JPS60189702A - Information device using prism optical system - Google Patents

Information device using prism optical system

Info

Publication number
JPS60189702A
JPS60189702A JP59045135A JP4513584A JPS60189702A JP S60189702 A JPS60189702 A JP S60189702A JP 59045135 A JP59045135 A JP 59045135A JP 4513584 A JP4513584 A JP 4513584A JP S60189702 A JPS60189702 A JP S60189702A
Authority
JP
Japan
Prior art keywords
prism
refractive index
wavelength
optical system
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59045135A
Other languages
Japanese (ja)
Inventor
Akira Arimoto
昭 有本
Shigeru Nakamura
滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Koki Co Ltd filed Critical Hitachi Ltd
Priority to JP59045135A priority Critical patent/JPS60189702A/en
Priority to EP85101445A priority patent/EP0156141B1/en
Priority to DE8585101445T priority patent/DE3586008D1/en
Priority to US06/700,184 priority patent/US4770507A/en
Publication of JPS60189702A publication Critical patent/JPS60189702A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1359Single prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/04Catoptric systems, e.g. image erecting and reversing system using prisms only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0911Anamorphotic systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1356Double or multiple prisms, i.e. having two or more prisms in cooperation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Abstract

PURPOSE:To prevent the property of geometrical optics from varying with the wavelength of luminous flux by sticking two kinds of prisms made of materials which differ in the wavelength dispersion of a refractive index together and satisfying a specific conditional equation. CONSTITUTION:The 1st prism 2A made of the 1st material with a refractive index n1 and the 2nd prism 2B made of the 2nd material with a refractive index n2 are stucked together on a surface M to form a composite prism 2; and light is incident on the composite prism 2 at an angle theta1 from an air layer and projected at an angle theta2, and then incident on the boundary surface M at an angle alpha1 and projected from the composite prism 2 at right angles to its projection surface. In this case, the equation I holds, where DELTAn1 and DELTAn2 are dispersion values of the refractive indexes. Consequently, the projection angle does not vary with the wavelength. When this prism optical system is applied to an optical information processor, even variation in the wavelength of a light source exerts no influence.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はプリズム光学系およびそれを用いた情報装置に
関し、特に二次元分布を有する光束の形状を変更するに
好適な複合プリズム光学系およびそれを用いた光学的情
報処理装置に関するものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a prism optical system and an information device using the same, and particularly to a composite prism optical system suitable for changing the shape of a light beam having a two-dimensional distribution and the use thereof. The present invention relates to the optical information processing device used.

〔発明の背景〕[Background of the invention]

従来、光束の形状を変更するための光学系としては、2
個のレンズを共焦点に配置しその焦点距離の比によって
倍率を調整する光学系と、三角プリズムの屈折による入
・出射角度の差を用いる光学系との2つが知られている
。本発明は上記2つの光学系のうち、後者の光学系を改
良したものに相当するものである。
Conventionally, there are two types of optical systems for changing the shape of the light beam.
Two types of optical systems are known: one in which two lenses are arranged confocal and the magnification is adjusted by the ratio of their focal lengths, and the other in which the difference in entrance and exit angles due to refraction of a triangular prism is used. The present invention corresponds to an improved version of the latter of the above two optical systems.

第1図は上記三角プリズムによる屈折の状況を示すもの
で、三角プリズム1の一面に光束を斜入射させた状況を
示している。境界における入・出射角度をそれぞれ、θ
1.θ2とすると、sinθ、=nsinθ? なる関係(Snellの法則)がある。ここで、nは三
角プリズムを構成する材質の屈折率である。
FIG. 1 shows the state of refraction by the triangular prism, in which a light beam is obliquely incident on one surface of the triangular prism 1. Let the entrance and exit angles at the boundary be θ
1. If θ2, sin θ, = n sin θ? There is a relationship (Snell's law). Here, n is the refractive index of the material constituting the triangular prism.

また、上記屈折による光束の径の変化については、入・
出射光束の径をそれぞれ、D、、D2とした場合、 D、/D1=cosO,,/cost。
In addition, regarding the change in the diameter of the luminous flux due to the above refraction,
When the diameters of the emitted light beams are respectively D,, D2, D,/D1=cosO,,/cost.

なる関係があり、この関係を利用して上記形状変更を行
うものである。なお、プリズムのもう1つの面は光束を
垂直に入出射させて、他面で生じた光束径比を保つよう
にしている。
There is a relationship, and this relationship is used to perform the above shape change. Note that the other surface of the prism allows the light flux to enter and exit perpendicularly, so that the diameter ratio of the light flux generated on the other surface is maintained.

上記関係は、光束の波長が一定であれば不変であるが、
波長が変化した場合には上記三角プリズムを構成する材
質の屈折率が変化するため、上記0、が変化し、これを
組込んだ装置に大きな影響を与えるという問題がある。
The above relationship remains unchanged if the wavelength of the luminous flux is constant, but
When the wavelength changes, the refractive index of the material constituting the triangular prism changes, so the above 0 changes, which poses a problem of having a large effect on the device incorporating the triangular prism.

上記波長の変化は。What is the change in wavelength above?

例えば、光源として用いる半導体レーザの個々の発光波
長のばらつき、あるいはその経時変化等によって生ずる
ものである。
For example, this is caused by variations in the individual emission wavelengths of semiconductor lasers used as light sources, or by changes in these wavelengths over time.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、その目的と
するところは、従来のプリズム光学系あるいはこれを用
いる装置における上述の如き問題を解消し、光束の波長
変化に対して幾何光学的性質の変化しないプリズム光学
系およびそれを用いる光学的情報処理装置を提供するこ
とにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to solve the above-mentioned problems in conventional prism optical systems or devices using the same, and to improve geometrical optical properties with respect to wavelength changes of light beams. An object of the present invention is to provide an unchanging prism optical system and an optical information processing device using the same.

〔発明の概要〕[Summary of the invention]

本発明の要点は、プリズム光学系□を構成するプリズム
を、2種類の屈折率の波長分散の異なる材質を貼り合わ
せて形成した点、および、これを光学的情報処理装置に
用いるようにした点にある。
The main points of the present invention are that the prism constituting the prism optical system □ is formed by bonding together two types of materials with different wavelength dispersion of refractive index, and that this is used in an optical information processing device. It is in.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明した後、実施例を図面に基づ
いて詳細に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, after a detailed description of the present invention, embodiments will be described in detail based on the drawings.

第2図は本発明の詳細な説明するための図である。図に
おいて、2は屈折率がn、である第1の材質で構成され
る第1のプリズム2Aと、屈折率が02である第2の材
質で構成される第2のプリズム2Bとを1面Mにおいて
貼り合わせた複合プリズムである。
FIG. 2 is a diagram for explaining the present invention in detail. In the figure, 2 is a first prism 2A made of a first material with a refractive index of n, and a second prism 2B made of a second material with a refractive index of 02. This is a composite prism bonded together at M.

なお、以下の説明においては、前述の如く、空気層から
角度θ、で複合プリズム2に入射した光束が、該複合プ
リズム2からはその出射面に垂直に出射する場合を考え
る。出射光が上記複合プリズム2の出射面から垂直に出
射するためには、図にα2で示される角度が、波長の変
化に対して変化のないようにすれば良いことになる。
In the following description, the case will be considered in which, as described above, a light beam that enters the composite prism 2 from the air layer at an angle θ is output from the composite prism 2 perpendicularly to its output surface. In order for the emitted light to be emitted perpendicularly from the emitting surface of the composite prism 2, the angle indicated by α2 in the figure need only be made so that it does not change with respect to changes in wavelength.

前記5nellの法則より、 sin e 、 : n 、 sjnθ2’−・・−−
−・−−−−・(1)n、 sir+α、 =n、 s
ir+α2=・・・=・・・・・(2)が成立し、かつ
、 θ2+α、=C(一定)・・・・・・・・・・・・(3
)である。
From the above 5-nell law, sin e, : n, sjnθ2'−・・−−
−・−−−・(1) n, sir+α, =n, s
ir+α2=・・・=・・・(2) holds true, and θ2+α,=C (constant)・・・・・・・・・(3
).

入射光束の波長変化に対する屈折率n、ln2 ;角度
α1.α2,02等の変化を、それぞれΔnllΔn2
 ;Δα1.Δα2.Δθ2等と表わすものとする(角
度θ、は不変とする)と、(])式よりまた、(2)式
より Δn1sinα、十n、 cosα1Δα1−Δn2s
inα2=n 2 Q OSα2Δα2゜1(5)が得
られる。
Refractive index n, ln2 with respect to wavelength change of incident light flux; angle α1. Changes in α2, 02, etc., are expressed as Δnll and Δn2, respectively.
;Δα1. Δα2. If it is expressed as Δθ2 etc. (the angle θ remains unchanged), then from equation (]) and from equation (2), Δn1sinα, tenn, cosα1Δα1−Δn2s
inα2=n 2 Q OSα2Δα2°1 (5) is obtained.

波長変化に対してΔα2=0となることが必要であるか
ら、(5)式より Δn、 sinα、 +n、 cosα1−Δn2si
nα2;0・・・・・・−(6)が成立することが必要
となる。
Since it is necessary that Δα2=0 with respect to the wavelength change, Δn, sinα, +n, cosα1−Δn2si from equation (5)
It is necessary that nα2;0...-(6) hold true.

また、(3)式の両辺を微分して Δθ、=−Δα、・・・・・・・・・・・・・・・・(
7)従って5(2)式と(6)式とから、 が得られる。(8)式に(7)式で示される関係を代入
して整理すると。
Also, by differentiating both sides of equation (3), Δθ,=−Δα,・・・・・・・・・・・・・・・(
7) Therefore, from Equation 5(2) and Equation (6), the following can be obtained. Substituting the relationship shown in equation (7) into equation (8) and rearranging it.

どなる。ここで、(9)式に(4)式で示される関係を
代入してΔ02を消去すると、 が得られ、更に整理すると が、波長変化に対して出射角度の変化しない条件となる
bawl. Here, by substituting the relationship shown in equation (4) into equation (9) and eliminating Δ02, the following is obtained, which is further summarized as a condition that the emission angle does not change with respect to a change in wavelength.

なお、上記条件を満足する値の屈折率および波長分散を
有する材質は下記の如く、存在可能なものである。
Note that materials having a refractive index and wavelength dispersion that satisfy the above conditions can exist as shown below.

例えば、02−α、とし、かつ、n、:n、であること
を考えると、 2Δn、=Δn。
For example, given 02-α and n, :n, 2Δn,=Δn.

である。(株)小原光学ガラス製造所の光学ガラス一覧
表によれば、An、/Δn、の値は程度に取れるので、
現実の系が構成可能である。
It is. According to the optical glass list of Ohara Optical Glass Manufacturing Co., Ltd., the values of An, /Δn, can be taken as follows.
Real systems are configurable.

なお、上述の如く構成された複合プリズム2においては
、2つのプリズム2Aおよび2Bを用いるため、屈折面
が増えることになり反射損失が増加することになる。こ
れをできるだけ少なくするためには、上記2つのプリズ
ムを構成する材質を特定波長(中心波長)でT1.=n
t となるように選択すれば良い。
Note that in the composite prism 2 configured as described above, since two prisms 2A and 2B are used, the number of refractive surfaces increases, resulting in an increase in reflection loss. In order to reduce this as much as possible, the materials constituting the above two prisms must be made at T1. =n
It should be selected so that t.

上記プリズム光学系は、その入射方向と出射方向とを逆
にしても同様に作用することは言うまでもない。
It goes without saying that the prism optical system described above operates in the same way even if the direction of incidence and direction of emission are reversed.

次に、本発明を光学的情報処理装置に応用した例を説明
する。
Next, an example in which the present invention is applied to an optical information processing device will be described.

第3図は本発明の実施例である書込み可能な光デイスク
装置を示すブロック図である。図において、11は半導
体レーザ、12はレンズ、13は第2図に示した如き構
成を有する、本実施例の特徴部分である複合プリズム、
14はビームスプリンタ、15゜17はレンズ、1Gは
光ディスク、18は光検出器を示している。
FIG. 3 is a block diagram showing a writable optical disk device according to an embodiment of the present invention. In the figure, 11 is a semiconductor laser, 12 is a lens, and 13 is a composite prism having the configuration shown in FIG. 2, which is a characteristic part of this embodiment.
14 is a beam splinter, 15° and 17 are lenses, 1G is an optical disk, and 18 is a photodetector.

本実施例に示した光デイスク装置の動作を以下説明する
The operation of the optical disk device shown in this embodiment will be explained below.

半導体レーザ11から出射したレーザ光はレンズ】2に
°より平行光束となり、形状整形のためのプリズム(複
合プリズム)13を通過する。このプリズム13は前述
の如く、レーザ光の波長変化によるプリズム出射後の光
束の角度変化が無いという特徴を有するものである。こ
の後、上記ブリ“ズム13から出射した光束はビームス
プリッタ14.レンズ15を通って光ディスク16に照
射され、光ディスク16からの情報が光検出器18で受
光されるが、この動作については、従来の光デイスク装
置と同様であるので詳細な説明は省略する。
The laser beam emitted from the semiconductor laser 11 is turned into a parallel beam by the lens 2, and passes through a prism (composite prism) 13 for shape shaping. As described above, this prism 13 is characterized in that there is no change in the angle of the luminous flux after exiting the prism due to a change in the wavelength of the laser light. Thereafter, the light flux emitted from the brism 13 passes through the beam splitter 14 and lens 15 and is irradiated onto the optical disc 16, and information from the optical disc 16 is received by the photodetector 18. Since this is the same as the optical disk device of 2.0, a detailed explanation will be omitted.

なお、上記実施例に示した構成は、追加書込みおよび書
換え可能な光ディスクの如く、読出し時と書込み時とで
レーザ光の出力が変化することにより、波長変化が生ず
る場合に特に有効である。
Note that the configuration shown in the above embodiment is particularly effective in a case where a wavelength change occurs due to a change in laser beam output between reading and writing, such as in an optical disk that allows additional writing and rewriting.

例えば、上記プリズム13を構成する2つのプリズム(
第2図参照)のうち、第1のプリズムを前記(株)小原
光学ガラス製造所のLaK]O(λ= 830nmにお
いて n 、 = 1.70889 ) 、第2のプリ
ズムを同S FllC同 n 2=1.63066 )
、γ=33.710度、またθ、 =64.56度とし
た場合、01=31.410度、α1、=40.10度
、α2 =32.90度になる。ここで、波長λが80
0nmから860nmに変化した場合の屈折率変化Δr
l+ +Δn2は、それぞれ、−0,001759およ
び−0,003+28であり、前述の条件(第7頁(1
1)式)%式% 実際に波長が830nmから800nmに変化した場合
の出射角変化は0.000708度、830n−mから
860nmに変化した場合の出射角変化は0.0007
17度であり、従来より1桁以上小さくなっている。な
お、このときの光束は変化を受ける方向で2.19倍と
なる。
For example, two prisms (
(see Figure 2), the first prism was LaK]O (n, = 1.70889 at λ = 830 nm) manufactured by Ohara Optical Glass Manufacturing Co., Ltd., and the second prism was LaK]O manufactured by Ohara Optical Glass Manufacturing Co., Ltd. =1.63066)
, γ = 33.710 degrees, and θ, = 64.56 degrees, then 01 = 31.410 degrees, α1 = 40.10 degrees, and α2 = 32.90 degrees. Here, the wavelength λ is 80
Refractive index change Δr when changing from 0 nm to 860 nm
l+ +Δn2 are −0,001759 and −0,003+28, respectively, and under the conditions described above (page 7 (1
1) Formula) % Formula % When the wavelength actually changes from 830 nm to 800 nm, the output angle change is 0.000708 degrees, and when the wavelength changes from 830 nm to 860 nm, the output angle change is 0.0007 degrees.
It is 17 degrees, which is more than an order of magnitude smaller than before. Note that the luminous flux at this time becomes 2.19 times as large in the direction of change.

従って、1:2の長円比のレーザを用いた場合、2.1
9:2となり、はぼ真円に近くなる。
Therefore, when using a laser with an ellipse ratio of 1:2, 2.1
The ratio becomes 9:2, making it almost a perfect circle.

第4図は本発明の他の実施例であるレーザプリンタを示
すブロック図である。図において、11〜13は第3図
に示したと同じ構成要素を示し、 21はポリゴンミラ
ー、22はFθレンズ、23は感光ドラムを示している
FIG. 4 is a block diagram showing a laser printer according to another embodiment of the present invention. In the figure, 11 to 13 indicate the same components as shown in FIG. 3, 21 is a polygon mirror, 22 is an Fθ lens, and 23 is a photosensitive drum.

本実施例においては、半導体レーザ11から出射したレ
ーザ光がレンズ12により平行光となり、形状整形のた
めのプリズム13を通過した後、ポリゴンミラー21.
F’0レンズ22を介して感光ドラム23上を走査する
。このとき、従来は、波長が変化することでレーザ光の
波長が変化すると、上記感光ドラム23面上で描くパタ
ーンおよび文字等に歪を生ずるという問題があったが、
上記プリズム13を用いることにより、この問題が解消
される。
In this embodiment, a laser beam emitted from a semiconductor laser 11 is converted into parallel light by a lens 12, passes through a prism 13 for shape shaping, and then passes through a polygon mirror 21.
The photosensitive drum 23 is scanned through the F'0 lens 22. At this time, conventionally, there was a problem that when the wavelength of the laser beam changed due to a change in wavelength, distortion occurred in the patterns, characters, etc. drawn on the surface of the photosensitive drum 23.
By using the prism 13 described above, this problem is solved.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によれば、プリズム光学系を構
成するプリズムを、2種類の屈折率の波長分散の異なる
材質を貼り合わせて形成したので、波長変化に対して幾
何光学的性質の変化しないプリズム光学系を実現できる
という顕著な効果を奏するものである。また、上記プリ
ズム光学系を光学的情報処理装置に適用した場合には、
光源の波長が大きく変化した場合にも、その影響を受け
ない情報装置を実現できるという顕著な効果を奏するも
のである。
As described above, according to the present invention, since the prism constituting the prism optical system is formed by bonding two types of materials with different wavelength dispersion of refractive index, the geometrical optical properties change with respect to wavelength changes. This has the remarkable effect of being able to realize a prism optical system that does not Furthermore, when the above prism optical system is applied to an optical information processing device,
This has the remarkable effect of making it possible to realize an information device that is unaffected even if the wavelength of the light source changes significantly.

【図面の簡単な説明】 第1図は従来の三角プリズムの作用を示す図、第2図は
本発明の一実施例である複合プリズムを示す図、第3図
、第4図は上記複合プリズムを応用した光学的情報処理
装置の例を示すブロック図である。 2:複合プリズム、2’A、2Bニプリズム、11:半
導体レーザ、12,15,17 :レンズ、13:複合
プリズム、14;ビームスプリッタ、16二光デイスク
。 18:光検出器、21:ポリゴンミラー、22:FOレ
ンズ、23:感光ドラム。 特許出願人 株式会社日立製作所(ほか1名)第 1 
図 第 2 図
[Brief Description of the Drawings] Fig. 1 is a diagram showing the action of a conventional triangular prism, Fig. 2 is a diagram showing a composite prism that is an embodiment of the present invention, and Figs. 3 and 4 are diagrams showing the above-mentioned composite prism. FIG. 2 is a block diagram showing an example of an optical information processing device to which the method is applied. 2: composite prism, 2'A, 2B double prism, 11: semiconductor laser, 12, 15, 17: lens, 13: composite prism, 14: beam splitter, 16 dual optical disk. 18: Photodetector, 21: Polygon mirror, 22: FO lens, 23: Photosensitive drum. Patent applicant: Hitachi, Ltd. (and 1 other person) No. 1
Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)光の屈折によって光束形状を変換するプリズム光
学系において、屈折率の波長分散の異なる材質で構成さ
れる2種類のプリズムを貼り合わせ、但し、Δn、l 
Δn、:屈折率の波長分散n1 y nz :特定波長
における屈折率02:第1のプリズムの光入射面にお ける屈折角 αl :第1.第2のプリズムの境界面における入射角 なる条件を満たす如く構成されたことを特徴とするプリ
ズム光学系。
(1) In a prism optical system that changes the shape of a light beam by refraction of light, two types of prisms made of materials with different wavelength dispersion of refractive index are bonded together, but Δn, l
Δn: wavelength dispersion of refractive index n1 y nz: refractive index at a specific wavelength 02: refraction angle αl at the light incident surface of the first prism: 1st. A prism optical system characterized in that it is configured to satisfy a condition of an incident angle at a boundary surface of a second prism.
(2)上記特定波長における屈折率n1tn2が等しい
材質で構成されたことを特徴とする特許請求の範囲第1
項記載のプリズム光学系。
(2) Claim 1, characterized in that the material is made of a material having the same refractive index n1tn2 at the specific wavelength.
Prism optical system described in Section 2.
(3)少なくとも書込み用光源、光束平行化光学系。 光束形状変換プリズムおよび光束集光光学系を有する光
学的情報処理装置において、前記光束形状変換プリズム
として、屈折率の波長分散の異なる材質で構成される2
種類のプリズムを貼り合わせ但し、Δnll Δn2 
=屈折率の波長分散nIg n4 :特定波長における
屈折率θ2 :第1のプリズムの光入射面における屈折
角 α、:第1.第2のプリズムの境界面 における入射角 なる条件を満たす如く構成された複合プリズムを用いる
ことを特徴とする情報装置。
(3) At least a writing light source and a beam collimating optical system. In an optical information processing device having a beam shape converting prism and a beam condensing optical system, the beam shape converting prism is made of materials having different wavelength dispersions of refractive indexes.
Pasting different types of prisms, however, Δnll Δn2
= wavelength dispersion of refractive index nIg n4 : refractive index at a specific wavelength θ2 : refraction angle α at the light incidence surface of the first prism, : 1st. An information device characterized by using a composite prism configured to satisfy a condition of an incident angle at a boundary surface of a second prism.
JP59045135A 1984-03-09 1984-03-09 Information device using prism optical system Pending JPS60189702A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59045135A JPS60189702A (en) 1984-03-09 1984-03-09 Information device using prism optical system
EP85101445A EP0156141B1 (en) 1984-03-09 1985-02-11 Prism optics and optical information processing apparatus
DE8585101445T DE3586008D1 (en) 1984-03-09 1985-02-11 PRISM SYSTEM AND DEVICE FOR PROCESSING OPTICAL INFORMATION.
US06/700,184 US4770507A (en) 1984-03-09 1985-02-11 Prism optics and optical information processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59045135A JPS60189702A (en) 1984-03-09 1984-03-09 Information device using prism optical system

Publications (1)

Publication Number Publication Date
JPS60189702A true JPS60189702A (en) 1985-09-27

Family

ID=12710832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59045135A Pending JPS60189702A (en) 1984-03-09 1984-03-09 Information device using prism optical system

Country Status (1)

Country Link
JP (1) JPS60189702A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197902A (en) * 1987-02-12 1988-08-16 Copal Co Ltd Beam forming prism
JPS6449135A (en) * 1987-08-19 1989-02-23 Matsushita Electric Ind Co Ltd Optical head
JPS6449136A (en) * 1987-08-19 1989-02-23 Matsushita Electric Ind Co Ltd Optical head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144512A (en) * 1981-03-03 1982-09-07 Konishiroku Photo Ind Co Ltd Objective lens for reproduction of video disk
JPS5887521A (en) * 1981-11-20 1983-05-25 Konishiroku Photo Ind Co Ltd Reproducing objective lens of video disk or the like
JPS5933020B2 (en) * 1980-08-18 1984-08-13 重質油対策技術研究組合 catalyst composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933020B2 (en) * 1980-08-18 1984-08-13 重質油対策技術研究組合 catalyst composition
JPS57144512A (en) * 1981-03-03 1982-09-07 Konishiroku Photo Ind Co Ltd Objective lens for reproduction of video disk
JPS5887521A (en) * 1981-11-20 1983-05-25 Konishiroku Photo Ind Co Ltd Reproducing objective lens of video disk or the like

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197902A (en) * 1987-02-12 1988-08-16 Copal Co Ltd Beam forming prism
JPS6449135A (en) * 1987-08-19 1989-02-23 Matsushita Electric Ind Co Ltd Optical head
JPS6449136A (en) * 1987-08-19 1989-02-23 Matsushita Electric Ind Co Ltd Optical head

Similar Documents

Publication Publication Date Title
US4770507A (en) Prism optics and optical information processing apparatus
US4545651A (en) Optical system for synthesizing plural light beams
JPS61217002A (en) Prism optical system and information device using it
JP2001004869A (en) Optically coupled device by using photonic crystal and optical coupling method
US5095389A (en) Beam shaping optical system
US5631774A (en) Polarizing beam splitter and optical pick-up head comprising the same
JPS60189702A (en) Information device using prism optical system
JPS61122614A (en) Laser module
US6400512B1 (en) Refractive/reflective optical element multiple beam spacer
US6783246B2 (en) Ghost image prevention element for imaging optical system
JPS5988672A (en) Optical fiber sensor
JPS60205420A (en) Semiconductor laser pen
JPS6125104A (en) Compound lens
JP2956905B2 (en) Optical disk drive
JPS61209418A (en) Prism optical system and optical information processor using said system
CN117148594B (en) Display assembly and AR equipment
JPS60232527A (en) Prism optical system and optical information processor using prism optical system
JPS6118492Y2 (en)
JP2764440B2 (en) Anamorphic prism
JPS59167863A (en) Optical system for optical disc
JP2540188B2 (en) Optical disk drive
KR100252944B1 (en) Device for picking-up light
JPS61167912A (en) Optical coupling device
JP2002328259A (en) Optical element
JPS6048004A (en) Optical branching and coupling device for optical fiber