JPS60187648A - High-temperature memory alloy - Google Patents

High-temperature memory alloy

Info

Publication number
JPS60187648A
JPS60187648A JP4124584A JP4124584A JPS60187648A JP S60187648 A JPS60187648 A JP S60187648A JP 4124584 A JP4124584 A JP 4124584A JP 4124584 A JP4124584 A JP 4124584A JP S60187648 A JPS60187648 A JP S60187648A
Authority
JP
Japan
Prior art keywords
alloy
temperature
temp
sintered
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4124584A
Other languages
Japanese (ja)
Inventor
Hideaki Suzuki
英明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4124584A priority Critical patent/JPS60187648A/en
Publication of JPS60187648A publication Critical patent/JPS60187648A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop an alloy having shape memory and superelastic characteristics in a high temp. region by molding and sintering powder consisting of a specifically composed Cu-Al-Ni alloy. CONSTITUTION:A Cu-Al-Ni alloy consisting of 12-14wt% Al, 1-5wt% Ni and the balance Cu is melted and is cast to an ingot. The ingot is ground at a room temp. and is pulverized to about 100 microns. The pulverous powder is molded at cold and is sintered for 2hr at 900 deg.C in the atm. The sintered molding is swaged to a bar shape at 900 deg.C and the bar is machined to manufacture a test piece. The test piece is subjected to a solution heat treatment at 900 deg.C in an Ar gaseous atmosphere then to oil hardening. The so-called high-temp. memory alloy which has 10-100 micron crystal grain size, is deformed at 200 deg.C and restores the shape before the deformation when reheated to 350 deg.C is produced from an inexpensive raw material.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は熱 性型マルテンサイト変態特性を有する合金
に係り、特に室温から35(ltl:の温度域で一上記
特性を有し、かつ粉末冶金法によりC1製造することに
より結晶粒を微細化し、靭性全増大させた鋼−アルミニ
ウム−ニッケルの高温用記憶合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an alloy having thermal martensitic transformation characteristics, and in particular, an alloy having the above-mentioned characteristics in the temperature range from room temperature to 35 ltl. This invention relates to a steel-aluminum-nickel high-temperature memory alloy whose crystal grains are refined and its toughness is completely increased by manufacturing C1 using a metallurgical method.

〔従来技術と、f:の問題点〕[Prior art and problems with f:]

近年、金属間化合物が魅力的な特性を秘めた材料とし〔
登場−してきCいるが、この樵の材料のうちで形状記憶
、超弾性(ゴム弾性)と呼ばれる特異な機械的性質を示
す合金があり、現状では、表1に示すとと(10種類程
度発見さvL Cいる。この種の特性を示す温度の上限
は、いずれもたかだか〜100℃程度までであり、しか
もコスト、加工性の観点をふくめると、実用化が期待で
きる材料は、Nl −Ti (商品名:ニチノール1.
cu−Zn k1合金金2種類程度である。このため、
使用温度域が拡く、かつ、低コスト、加工性良好な記憶
合金の開発が切望されCいた。
In recent years, intermetallic compounds have been recognized as materials with attractive properties.
Among these materials, there are alloys that exhibit unique mechanical properties called shape memory and superelasticity (rubber elasticity).Currently, about 10 types have been discovered, as shown in Table 1 The upper limit of the temperature that exhibits this type of property is about 100℃ at most, and considering cost and processability, the material that can be expected to be put into practical use is Nl-Ti. (Product name: Nitinol 1.
There are about two types of cu-Zn k1 alloy gold. For this reason,
There has been a strong desire to develop a memory alloy that can be used in a wider temperature range, is low cost, and has good workability.

〔発明の目的〕[Purpose of the invention]

本発明は、以上の点に濫みCなされたもので、熱弾性型
マルテンサイト変態特性を有する温度の上限が従来の1
00Cよりも高く、しかも、低コストで加工性良好な高
温用記憶合金金提供しようとするものである。
The present invention has been made in consideration of the above points, and the upper limit of the temperature at which the thermoelastic martensitic transformation characteristics can be obtained is higher than that of the conventional one.
The present invention aims to provide a high temperature memory alloy gold which is higher than 00C, is low cost and has good workability.

〔発明の概要〕[Summary of the invention]

本発明は、低価格なアルミニウム12〜14 t it
 91; 。
The present invention uses low-cost aluminum 12 to 14 tit
91; .

ニッケル1〜5重itに、残部主成分が銅から成る母合
金を鋳造し、さらに、粉砕、混合、焼結、熱間塑性加工
を施した合金を製造し、焼結時に生ずるアルミニウムの
酸化物によつ〔結晶粒の粗大化を抑制しC冷間加工性を
増大させ、しかもアルミニウム歇全従来よりも低減させ
た高温用記憶合金である、 〔発明の効果〕 本発明は、熱弾性型マルテンサイト変態特性を有する温
度のF成金〜350℃と増大したことを特徴とするもの
で、非磁性、耐食性に富み、かつ抗りリープ性、高温で
の熱的安定性に優れるなどの!特性をもあわせC有する
ものである。
A master alloy consisting of nickel 1 to 5-weight IT with the remaining main component copper is cast, and the alloy is then crushed, mixed, sintered, and hot plastic worked to produce an alloy that produces aluminum oxides during sintering. [Effects of the Invention] The present invention is a high-temperature memory alloy that suppresses coarsening of crystal grains, increases cold workability, and reduces the amount of aluminum used compared to conventional materials. It is characterized by an increased temperature of F-forming with martensitic transformation characteristics to 350°C, and is non-magnetic, highly corrosion resistant, and has excellent resistance to leaping and thermal stability at high temperatures. It also has the characteristics C.

この点ff:第1図によっCさらに詳細に説明すると、
本発明に係る上記組成の合金は、通常の溶解、Uれに続
く熱間塑性加工で製造した場合、結晶粒がO8l■以上
に容易に粗大成長し、この合金を外力がかかっていない
ときの変態温度Ttr、以上の温度で、しかも引張応力
Fで変形させた場合は延性を生せず、弾性域で容易に壁
界破哄する。ただし。
This point ff:C is explained in more detail in Figure 1.
When the alloy of the above composition according to the present invention is produced by normal melting and rolling followed by hot plastic working, the crystal grains easily grow coarsely to O8l or more, and when no external force is applied to the alloy, the crystal grains easily grow coarsely. When deformed at a temperature higher than the transformation temperature Ttr and under a tensile stress F, no ductility occurs and wall fracture occurs easily in the elastic region. however.

圧縮応力下、ならびに外力がかかつていないときの変態
温度Ttr、以下の温度域では引張、ないしは圧縮の応
力下でいくらか延性が存在する。また外力がかかつCい
ないときの変態温度Ttr、はアルミニウム量の低下に
ともない上昇し、最高200〜250℃の温度まで上昇
する。一方、本発明になる組成を有し、しかも粉末冶金
的手法によつC製造した合金は、焼結時に、アルミニウ
ムの酸化物が生成され、この酸化物が結晶粒の粗大化を
抑制し、結晶粒径は数10ミクロンと微細でありこの合
金を、外力がかかつてい々いときの変態温度Ttr。
Some ductility exists under compressive stress and under tensile or compressive stress in the temperature range below the transformation temperature Ttr when no external force is applied. Further, the transformation temperature Ttr when an external force is applied and no carbon is applied increases as the amount of aluminum decreases, and reaches a maximum temperature of 200 to 250°C. On the other hand, in the alloy having the composition according to the present invention and produced by powder metallurgy, an oxide of aluminum is generated during sintering, and this oxide suppresses coarsening of crystal grains. The crystal grain size is as fine as several tens of microns, and when an external force is applied to this alloy, the transformation temperature is Ttr.

よりも高い温度域で引張応力下で変形させた場合にも延
性と生ずる。したかつC適量のアルミニウム量によりC
外力がかかっていないときの変態温度Ttr、を最高2
00〜2500程度にし、しかも引張応力下でしかも、
溶解法で製造した合金のように、使用する際、引張応力
を避けるための特別な 、配慮を必要とすることがなく
、シかも、粒界割れを避けるため単結晶にする必要もな
く、簡便に製造できる材料であり、かつ容易に高温用デ
バイス。
Ductility also occurs when deformed under tensile stress at temperatures higher than . C
The maximum transformation temperature Ttr when no external force is applied is 2.
00 to about 2500, and under tensile stress,
Unlike alloys manufactured by the melting method, they do not require special consideration to avoid tensile stress when used, nor do they need to be made into single crystals to avoid grain boundary cracking, making them easy to use. It is a material that can be manufactured into high-temperature devices easily.

高温機器用部品形状に加工が可能なきわめて有用な合金
である。
It is an extremely useful alloy that can be processed into parts for high-temperature equipment.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明を実施例によっC説明する。 The present invention will be explained below using examples.

アルミニウム12.8重量イ、ニッケル4.0重敬に。Aluminum weighs 12.8 and nickel weighs 4.0.

残部銅からなる合金全真空溶解し、鋳型に鋳込んでイン
ボラトラ作成した。かくして作成したインゴット’を室
温で粉砕し、粒径10ミクロン程度の粉末を作成しつい
で混合、冷開成型し、大気中900℃で2時間焼結を行
なった1、ついで900℃でスヱージング加工を行ない
棒状インゴットを作成した。ついで切削によりスライス
しCテストピース全作成し、アルゴン雰囲気中900℃
で1時間溶体化処理を行なった後室温のなたね油中に焼
入れだ。この時点での合金の結晶粒径は〜30ミクロン
程IJtであった。ついでインストロン型の引張試験機
によっC300℃、200℃で引張り変形させ適当な変
形tt与えたのち除荷したところ第2図、第3図に示す
ごとく300℃では超弾性特性を、200℃では変形:
除荷後ひずみが残留したが300℃へ再加熱することに
よっ〔形状が変形前の形状に回復しいわゆる形状記憶特
性を示した。このように、本発明の記憶合金は高温域で
しかも引張応力下でも形状記憶、超弾性特性金石するこ
とが示され、これを高温用デバイス、高温機器用部品に
応用すればきわめて有効であろう
The alloy, the remainder of which was copper, was melted in a vacuum and cast into a mold to create an involatra. The ingot thus produced was crushed at room temperature to create a powder with a particle size of about 10 microns, which was then mixed, cooled and molded, and sintered in the air at 900°C for 2 hours1, followed by swaging processing at 900°C. A rod-shaped ingot was created. Then, slice it by cutting to make a complete C test piece, and heat it at 900℃ in an argon atmosphere.
After solution treatment for 1 hour, it was quenched in rapeseed oil at room temperature. The grain size of the alloy at this point was about 30 microns IJt. Then, using an Instron type tensile tester, tensile deformation was performed at C300℃ and 200℃ to give an appropriate deformation tt, and then the load was unloaded. Now transform:
After unloading, some strain remained, but by reheating to 300°C, the shape recovered to the shape before deformation, exhibiting so-called shape memory properties. As described above, the memory alloy of the present invention has been shown to exhibit shape memory and superelastic properties even at high temperatures and under tensile stress, and it would be extremely effective to apply this to high-temperature devices and parts for high-temperature equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、溶解材、焼結材の引張、圧縮変形時の変形挙
動を外力がかかっていないときの変態温度Ttr、より
も低い温度ならびに高い温度でそれぞれ示した特性図。 第2図は、本発明に係る銅−12,8i196’アルミ
ニウムー4.0重量%ニッケル粉末焼結合金の300℃
での引張変形の特性図。 第3図は、本発明に係る銅−12,8ii(,141イ
アルミニウム−4,0重量にニッケル粉末焼結合金の2
00℃での引張変形特性及び除荷後300℃1で再加熱
したときの温度−ひずみ特性會示す特性図である。以下
り白 一ζ ±fヒ柱」二計士− 表1. 超弾性および形状記憶材料 第 l 因 (Ttr 、’ lh\i1t*q□rN+ t;y剖
1vυひずケ→ 第2 ひずケ− 第3
FIG. 1 is a characteristic diagram showing the deformation behavior of molten material and sintered material during tensile and compressive deformation at transformation temperature Ttr when no external force is applied, at temperatures lower than Ttr, and at temperatures higher than that. Figure 2 shows the copper-12,8i196' aluminum-4.0% by weight nickel powder sintered alloy at 300°C according to the present invention.
Characteristic diagram of tensile deformation at . Figure 3 shows the amount of nickel powder sintered alloy added to copper-12,8ii (,141 aluminum-4,0 weight) according to the present invention.
It is a characteristic diagram showing tensile deformation characteristics at 00°C and temperature-strain characteristics when reheated at 300°C after unloading. Table 1. Superelasticity and shape memory materials 1st factor (Ttr, 'lh\i1t*q□rN+ t;

Claims (1)

【特許請求の範囲】[Claims] アルミニウム12〜14重量に、ニッケル1〜5重11
96’、残部主成分が銅の組成からなり、10〜100
ミクロンの結晶粒径組織を有することを特徴とする高温
用記憶合金。
Aluminum 12-14 weight, nickel 1-5 weight 11
96', the remaining main component is copper, 10-100
A high-temperature memory alloy characterized by having a micron grain size structure.
JP4124584A 1984-03-06 1984-03-06 High-temperature memory alloy Pending JPS60187648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4124584A JPS60187648A (en) 1984-03-06 1984-03-06 High-temperature memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4124584A JPS60187648A (en) 1984-03-06 1984-03-06 High-temperature memory alloy

Publications (1)

Publication Number Publication Date
JPS60187648A true JPS60187648A (en) 1985-09-25

Family

ID=12603050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4124584A Pending JPS60187648A (en) 1984-03-06 1984-03-06 High-temperature memory alloy

Country Status (1)

Country Link
JP (1) JPS60187648A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2686410A1 (en) * 1992-01-22 1993-07-23 France Etat Armement Device which unconfines a charge containing an explosive by employing a deformable element made of shape-memory material
CN103352190A (en) * 2013-03-29 2013-10-16 合肥工业大学 Multi-stage quenching process for preparing cooper base memory alloy
US20200025254A1 (en) * 2016-10-21 2020-01-23 General Electric Company Method and system for elastic bearing support

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2686410A1 (en) * 1992-01-22 1993-07-23 France Etat Armement Device which unconfines a charge containing an explosive by employing a deformable element made of shape-memory material
CN103352190A (en) * 2013-03-29 2013-10-16 合肥工业大学 Multi-stage quenching process for preparing cooper base memory alloy
US20200025254A1 (en) * 2016-10-21 2020-01-23 General Electric Company Method and system for elastic bearing support
US10823228B2 (en) * 2016-10-21 2020-11-03 General Electric Company Method and system for elastic bearing support

Similar Documents

Publication Publication Date Title
US4505767A (en) Nickel/titanium/vanadium shape memory alloy
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
KR102273787B1 (en) Complex copper alloy comprising high entropy alloy and method for manufacturing the same
JP2012041627A (en) Co-BASED ALLOY
CN108950303B (en) Tough titanium alloy and preparation method thereof
EP3844314B1 (en) Creep resistant titanium alloys
CA1038205A (en) Low expansion iron-nickel based alloys
JPH0457734B2 (en)
JP7233659B2 (en) Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body
JP3894987B2 (en) Heat-resistant platinum material
JPS60187648A (en) High-temperature memory alloy
CN108893631B (en) High-strength titanium alloy and preparation method thereof
JPS5920440A (en) Shape memory copper alloy
JP4288821B2 (en) Low thermal expansion Fe-based heat-resistant alloy with excellent high-temperature strength
KR910008004B1 (en) Memorial alloy with high strength & the making method
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JP2932914B2 (en) Method for producing (α + β) type Ti alloy forged material
JPS6046345A (en) Molybdenum plate and preparation thereof
JPS59215448A (en) Functional alloy
JP2697242B2 (en) Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same
JP2001152208A (en) OXIDE DISPERSION STRENGTHENED TYPE Ni BASE ALLOY WIRE AND PRODUCING METHOD THEREFOR
JP2580682B2 (en) Method for producing α + β type Ti alloy member having high strength and high toughness
JP2713307B2 (en) Heat treatment method of aluminum powder alloy
CN113621891B (en) Polycrystalline FeNiCoAlNbV hyperelastic alloy and preparation method thereof
KR910006016B1 (en) Memorial alloy based cu and the making method