JPS6018923B2 - Liquid level detection device - Google Patents

Liquid level detection device

Info

Publication number
JPS6018923B2
JPS6018923B2 JP8111276A JP8111276A JPS6018923B2 JP S6018923 B2 JPS6018923 B2 JP S6018923B2 JP 8111276 A JP8111276 A JP 8111276A JP 8111276 A JP8111276 A JP 8111276A JP S6018923 B2 JPS6018923 B2 JP S6018923B2
Authority
JP
Japan
Prior art keywords
differential pressure
liquid level
pressure transmitter
pipe
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8111276A
Other languages
Japanese (ja)
Other versions
JPS537265A (en
Inventor
泰正 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP8111276A priority Critical patent/JPS6018923B2/en
Publication of JPS537265A publication Critical patent/JPS537265A/en
Publication of JPS6018923B2 publication Critical patent/JPS6018923B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【発明の詳細な説明】 本発明は高圧下において安全でしかも誤差のきわめて少
ない液位検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid level detection device that is safe under high pressure and has very little error.

高圧下においてタンク類の液位を検出する方法としては
差圧発信器により高圧側と低圧側との圧力の差を検出す
る方法が採られている。
A method of detecting the liquid level in tanks under high pressure is to use a differential pressure transmitter to detect the difference in pressure between the high pressure side and the low pressure side.

この場合、タンク内のガス組成および温度・圧力条件が
変化すると、これに伴ってガスの比重が変化し、検出液
位と実際の液位との間に相当の誤差が生じる。このよう
に時々刻々変化する温度・圧力条件に追従する液&検出
方法はなく、現状では誤差のあるま)使用されておるの
でさらに誤差のない検出装置の開発が望まれてきた。特
に最近は化学プラントの高圧化、技術の高度化が進むに
従ってきわめて厳密な液位検出が必要となってきた。本
発明はこのような点に鑑みなされたもので、被測定タン
クに乾式配管による差圧発信器と湿式配管による差圧発
信器とを併設し、これら両差圧発信器からの出力信号を
演算器に入力して演算させ、この演算器の出力信号を謙
取ることによって温度、圧力条件が変化しても常に正確
な液位検出が行なえる液位検出装置を提供するものであ
る。以下その構成等を図に示す実施例により詳細に説明
する。第1図は乾式配管による液&検出装置、第2図は
湿式配管による液&検出装置、第3図は本発明に係る乾
式配管と湿式配管とを併設した液位検出装置を示す図で
、これらの図においてaは配管等の説明図、bは液&と
差圧発信器の出力信号との関係強豪図である。
In this case, when the gas composition and temperature/pressure conditions in the tank change, the specific gravity of the gas changes accordingly, causing a considerable error between the detected liquid level and the actual liquid level. There is no liquid detection method that can follow the ever-changing temperature and pressure conditions, and currently it is being used with some errors, so there has been a desire to develop a detection device with even fewer errors. Particularly recently, as chemical plants have become more pressurized and technology has become more sophisticated, extremely precise liquid level detection has become necessary. The present invention was developed in view of these points, and includes a differential pressure transmitter using dry piping and a differential pressure transmitter using wet piping in the tank to be measured, and calculates the output signals from both differential pressure transmitters. To provide a liquid level detection device which can always perform accurate liquid level detection even when temperature and pressure conditions change by inputting the liquid into a calculation unit and calculating the output signal of the calculation unit. The configuration and the like will be explained in detail below with reference to embodiments shown in the drawings. Fig. 1 shows a liquid & detection device using dry piping, Fig. 2 shows a liquid & detection device using wet piping, and Fig. 3 shows a liquid level detection device with dry piping and wet piping according to the present invention. In these figures, a is an explanatory diagram of piping, etc., and b is a diagram of the relationship between the liquid & and the output signal of the differential pressure transmitter.

まず、乾式配管による場合は第1図aにおいてタンク1
内には液体2が入れられ、液体2の上方にはガス3が充
満している。タンクーの予想最高液位と予想最低液位と
は、途中に差圧発信器Aを備えた配管4Aで連結されて
おり、差圧発信器Aはその低圧側Lを配管4Aの最高液
位側に接続され、また高圧側日を配管4Aの最低液位側
に接続されている。そして、この配管のうち最高液位に
連結する方の側にはタンク内とおなじくガス3が充満し
ておりいわゆる乾式配管と云われる方式になっている。
日は液位、HN^xは最高液位を示す。差圧発信器Aは
その両方の入口における圧力の差を出力信号として発信
するものでその出力信号をaとする。以上のように構成
された乾式配管方式においては、液位が零のときに差圧
発信器Aを零点に調整しておくと、液&が最高液位にな
ったときには配瞥中に残ったガスのヘッドの影響によっ
て出力信号aは真の液&に対する出力信号より小さい値
を示す。そこで、液&と筆圧発信器Aにか)る差圧との
関係を数式によって表わすと次式のようになる。△P=
(y,一yg)日 ………【1’‘1}式に
おいて上部ガスが緩い状態すなわち真空状態ではッg=
0であり、配管取出口寸法をHN^xとすると葦圧発信
器に加わる技大差圧△Pw^xは{1)式にyg=0を
代入して△PM^x=(y,一0)Hu^x =y,Hw^x ………【2’となる。
First, in the case of dry piping, tank 1 is shown in Figure 1a.
A liquid 2 is placed inside, and a gas 3 is filled above the liquid 2. The predicted highest liquid level and the predicted lowest liquid level of the tank are connected by a pipe 4A equipped with a differential pressure transmitter A on the way, and the differential pressure transmitter A connects its low pressure side L to the highest liquid level side of the pipe 4A. The high pressure side is connected to the lowest liquid level side of the pipe 4A. The side of this piping that connects to the highest liquid level is filled with gas 3, just like the inside of the tank, and is a so-called dry piping system.
Day indicates the liquid level, and HN^x indicates the highest liquid level. The differential pressure transmitter A transmits the difference in pressure at both inlets as an output signal, and the output signal is designated as a. In the dry piping system configured as described above, if the differential pressure transmitter A is adjusted to the zero point when the liquid level is zero, when the liquid & Due to the effect of the gas head, the output signal a shows a smaller value than the output signal for the true liquid &. Therefore, the relationship between the liquid & and the differential pressure across the pen pressure transmitter A is expressed by the following equation. △P=
(y, - yg) days......In the formula [1''1}, when the upper gas is loose, that is, in a vacuum state, g =
0, and if the piping outlet dimension is HN^x, the technical difference pressure △Pw^x applied to the reed pressure transmitter is calculated by substituting yg=0 into equation {1) and △PM^x=(y, -0 ) Hu^x =y, Hw^x ......[2'.

上式に用いた符号は次の通りである。△P…・・・差圧
発信器にかかる差圧(k9/地)△P肌x…・・・差圧
発信器最大差圧(【9′の)yl・・・・・・液比重量
(k9/均)yg・・・・・・ガス比重量(k9/地)
日・・・・・・液位(凧) HM^x・・・・・・出力信号最大目盛(凧){11÷
{21△P−小柳:(・−努)日誌 △PM^X yIH…X ここで無次元化された△P,H′を考え上式に代入する
と△P′=表馬H′=日申 △P′=(1−努)H′ ….・・.・側上記の数
式‘3}すなわち出力信号と液位との関係を線図で表わ
すと第1図bのようになる。
The symbols used in the above equation are as follows. △P...Differential pressure applied to the differential pressure transmitter (k9/ground) △P skin x...Maximum differential pressure of the differential pressure transmitter ([9') yl...Liquid specific weight (k9/average) yg...Gas specific weight (k9/ground)
Day...Liquid level (kite) HM^x...Output signal maximum scale (kite) {11÷
{21△P-Koyanagi: (・-Tsutomu) Diary △PM^X yIH...X Here, considering the dimensionless △P, H' and substituting it into the above formula, △P' = Table horse H' = Nishin △P'=(1-Tsu)H'....・・・.・Side The above equation '3}, that is, the relationship between the output signal and the liquid level can be expressed in a diagram as shown in FIG. 1b.

図において、縦鞠に出力信号△P′をとり機軸に液位H
′をとると、直線6は上言己の糊式を表わす。また、直
線5は、検出したい液位H′と出力信号△P′との関係
が△P′;H′で表わされガス比重ygの変化に影響さ
れない理想的入出力関係を示す。△P′=H′に△P′
=弄うH『亮 を代入すると、 △P − 日 △PM^X−HM^X となる。
In the figure, the output signal △P' is applied to the vertical ball, and the liquid level H is applied to the machine axis.
′, the straight line 6 represents the above-mentioned glue formula. Further, a straight line 5 shows an ideal input/output relationship in which the relationship between the liquid level H' to be detected and the output signal ΔP' is expressed as ΔP';H' and is not affected by changes in the gas specific gravity yg. △P'=H' to △P'
= Playing with H ``Substituting Ryo, we get △P - day △PM^X - HM^X.

検出器のレンジ調整でなされる‘2}式を上式に代入す
ると、AP − 日 y,HM^x一馬^X となり、 △P=y,日が導かれガス比重ygが含まれていない理
想的な入出力関係式であることが確認される。
Substituting the '2} formula made by adjusting the detector range into the above formula, we get AP - day y, HM^x Kazuma^X, and △P=y, day is derived and gas specific gravity yg is not included. It is confirmed that this is an ideal input-output relational expression.

以上説明したのは乾式配管の場合であって、つぎに説明
する緑式配管の場合は第2図においてタンク1、液体2
、ガス3、差圧発信器Bの関係は乾式配管の場合とまっ
た〈同様であるが、配管方式がことなり、差圧発信器B
とタンク1の予想最高液位とを連結する配管48の中に
はタンク1の中の液体2と同じ比重の液体が満たされて
おりいわゆる湿式配管と云われる方式になっている。
The above explanation is for dry piping, and in the case of green piping, which will be explained next, tank 1 and liquid 2 are shown in Figure 2.
, gas 3, and differential pressure transmitter B are the same in the case of dry piping.
The piping 48 connecting the expected maximum liquid level of the tank 1 and the expected highest liquid level of the tank 1 is filled with a liquid having the same specific gravity as the liquid 2 in the tank 1, and is of a so-called wet type piping system.

この場合差圧発信器Bの高圧側日が配管4Bの最低液位
側に連結されており、低圧側Lが配管4Bの技高液位側
に連結されている。したがって差圧発信器Bは一般に市
販されているような測定レンジを平行移動するバイアス
機構を備えた蓋圧発信器を用い、この菱圧発信器Bの出
力信号をbとする。このように構成された湿式配管方式
において液位が最高液位のときに差圧発信器Bの出力信
号が最大差圧を示すように調整しておくと液位が零にな
ったときには、タンク内に流入したガス3のヘッドの影
響によって出力信号bは零よりも大きな値を示すことに
なる。そこで液位と蓋圧発信器Bにか)る差圧との関係
を数式によって表わすと次式のようになる。△P=(y
l−yg)(日一日M^x) …{41また■式の
場合と同様に△PM^x=y,HM^x
………‘51上式に用いた符号は前記{11、‘2’
式の場合と同じである。
In this case, the high pressure side of the differential pressure transmitter B is connected to the lowest liquid level side of the pipe 4B, and the low pressure side L is connected to the highest liquid level side of the pipe 4B. Therefore, the differential pressure transmitter B is a lid pressure transmitter equipped with a bias mechanism that moves the measurement range in parallel, and the output signal of the rhombic pressure transmitter B is designated as b. In the wet piping system configured in this way, if the output signal of differential pressure transmitter B is adjusted to indicate the maximum differential pressure when the liquid level is at its highest level, when the liquid level reaches zero, the tank Due to the influence of the head of the gas 3 that has flowed inside, the output signal b will show a value larger than zero. Therefore, the relationship between the liquid level and the differential pressure across the lid pressure transmitter B is expressed by the following equation. △P=(y
l-yg) (day by day M^x) ...{41 Also, as in the case of ■ formula, △PM^x=y, HM^x
......'51 The codes used in the above formula are the above {11, '2'
The same is true for Eq.

‘4’÷‘5} △P (y「ygXH−HM^X) △PM^x y,HM^x =(1−篭)(品−,) ここで無次元化された△P、H′を考え上式に代入する
と△P′=(1−券)(H′−1) 小・・・【6)こ
こで差圧発信器BにHM^xに相当するレンジサプレツ
ションを加えるものとする。
'4'÷'5} △P (y "yg Considering and substituting into the above formula, △P' = (1-ticket) (H'-1) Small... [6] Here, range suppression corresponding to HM^x is added to differential pressure transmitter B. shall be.

差圧に変換すると △P=y,HM^x 同機に無次元化量△P′を考え上式に代入すると△P′
=基昔竿等=多韓竿…蔓=・{6}式において△P′軸
の正方向移動1を考えればよく【6}式の左辺△Pに△
P′−1を代入すると△P′−1=(1−努)(H′−
・)△P′=(1−券)(H′−1)十1 ..・【7
’上記の数式{7)すなわち出力信号と液位との関係を
線図で表わすと第2図bのようになる。
When converted to differential pressure, △P=y, HM^x Considering the dimensionless amount △P' for the same machine and substituting it into the above formula, △P'
= Basic rod, etc. = Takan rod... Vine = In the {6} formula, it is sufficient to consider the positive direction movement 1 of the △P' axis.
Substituting P′-1, △P′-1=(1-Tsu)(H′-
・)△P'=(1-ticket)(H'-1)11. ..・[7
'If the above equation {7), that is, the relationship between the output signal and the liquid level, is expressed in a diagram, it will be as shown in FIG. 2b.

乾式配管の場合と同じく直線7は前記直線5と同じく△
P:ッIHを表わし、直線8は上記の‘71式を表わす
。以上第1図と第2図によって乾式配管と湿式配管の場
合について説明したが本発明に係る液位検出装置は上記
の乾式配管による差氏発信器と湿式配管による差圧発信
器とを併設したものであって以下第3図によって説明す
る。
As in the case of dry piping, the straight line 7 is △, the same as the straight line 5 above.
P: represents IH, and straight line 8 represents the above '71 formula. Although the cases of dry piping and wet piping have been explained above with reference to FIGS. 1 and 2, the liquid level detection device according to the present invention is equipped with the differential temperature transmitter using the dry piping and the differential pressure transmitter using the wet piping. This will be explained below with reference to FIG.

図aにおいて液体2、ガス3が満たされたタンク1に乾
式配管4Aで連結された差圧発信器Aと湿式配管4Bで
連結された差圧発信器Bとを併設する。差圧発信器Aの
出力信号をaとし、差圧発信器Bの出力信号をbとする
。9は縦単な演算能力を持った演算器で差圧発信器A,
Bの出力信号a,bを入力した後、あらかじめ設定した
演算式を演算させ、その出力信号を読取ることによって
液位を検出するようになされている。
In Figure a, a tank 1 filled with a liquid 2 and a gas 3 is provided with a differential pressure transmitter A connected by a dry pipe 4A and a differential pressure transmitter B connected by a wet pipe 4B. Let the output signal of differential pressure transmitter A be a, and the output signal of differential pressure transmitter B be b. 9 is a computing unit with vertical simple computing ability; differential pressure transmitter A;
After inputting the output signals a and b of B, a preset arithmetic expression is calculated, and the liquid level is detected by reading the output signals.

さて、このような乾式、湿式両配管を併用した場合の差
圧発信器の出力信号と液位との関係を糠図で表わすと第
3図bのようになる。この第3図Dはすなわち第1図b
と第2図bとを合成した図であって、5のは前述の通り
数式△P′=y,H′を表わし、6は前記糊式△P′=
(1−皆)H′を表わし「また8‘ま前記厭△P′=(
1ーヱぷ)(H−1)十1を表わす。‘3ー式と‘7}
式yl‘ま共Q−券を函数とする式であるか地図こおい
ては両式を表わす線は平行することは明らかである。
Now, the relationship between the output signal of the differential pressure transmitter and the liquid level when both such dry type and wet type piping are used together is shown in Fig. 3b in a bran diagram. This figure 3D is, in other words, figure 1b
and FIG. 2b, 5 represents the mathematical formula ΔP'=y, H' as mentioned above, and 6 represents the above-mentioned glue formula ΔP'=
(1-everyone) represents H' and says,
1-ep) (H-1) represents 11. '3-type and '7}
It is clear that the lines representing both equations are parallel on the map.

いま図に示すように直線6の上に任意の点10をとり、
この点10の縦軸座標をaとする。また直線8の上に点
10とおなじ液位すなわち横軸座標のおなじ点11をと
り、この点11の縦軸座標をbとする。点10と点11
とを結ぶ直線と直線5との交点を12とし、点12の縦
軸座標と機軸座標とは同じ数値であってこれをcとする
。いま直線6の上にあって機軸座標が1である点13の
縦軸座標をdとすれば幾何学的解析によりd=1一(b
−a)=1十a−bであることは明らかである。またさ
らに点10,11,12の機軸、織擬似ご古掛ること側
め掛る。
As shown in the figure, take an arbitrary point 10 on the straight line 6,
Let the vertical axis coordinate of this point 10 be a. Further, a point 11 is placed on the straight line 8 at the same liquid level as the point 10, that is, the same horizontal axis coordinate, and the vertical axis coordinate of this point 11 is set as b. point 10 and point 11
The intersection point between the straight line connecting the lines and the straight line 5 is set as 12, and the vertical axis coordinate and machine axis coordinate of point 12 are the same numerical value, and this is set as c. Now, if the vertical axis coordinate of point 13, which is on the straight line 6 and whose machine axis coordinate is 1, is d, then by geometric analysis, d=1-(b
It is clear that -a)=10a-b. In addition, the machine axes at points 10, 11, and 12 are hooked to the side of the woven fabric.

すな被このごこが求めるところの真の液位である。This is the true liquid level that the target desires.

演算器ではこのaとbを入力してC=ごこの演算を対て
その肋信号を議取れば真の液位が求められる。
The true liquid level can be determined by inputting these a and b into a calculator, calculating C=value, and taking the signal.

以比ご:なる演算を行な瓶算器を備え 0た液位検出菱檀についてその構成等を説明したが、第
3図に示す装置における差圧発信器Bの接続方向を変え
ることによってもう一つの数式に導く装置があるので、
以下この装置について説明する。
We have explained the structure of the liquid level detection diamond which performs the following calculation and is equipped with a counter, but by changing the connection direction of differential pressure transmitter B in the device shown in Fig. There is a device that leads to one mathematical formula, so
This device will be explained below.

この装置は、第3図に示す装置と同様に乾式配管4Aと
緑式配管4Bとを併設するものであり、このうちの乾式
配管については第1図、すなわち第3図の配管4A側と
全く同じであるからその説明を省略する。第4図はこの
乾湿併設菱贋のうちの湿式配管側のみを第2図a,bに
対応して示すものであって、差圧発信器Bの接続方向が
第2図のものと異なり、差圧発信器Bの高圧側日が配管
4Bの最高液位側に連結されている。したがって差圧発
信器Bは前記バイアス機構が付設されていないものが用
いられる。前述の装魔では液&と蓋圧発信器Bにか)る
差圧との関係は数式‘41で表わされたが今回の装置で
は日とHM^xが反対となり次の式で表わされる。使用
する符号はすべて前述のとおりである。△P=(y,一
yg)(HN^x−H) …【8ー‘8}式におい
て上部ガスが無い状態すなわち真空状態ではyg=0で
あり、配管取出口寸法をHM^xとすると髪圧発信器に
加わる最大差圧△PM^xはm式にyg=0を代入して
△PM^X=(y,−0)HN^X =yIHMx ………{91となる。
This device, like the device shown in Fig. 3, has a dry pipe 4A and a green pipe 4B, of which the dry pipe is completely connected to the pipe 4A side in Fig. 1, that is, Fig. 3. Since they are the same, their explanation will be omitted. FIG. 4 shows only the wet piping side of this double-dry/humidifier, corresponding to FIGS. 2 a and b, and the connection direction of the differential pressure transmitter B is different from that in FIG. The high pressure side of the differential pressure transmitter B is connected to the highest liquid level side of the pipe 4B. Therefore, the differential pressure transmitter B that is not equipped with the bias mechanism is used. In the above-mentioned Souma, the relationship between the liquid & and the differential pressure across the lid pressure transmitter B was expressed by the formula '41, but in this device, the days and HM^x are reversed, and it is expressed by the following formula. . All symbols used are as described above. △P=(y, -yg)(HN^x-H) ...[8-'8} In the formula, when there is no upper gas, that is, in a vacuum state, yg=0, and if the pipe outlet dimension is HM^x The maximum differential pressure △PM^x applied to the hair pressure transmitter is obtained by substituting yg = 0 into the m formula, △PM^X = (y, -0)HN^X = yIHMx ......{91].

‘8)÷■ △P (r yg力HM^x−H) ニ 1一 △PMAX y,HN^X =(1‐等)(1‐品) ここで無次元化された△P、H′を考え上式に代入する
と△F′=(1−券)(1−H′) .・・.・・.・
剛第4図bにおいて直線7は第2図bとおなじく△P=
yIH′を表わし、直線14は上記の00式を表わす。
'8) ÷ ■ △P (ryg force HM^x-H) d 11 △PMAX y, HN^X = (1- etc.) (1-item) Here, dimensionless △P, H' Considering and substituting into the above formula, △F'=(1-ticket)(1-H').・・・.・・・.・
In Fig. 4b, the straight line 7 is the same as in Fig. 2b, △P=
yIH', and the straight line 14 represents the above equation 00.

図で明らかなように今回は直線14の煩きが逆になり、
液位が最高液&になった時に出力信号は零になる。差圧
発信器Bの接続方向が異なる他は第3図に示す装置と同
じである。
As is clear from the figure, this time the trouble of straight line 14 is reversed,
When the liquid level reaches the highest level, the output signal becomes zero. This device is the same as the device shown in FIG. 3 except that the connection direction of the differential pressure transmitter B is different.

第5図は第1図bと第4図bとを合成したもので今回の
装直における出力信号と液位との関係を表わす線図であ
る。図において直線6の上に任意の点15をとりこの点
15の縦藤座標をaとする。また直線14の上に点15
とおなじ液位すなわち機軸座標のおなじ点16をとりこ
の′点16の縦軸座標をbとする。点15と点16を結
ぶ線の延長と直線5との交点を17とし、点17の縦軸
座標と機軸座標とは同じであってこれをcとする。いま
直線6の上の機軸座標が1である点18の縦軸座標をd
とすると、幾何学的解析によりd=a十bであることは
あきらかである。また点15’16’17の機軸座側ま
±であることはあさるかである。
FIG. 5 is a composite of FIG. 1b and FIG. 4b, and is a diagram showing the relationship between the output signal and the liquid level in the current reinstallation. In the figure, an arbitrary point 15 is placed on the straight line 6, and the vertical coordinate of this point 15 is set as a. Also, point 15 is on straight line 14.
Take the same liquid level, that is, the same point 16 on the machine axis coordinates, and let the vertical axis coordinate of this point 16 be b. The intersection point between the extension of the line connecting points 15 and 16 and the straight line 5 is designated as 17, and the vertical axis coordinate and machine axis coordinate of point 17 are the same, and this is designated as c. The vertical axis coordinate of the point 18 whose machine axis coordinate is 1 on the straight line 6 is now d
Then, it is clear from geometrical analysis that d=a+b. Also, it is a matter of time before the point 15'16'17 is on the machine seat side.

すなわちこのC:毒±が求めるところの真の液位である
In other words, this C: is the true liquid level sought by poison.

演算器ではこのaとbを入力して声;の演算をさせてそ
の出力信号を読取れ‘頃の液位が求められる。なお、通
常の工業計器信号はベース信号を持っており、実際に使
用する演算式は下記の通りとなる。
The arithmetic unit inputs these a and b, performs arithmetic operations, and reads the output signal to determine the liquid level. Note that a normal industrial instrument signal has a base signal, and the calculation formula actually used is as follows.

今統一信号が1〜WDC信号であるとすると、前述のa
、b、c信号は無次元化された信号であるので0<a<
1、0くb<1、0<c<1である。差圧発信器Aの統
一出力信号をVa、差圧発信器Bの統一出力信号をVb
とすると△P′=a=0のとき Va=1(V) △P′=a=1のとき Va=5(V) 無次元化された信号と統一出力信号との間は線型である
からVa=K,a十K2 ………(11
)(11)式に上記の条件を代入するとva=傘十・^
a:ミニ ・・‐・・‐.‐.(・2)同様にしてb=
均一………(13) 従って演賊ここに(12)(13)式を代入するとVa
−1 .........(14)V
a−Vb十4また、演算式患に〈12)(13)滋代入
するとVa−1 …..,...(
15)Va+Vb−2実際に使用する演算式は(14)
式および(15)式である。
Assuming that the unified signal is the 1 to WDC signal, the above a
, b, c signals are dimensionless signals, so 0<a<
1, 0 b<1, 0<c<1. The unified output signal of differential pressure transmitter A is Va, and the unified output signal of differential pressure transmitter B is Vb.
Then, when △P' = a = 0, Va = 1 (V) When △P' = a = 1, Va = 5 (V) Since there is a linear relationship between the dimensionless signal and the unified output signal, Va = K, a + K2 ...... (11
) Substituting the above conditions into equation (11), va=Kasaju・^
a: Mini...--. -. (・2) Similarly, b=
Uniformity……(13) Therefore, by substituting equations (12) and (13) here, Va
-1. .. .. .. .. .. .. .. .. (14)V
a-Vb 14 Also, by substituting <12) (13) into the arithmetic expression, Va-1... .. 、. .. .. (
15) Va+Vb-2 The calculation formula actually used is (14)
and (15).

以上説明したように本発明によれば被測定タンクに乾式
配管による差圧信号器と湿式配管による差圧信号器を併
設してその出力信号を付設の演算器に入力して演算させ
てその出力信号を読取るというきわめて簡単な方法によ
り誤差のまったくない液位を検出できるようにしたもの
で、高圧下の液位検出する場合、安全な大気圧のもとで
差圧発信器の零点および最大差圧を調整しておけ‘よ、
その後はタンク上部のガス組成および温度条件が変化し
てもその都度発信器を再調整する必要がなく常にきわめ
て正確な液位を検出することができる。
As explained above, according to the present invention, a differential pressure signal device using dry piping and a differential pressure signal device using wet piping are installed in the tank to be measured, and their output signals are input to an attached calculator for calculation and output. It is possible to detect the liquid level without any error by using an extremely simple method of reading the signal.When detecting the liquid level under high pressure, the zero point and maximum difference of the differential pressure transmitter can be detected under safe atmospheric pressure. Please adjust the pressure.
Thereafter, even if the gas composition and temperature conditions at the top of the tank change, there is no need to readjust the transmitter each time, and the liquid level can always be detected with high accuracy.

また運転条件が大中に変動する場合でも再調整の必要は
まったくなく、作業の簡素化および安全性からしてもそ
の効果はきわめて大きい。
In addition, there is no need for readjustment even if the operating conditions fluctuate drastically, and the effect is extremely large in terms of work simplification and safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは乾式配管による液位検出装置の配管等の説明
図、第1図bは同じく液位と叢圧発信器の出力信号との
関係強豪図、第2図aは湿式配管による液位検出装置の
配管等の説明図、第2図bは同じく液位と差圧発信器の
出力信号との関係線図、第3図ないし第5図は本発明に
係る液位検出装置の実施例を示し、第3図aはその配管
等の説明図、第3図bは同じく液&と筆圧発信器の出力
信号との関係謙泉図、第4図aは第3図に示すものとは
差圧発信器の接続方向が異なる別の乾湿配管併設の液位
検出装置の湿式配管側のみを示す配管等の説明図、第4
図bは同じく液位と差圧発信器の出力信号との関係線図
、第5図は、第1図bと第4図bとを合成した液位と差
圧発信器の出力信号との関係孫康図である。 1・・・・・・タンク、4A・・・・・・乾式配管、4
B…・・・湿式配管、A・・・・・・乾式配管による差
圧発信器、B・・・・・・湿式配管による差圧発信器、
a・・・・・・乾式配管による差圧発信器の出力信号、
b・・・・・・湿式配管による差圧発信器の出力信号、
9・・・・・・演算器、c・・・・・・演算器の出力信
号。 第1図 第2図 第3図 第4図 第5図
Figure 1a is an explanatory diagram of the piping of the liquid level detection device using dry piping, Figure 1b is a diagram of the relationship between the liquid level and the output signal of the plexus pressure transmitter, and Figure 2a is a diagram of the liquid level detection device using wet piping. FIG. 2b is also a relationship diagram between the liquid level and the output signal of the differential pressure transmitter, and FIGS. 3 to 5 are illustrations of the liquid level detection device according to the present invention. For example, Figure 3a is an explanatory diagram of the piping, etc., Figure 3b is a Kensen diagram of the relationship between liquid & and the output signal of the pen pressure transmitter, and Figure 4a is the diagram shown in Figure 3. This is an explanatory diagram of piping, etc. showing only the wet piping side of a liquid level detection device with dry and wet piping, which has a different connection direction of the differential pressure transmitter.
Figure b is a relationship diagram between the liquid level and the output signal of the differential pressure transmitter, and Figure 5 is a diagram of the relationship between the liquid level and the output signal of the differential pressure transmitter, which is a combination of Figures 1b and 4b. The relationship is Sun Kangzu. 1...Tank, 4A...Dry piping, 4
B...Wet piping, A...Differential pressure transmitter using dry piping, B...Differential pressure transmitter using wet piping,
a: Output signal of differential pressure transmitter using dry piping,
b... Output signal of differential pressure transmitter using wet piping,
9...Arithmetic unit, c...Output signal of the arithmetic unit. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 液体とその蒸発ガスとが充満した被測定タンクの予
想最高液位と予想最低液位とを途中にそれぞれ差圧発信
器を備えた一対の配管で連結し、片方の配管の差圧発信
器の最高液位側にはガスを入れてこの配管を差圧発信器
の低圧側に接続し、他方の配管の差圧発信器には測定レ
ンジ平行移動用バイアス機構を付設しこの差圧発信器の
最高液位側には液体を入れてこの配管を差圧発信器の低
圧側に接続するとともに、前記両差圧発信器からの出力
信号を付設の演算器に入力し、ガス側差圧発信器からの
入力数値aおよび液体側差圧発信器からの入力数値bを
含んだ数式a/(1+a−b)を計算させ、この演算器
の出力信号を読取ることにより液位を検出るようにした
ことを特徴とする液位検出装置。 2 液体とその蒸発ガスとが充満した被測定タンクの予
想最高液位と予想最低液位とを途中にそれぞれ差圧発信
器を備えた一対の配管で連結し、片方の配管の差圧発信
器の最高液位側にはガスを入れてこの配管を差圧発信器
の低圧側に接続し、他方の配管の差圧発信器の最高液位
側には液体を入れてこの配管を差圧発信器の高圧側に接
続するとともに、前記両差圧発信器からの出力信号を付
設の演算器に入力し、ガス側差圧発信器からの入力数値
aおよび液体側差圧発信器からの入力数値bを含んだ数
式a/(a+b)を計算させ、この演算器の出力信号を
読取ることにより液位を検出するようにしたことを特徴
とする液位検出装置。
[Claims] 1. The predicted highest liquid level and predicted lowest liquid level of a tank to be measured filled with liquid and its evaporated gas are connected by a pair of pipes each having a differential pressure transmitter in the middle, and Fill the pipe with gas on the highest liquid level side of the differential pressure transmitter and connect this pipe to the low pressure side of the differential pressure transmitter, and attach a bias mechanism for parallel movement of the measurement range to the differential pressure transmitter on the other pipe. Fill the highest liquid level side of this differential pressure transmitter with liquid, connect this piping to the low pressure side of the differential pressure transmitter, and input the output signals from both differential pressure transmitters to the attached calculator. , calculate the formula a/(1+a-b) that includes the input value a from the gas side differential pressure transmitter and the input value b from the liquid side differential pressure transmitter, and read the output signal of this calculator. A liquid level detection device characterized by detecting the liquid level. 2. Connect the expected maximum liquid level and expected minimum liquid level of the tank to be measured filled with liquid and its evaporated gas by a pair of pipes each equipped with a differential pressure transmitter in the middle, and connect the differential pressure transmitter on one pipe. Fill the highest liquid level side of the pipe with gas and connect this pipe to the low pressure side of the differential pressure transmitter, and fill the other pipe with liquid on the highest liquid level side of the differential pressure transmitter and connect this pipe to the differential pressure transmitter. At the same time, the output signals from both differential pressure transmitters are input to the attached calculator, and the input numerical value a from the gas side differential pressure transmitter and the input numerical value from the liquid side differential pressure transmitter are connected to the high pressure side of the device. A liquid level detection device characterized in that the liquid level is detected by calculating the formula a/(a+b) including b and reading the output signal of this arithmetic unit.
JP8111276A 1976-07-08 1976-07-08 Liquid level detection device Expired JPS6018923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8111276A JPS6018923B2 (en) 1976-07-08 1976-07-08 Liquid level detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8111276A JPS6018923B2 (en) 1976-07-08 1976-07-08 Liquid level detection device

Publications (2)

Publication Number Publication Date
JPS537265A JPS537265A (en) 1978-01-23
JPS6018923B2 true JPS6018923B2 (en) 1985-05-13

Family

ID=13737285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8111276A Expired JPS6018923B2 (en) 1976-07-08 1976-07-08 Liquid level detection device

Country Status (1)

Country Link
JP (1) JPS6018923B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632263U (en) * 1986-06-17 1988-01-08

Also Published As

Publication number Publication date
JPS537265A (en) 1978-01-23

Similar Documents

Publication Publication Date Title
CN101839737B (en) Mass flow meter, mass flow controller, and mass flow meter system and mass flow controller system including the same
CA2000029C (en) Flowmeter fluid composition correction
CN104089680B (en) The measuring method and device of liquid level height
GB808462A (en) Systems responsive to changes in the viscosity of a flowing liquid
US3250123A (en) Liquid level measuring apparatus
JPH0610262Y2 (en) Hydrogen peroxide water spray device
US2577548A (en) Compensated specific gravity measuring device
JPS6018923B2 (en) Liquid level detection device
GB776486A (en) Improvements in or relating to air stream direction indicator
US2826913A (en) Fluid mass flow measuring apparatus
JPH04181082A (en) Regulating valve provided with flow rate meter function
JPS6217640A (en) Apparatus for measuring sludge level
US4091669A (en) Pressure responsive apparatus
JP2557885B2 (en) Differential pressure reactor water level measuring device
US2945376A (en) Pressure measuring device
JPS60235013A (en) Measuring apparatus of vertical micro-displacement with temperature compensation
SU659907A1 (en) Pneumatic liquid media level gauge
US3247713A (en) Fluid metering
US3371862A (en) Force balance apparatus
JPS62261928A (en) Liquid level measuring instrument
JPS61164117A (en) Instrument for measuring flow rate of gas
US3276245A (en) Density compensator device
JP2656411B2 (en) Automatic calibration device for flow meter
JPH037275B2 (en)
SU664032A1 (en) Gas flowmeter