en) Photocoupler
JPS60208708A (en) Waveguide lens
CN202230299U (en) Super resolution direct writing lithography machine based on guided mode interference
JPS60208707A (en) Waveguide lens
JPH02139522A (en) Liquid crystal display device and production thereof
GB2209169A (en) Polymer compound