JPS601875A - Solar battery panel - Google Patents

Solar battery panel

Info

Publication number
JPS601875A
JPS601875A JP58109415A JP10941583A JPS601875A JP S601875 A JPS601875 A JP S601875A JP 58109415 A JP58109415 A JP 58109415A JP 10941583 A JP10941583 A JP 10941583A JP S601875 A JPS601875 A JP S601875A
Authority
JP
Japan
Prior art keywords
filler
glass fiber
solar cell
eva
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58109415A
Other languages
Japanese (ja)
Other versions
JPS6366072B2 (en
Inventor
Hirotaka Nakano
博隆 中野
Takashi Sugawara
隆 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58109415A priority Critical patent/JPS601875A/en
Publication of JPS601875A publication Critical patent/JPS601875A/en
Publication of JPS6366072B2 publication Critical patent/JPS6366072B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a solar battery panel having low cost and high reliability and causing no movement of cells even when ethylene vinyl acetate is used as a filler by providing glass fiber group directly above or below strings formed of a plurality of solar battery cells. CONSTITUTION:A filler 21 formed of ethylene vinyl acetate (EVA) sheet, a string in which solar battery cells 3 are connected in series or in parallel, glass fiber group 31 in which two mats of long glass fiber are laminated, a filler 22 formed of EVA sheet, and a back surface material 4 formed of a sheet having polyvinyl fluoride on both sides sandwiched at the intermediate of aluminum foil are laminated as a laminate 14 on one side of a transparent cover glass 1. The glass fiber group is mainly formed of glass fiber having a length of 100mm. or longer.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は太陽電池パネルに関するものである。[Detailed description of the invention] [Technical field of invention] The present invention relates to solar panels.

〔発明の技術的背景〕[Technical background of the invention]

太陽電池パネルの一例として低コスト、烏信頼性を目標
としたスーパーストレート型太陽電池/!ネルの一例を
第1図及び第2図により説明する。
An example of a solar cell panel is a super straight type solar cell with the goal of low cost and high reliability. An example of the channel will be explained with reference to FIGS. 1 and 2.

即ち、透明カバー・ガラス(11がパネル全体の構造的
支持体となっておシ、このカバー・ガラス(1)の片面
には、内部に直列に接続された太陽電池セル(3)よシ
成るストリングが埋め込まれた充填材(2)が接着され
ている。この充填利(2)としては、通常ポリ・ビニル
・ブチラール(以下PVBと云う)が多く用いられて来
た。充填月(2)の裏面には、裏面材料(4)が接着さ
れている。この裏面材料(4)としては第2図に示すよ
うに中間にサンドインチされた金属箔例えばアルミニウ
ム箔(6)及び両側のZ IJ・ビニル・フロライド(
以下PVFと云う)の三層構造よシ成る。このアルミニ
ウム箔(6)は外部からの水蒸気の透過を防ぐためのも
のである。この太陽電池パネルの周辺部は第1図に示す
ように絶縁材(力を介してアルマイト処理を施したアル
ミニウム枠(8)に固定されている。この絶縁材(力と
しては、長期の信頼性を保持し、しかも低コストな材料
としてブチルゴムが用いられる。
That is, a transparent cover glass (11) serves as the structural support for the entire panel, and one side of this cover glass (1) is comprised of solar cells (3) connected in series inside it. A filling material (2) in which strings are embedded is glued. Polyvinyl butyral (hereinafter referred to as PVB) has usually been used as this filling material (2). Filling material (2) A backing material (4) is adhered to the back side of the backside material (4).As shown in FIG.・Vinyl fluoride (
It consists of a three-layer structure of PVF (hereinafter referred to as PVF). This aluminum foil (6) is for preventing water vapor from permeating from the outside. As shown in Figure 1, the periphery of this solar panel is fixed to an aluminum frame (8) that is anodized using an insulating material (force). Butyl rubber is used as a low-cost material that maintains the same properties.

然るに、近年、太陽電池パネルの低コスト化及び高信頼
性を促進させるために充填材(2)としてPvBに代っ
てエチレン・ビニル・アセテート(以下EVAと云う)
が開発されている。
However, in recent years, in order to promote cost reduction and high reliability of solar cell panels, ethylene vinyl acetate (hereinafter referred to as EVA) has been used instead of PvB as the filler (2).
is being developed.

即ち、EVAはP’VBと比較すると次のような利点が
あるからである。
That is, EVA has the following advantages when compared with P'VB.

(1)材料費がKVAO方が安く現在PVBの杓子の値
段である〇 (2)拐料のプロセッシングの場合にもEvAの方が簡
単である。
(1) KVAO's material cost is lower and the current price is comparable to that of PVB. (2) EvA is also simpler in processing the material.

即ちPVBViPVB自身の接着を防止するため通常表
面に重そうを塗布してロール状に巻いである。そのため
太陽電池パネルの組立て工程に用いる場合には水洗処理
後、約1日の調湿処理を施さなければならない。これに
対し、EVAは水洗工程を省略でき、調湿処理もPVB
はど厳しくない。
That is, in order to prevent PVBViPVB from adhering itself, a heavy coating is usually applied to the surface and wound into a roll. Therefore, when used in the process of assembling solar cell panels, it is necessary to perform humidity conditioning treatment for about one day after washing with water. On the other hand, EVA can omit the water washing process, and PVB can also handle humidity control.
It's not harsh.

(3)EVAによる貼合せは、架橋反応を経て形成され
るため、耐熱性、信頼性に優れている。一方PVBは架
橋反応を用いない原理によシ貼合されるため温度に対す
る軟化性は可逆的であり、高温で軟化する。
(3) Since EVA bonding is formed through a crosslinking reaction, it has excellent heat resistance and reliability. On the other hand, since PVB is laminated on a principle that does not use a crosslinking reaction, its softening property against temperature is reversible, and it softens at high temperatures.

また、太陽電池パネルの信頼性試験項目については、J
 P L (Jet Propulsion Labo
ratory )等から提案されておシ、日本でも標準
化されつつあるが、その試験項目は、例えば−40°C
〜80℃、RH(相対湿度)90%以上の雰囲気下での
温湿度サイクル試験;80℃、RH90%以上での高温
高湿試験;−40℃での低温試験;−40℃〜80℃で
の温度衝撃試験;5%塩水下での塩水霧試験力とであり
、その目的は約20年間と言われる太陽電池パネルの寿
命を保証することである。このような試験項目を合格す
る高信頼性の太陽電池パネルを得るためにEVAを用い
て貼合せを行なうには通常行なわれている、ゴム袋を用
いた一重の真空排気方式とは異なり、第3図に示す如く
二重真空方式を用いる必要がある。
In addition, regarding the reliability test items of solar cell panels, please refer to J.
P L (Jet Propulsion Labo
The test items have been proposed by, for example, -40°C, and are being standardized in Japan.
Temperature/humidity cycle test in an atmosphere of ~80℃, RH (relative humidity) 90% or higher; High temperature/humidity test at 80℃, RH 90% or higher; Low temperature test at -40℃; -40℃~80℃ temperature shock test; salt water fog test force under 5% salt water; the purpose is to guarantee the lifespan of the solar panel, which is said to be about 20 years. In order to obtain highly reliable solar cell panels that pass these test items, lamination using EVA requires a single vacuum pumping method using a rubber bag, which is the usual method. It is necessary to use a double vacuum system as shown in Figure 3.

即ち、第1の室(lυ及び第2の呈、a2の周囲は例え
ば剛体により囲まれ、夕゛イヤフラム(隔膜)03)に
より分離されており、それぞれバルブ(Vl)、(V2
)を経て図示しない真空ポンプへと通じている。
That is, the first chamber (lυ and the second chamber, a2) are surrounded by, for example, a rigid body and separated by a diaphragm (diaphragm) 03, and the valves (Vl) and (V2) are separated from each other by a membrane 03.
) to a vacuum pump (not shown).

この第2の室0邊に入れられる太陽電池セルを含む斜線
で示す積層体0荀は通常、第4図に示すように構成され
ている。
The stacked body indicated by diagonal lines containing the solar cells placed in the second chamber 0 is normally constructed as shown in FIG. 4.

即ち、強化処理を施した白板ガラスなどからなる透明カ
バー・ガラス(11,KVA(2υ、太陽電池セル(3
)から成るストリング、pvA(23裏面材料(4)が
との順または逆の順に積層されている。
In other words, transparent cover glass (11, KVA (2υ) made of tempered white plate glass, etc., solar cell (3
), pvA (23) with backing material (4) stacked in the order or in reverse order.

そして太陽電池パネルを製造する場合の貼合せ工程は例
えば次の如くでちる。即ち第1の室(10゜第2の室(
13を真空に排気し、積層体(1,41をICVA(2
1)及び(2々が溶融状態で、しかも架橋反応を起さな
い温度領域例えば約120℃で加熱する。次いで第2の
室α2を真空に保ったまま、第1の室αυを大気圧に戻
す。すると夕゛イヤフラム0■を介して積層体Oaは真
空中で大気圧によシ圧着される。次にEVAが架橋反応
を起こす温度領域迄加熱する。この温度は約150℃で
ある。この温度で架橋反応が終了する迄保持し、次いで
冷却後、積層体α荀を取り出す。以上の工程により第1
図の一部に示すようなEVAの充填材(2)を用いた太
陽電、池/ξネルが形成され、貼合せ工程が終了する。
The bonding process for manufacturing a solar cell panel is, for example, as follows. That is, the first chamber (10°) and the second chamber (
13 was evacuated, and the laminate (1, 41 was evacuated to ICVA (2
1) and (2) are heated in a molten state at a temperature range that does not cause a crosslinking reaction, for example, about 120°C. Next, while keeping the second chamber α2 in vacuum, the first chamber αυ is brought to atmospheric pressure. Then, the laminate Oa is compressed by atmospheric pressure in a vacuum through the diaphragm 0. Next, the EVA is heated to a temperature range where a crosslinking reaction occurs.This temperature is about 150°C. The temperature is maintained at this temperature until the crosslinking reaction is completed, and then, after cooling, the laminate α is taken out.
A solar cell, cell/ξ panel using the EVA filler (2) as shown in a part of the figure is formed, and the bonding process is completed.

〔背景技術の問題点〕 しかし、上述の材料の構成の積層体を用いると、EVA
が溶融状態の真空下で加圧されるため、太陽電池セルの
移動が発生する。即ち、所望の位置にセル(3)を半田
付により固定セットしても貼合せ後は例えば第5図の如
く中央の2列のセル(3)が接触し両側の列のセル(3
)は外側へ移動する現象が生じる。そして甚しい場合に
はガラス板(1)の外側へ出てしまうセル(3)もある
。この外側への移動を防止するには、積層体0aの周辺
をテーピングすることが考えられるがこの場合には第6
図に示すように各列のセル(3)が中央−・移動し、セ
ル(3)同志が接触するという現象が生じる。そしてセ
ル(3)同志で接触すると、外観的な問題ばかりでなく
、太陽継池として所望の起電力が得られない短絡現象が
生じる。
[Problems in the background art] However, when using a laminate having the above-mentioned material structure, EVA
Since the solar cells are pressurized in a molten state under vacuum, movement of the solar cells occurs. That is, even if the cells (3) are fixedly set in a desired position by soldering, after bonding, as shown in FIG.
) moves outward. In severe cases, some cells (3) may come out outside the glass plate (1). In order to prevent this outward movement, it is possible to tape the periphery of the laminate 0a, but in this case, the sixth
As shown in the figure, a phenomenon occurs in which the cells (3) in each column move to the center and the cells (3) come into contact with each other. If the cells (3) come into contact with each other, not only will there be problems in appearance, but also a short circuit phenomenon will occur in which the desired electromotive force cannot be obtained as a solar relay.

更に、移動によるセル(3)間の接触を防ぐだめ、第7
図に示す如くセル(3)の裏面側において、セル(3)
間を電気的に接続するリボンリード(ハ)の他に横方向
の隣接セル間の距離を一定に保つため剛体よりなる絶縁
体のブリッジ(イ)を接着剤を介してセル(3)に固定
することが考えられる。しかしブリッジ(イ)の数が多
いこと、接着作業があることによシ、工程が煩雑になり
更にセル(3)間の接触は防止出来ても貼合せ工程後ス
) IJング全体が移動するという問題点がある。即ち
、カバー・ガラス端面付近迄セル(3)が移動するとか
、ガラス板の外側へ出てしまうという現象である。
Furthermore, in order to prevent contact between cells (3) due to movement, a seventh
As shown in the figure, on the back side of cell (3),
In addition to the ribbon lead (c) that electrically connects the cells, a rigid insulator bridge (a) is fixed to the cell (3) using adhesive to maintain a constant distance between adjacent cells in the horizontal direction. It is possible to do so. However, the process becomes complicated due to the large number of bridges (A) and the adhesion work, and even if contact between the cells (3) can be prevented, the entire IJ ring moves after the bonding process. There is a problem. That is, this is a phenomenon in which the cell (3) moves to the vicinity of the end face of the cover glass or comes out to the outside of the glass plate.

〔発明の目的〕[Purpose of the invention]

本発明は上述の問題点に鑑みなされたものであり充填材
としてEVAを用いた場合にもセルの移動が起らない低
コスト、高信頼性の太陽電池パネルを提供することを目
的としている。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a low-cost, highly reliable solar cell panel in which cell movement does not occur even when EVA is used as a filler.

〔発明の概要〕[Summary of the invention]

本発明は透明カバーガラスと、この透明カバーガラスの
一面に接着され、内部に直列しまたは並列に接続される
複数個の太陽電池セルよりなるストリングを含有する充
填材と、この充埴拐の裏面に設けられる裏面材料とを有
する太陽電池パネルに於てガラス繊維群を少くとも充填
材中のストリングの直下または直上に設けたことを特徴
とする太陽電池パネルであシ、ガラス繊維群が主に長さ
10(1+m以上のガラス繊維からなること、ガラス繊
維群がマット状に形成されていること、充填材がエチレ
ン・ビニルアセテートであることを実施態様としている
The present invention includes a transparent cover glass, a filler containing a string of a plurality of solar cells bonded to one side of the transparent cover glass and connected in series or parallel therein, and a back side of the filler. A solar cell panel characterized in that a group of glass fibers is provided at least immediately below or directly above the strings in the filler in a solar cell panel having a back material provided with a In an embodiment, the fiberglass fibers are made of glass fibers with a length of 10 (1+m) or more, the glass fiber groups are formed into a mat shape, and the filler is ethylene vinyl acetate.

〔発明の実施例〕[Embodiments of the invention]

次に第8図によυ本発明の太+1電池パネルの実施例を
説明する。図中従来例と同一符号は同一部分を示す。
Next, an embodiment of the thick +1 battery panel of the present invention will be described with reference to FIG. In the figure, the same reference numerals as in the conventional example indicate the same parts.

即ち、全体の構造的支持体となる肉厚3朋の強化ガラス
からなる透明カバーガラス(1)の片面には肉厚0.8
間のEVAシートからなる充填材0D太陽電池セル(3
)を直列または並列に接続したストリング、例えば日本
板硝子(株)判面品名マイクログラxcpa−z4(肉
厚0.20 mm )長ガラス繊維のマットを2枚重ね
たガラス繊維群(’I11、肉厚0.8間のEVAシー
トからなる次項材(2り肉厚20μmのアルミニウム箔
が中間にサンドインチされ両側に肉厚25μmのPVF
を有するシートからなる裏面材料(4)を積層体(14
)とする。この場合実際の製造工程では透明カバー・ガ
ラス(1)上に順に乗せる。
That is, a transparent cover glass (1) made of tempered glass with a wall thickness of 3 mm, which serves as the overall structural support, has a wall thickness of 0.8 mm on one side.
Filler 0D solar cell (3
) connected in series or parallel, for example, a glass fiber group made by stacking two long glass fiber mats made by Nippon Sheet Glass Co., Ltd. The following material consists of an EVA sheet with a thickness of 0.8 mm (20 μm thick aluminum foil is sandwiched in the middle, and 25 μm thick PVF on both sides)
A backing material (4) consisting of a sheet having a laminate (14
). In this case, in the actual manufacturing process, they are placed one after another on a transparent cover glass (1).

即ち第8図とは上下反対となる。In other words, it is upside down from FIG.

ところで従来ガラス繊維を太陽電池パネルに使用した例
としては本発明のセルの移動を防止するというものとは
別の観点にょシ、U、S、 Departmentof
 EnergyのAnnual Report 、 ”
 Investlgatlon of TestMet
hods 、 Materials Properti
es and Procegs for 5olarC
ell Encapsulatlons” (June
 1979)のpagelO−1+および”Final
 Report on the Invegtlgat
lon of Propoaed ProeetsSe
quence for the Array Auto
trlILted Assembly Ta5k (A
ug 。
By the way, as an example of conventional use of glass fiber in a solar cell panel, there is a point of view different from that of preventing cell movement according to the present invention.
Energy Annual Report, ”
Investlgatlon of TestMet
hods, Materials Property
es and Procegs for 5olarC
ell Encapsulatrons” (June
1979) pagelO-1+ and “Final
Report on the Invegtlgat
lon of Propoaed ProeetsSe
quence for the Array Auto
trlILted Assembly Ta5k (A
ug.

1980 )のpage 233によって知られている
。そしてこれらの主要な目的は a)太陽電池セルとカバーガラスとの距離を固定し応力
を緩和する。
1980), page 233. The main purposes of these are a) fixing the distance between the solar cell and the cover glass and relieving stress;

b)セルと裏面材料間の絶縁抵抗を維持する。b) Maintaining insulation resistance between the cell and backside material.

C)真空排気の際の空気の通路となる。C) Serves as an air passage during evacuation.

である。そしてこれら文献での結論としてCraneg
lass 230 ’が最も良く、Crane and
 Companyによシ製造されているとしている。
It is. And as a conclusion in these documents, Craneg
lass 230' is the best, Crane and
It is said to be manufactured by the company.

このCraneglass 230は長さ数10朋以下
の短ガラス繊維を主成分としバインダを10%以上用い
て固めたガラス不織布であって、本発明に使用されるバ
インダの成分が数%程度以下であり、長さが例えば2m
の連続繊維からなる長ガラス繊維のものとは明確に区別
される。
This Craneglass 230 is a glass nonwoven fabric mainly composed of short glass fibers with a length of several tens of meters or less and hardened with 10% or more of a binder, and the binder component used in the present invention is about several % or less, For example, the length is 2m
It is clearly distinguished from long glass fibers consisting of continuous fibers.

特にマイクログラスCFG−24では、長さ約2m、太
さ10μmの長ガラス繊維群が約120度の角度で交差
しているのに対し、CraneglaI!s 230は
、長さ数10mm以下の短ガラス繊維がランダムに和紙
のように固められているものである。
In particular, in Microglass CFG-24, groups of long glass fibers with a length of about 2 m and a thickness of 10 μm intersect at an angle of about 120 degrees, whereas Cranegla! S230 is made of short glass fibers with a length of several tens of millimeters or less that are randomly packed together like Japanese paper.

本実施例ではマイクログラスCFG−24と共にCra
neglass 230 (肉厚0.005インチ)も
第8図の01)として用い同様の実験を行なった。
In this example, along with microglass CFG-24, Cra
A similar experiment was conducted using Neglass 230 (thickness 0.005 inch) as 01) in FIG.

第8図に示すようにセットした積層体011)は従来と
同様に第3図に示す二重真空方式の貼合せ装置によって
貼合せる。
The laminate 011) set as shown in FIG. 8 is pasted together using a double vacuum type pasting apparatus shown in FIG. 3 in the same manner as in the prior art.

貼合せ工程での典型的なスケジュールを第9図に示す。A typical schedule for the lamination process is shown in FIG.

即ち先ず予備的な真空排気を例えば10分間行なう。こ
れにより加熱前での真空度は例えば0.05 Torr
程度になる。次に加熱を開始する。
That is, first, preliminary vacuum evacuation is performed for 10 minutes, for example. As a result, the degree of vacuum before heating is, for example, 0.05 Torr.
It will be about. Next, start heating.

昇温勾配は例えば4℃/ minである。EVAが溶融
する温度は約85℃であシ、架橋反応が開始するのは1
30℃である。積層体0aの温度が120℃に到達した
時、第1の室(11)を大気圧に戻し積層体Oaを真空
中で圧着する。次いで150℃に到達するまで温度上昇
し、150℃に到達した後、架橋反応を充分に行なわせ
るために例えば20分間保持する。次いで冷却し積層体
0滲の温度が例えば50℃以下に冷却された後、第2の
室(I邊を大気圧に戻す。この場合マイクログラスCF
G−24及びCrameglass 230は、太陽電
池セル(3)の移動を抑えると共にEVAとも良くなじ
み気泡の欠陥も生ぜずにストリングが貼合される。
The temperature increase gradient is, for example, 4°C/min. The temperature at which EVA melts is approximately 85°C, and the crosslinking reaction begins at 1
The temperature is 30°C. When the temperature of the laminate Oa reaches 120° C., the first chamber (11) is returned to atmospheric pressure and the laminate Oa is pressure-bonded in a vacuum. Next, the temperature is increased until it reaches 150°C, and after reaching 150°C, it is held for 20 minutes, for example, in order to sufficiently carry out the crosslinking reaction. Then, after the temperature of the laminate is lowered to, for example, 50° C. or lower, the second chamber (I side) is returned to atmospheric pressure. In this case, the micro glass CF
G-24 and Crameglass 230 suppress the movement of the solar cell (3) and are also compatible with EVA, allowing the string to be bonded without causing bubble defects.

陽′亀池ノξネルとして完成させるためには第1図に示
すようにアルミニウム枠(8)と絶縁材(力として例え
ばブチル・ゴムを介して枠組みを行ない終了する。
In order to complete the projector as a wall, as shown in Figure 1, the frame is completed using an aluminum frame (8) and an insulating material (for example, butyl rubber).

マイクログラスCFG−24及びCraneglass
 230を用いた太陽電池パネルの信頼性試験として高
温高湿試験を行ない比較した結果を第1表に示す。
Microglass CFG-24 and Craneglass
Table 1 shows the results of a high-temperature, high-humidity test conducted as a reliability test for solar cell panels using 230.

条件は80℃、RH90%であり、時間は500時間時
間外った。
The conditions were 80° C., RH 90%, and the time was 500 hours.

即ちマイクログラスを用いた場合には高温高湿試験にお
いて良好であるのに対し、Craneglass 23
0を用いた場合にはCraneglassの変色現象が
168hr経過後に起きた。
That is, when using microglass, it performed well in the high temperature and high humidity test, whereas Craneglass 23
When 0 was used, a discoloration phenomenon of Craneglass occurred after 168 hours had elapsed.

次にマイクログラスCFG−24及びCranegla
s++230を用いた場合の信頼性試験にかける前の初
期外観試験として貼合せ時の最高温度と外観との関係を
第2表に示す。なお最高温度の保持時間は20分とした
Next, microglass CFG-24 and Cranegla
Table 2 shows the relationship between the maximum temperature at the time of lamination and the appearance as an initial appearance test before the reliability test using s++230. Note that the maximum temperature was maintained for 20 minutes.

第 2 表 即ち、マイクログラスを用いた場合には、145℃〜1
60℃の温度範囲にわたって外観良好であるのに対し、
Craneglassを用いた場合には約155℃でC
raneglassの変色が開始する。
Table 2 shows that when microglass is used, 145°C to 1
While the appearance is good over a temperature range of 60°C,
When using Craneglass, the temperature is about 155°C.
The raneglass starts to change color.

次にマイクログラスCFG−24及びCranegla
ss230自身の大気中での焼成実験、即ち、焼成温度
と外観との関係を第3表に示す。但し保持時間は30分
である。
Next, microglass CFG-24 and Cranegla
Table 3 shows the firing experiment of ss230 itself in the atmosphere, that is, the relationship between firing temperature and appearance. However, the holding time is 30 minutes.

第3表 即ち、ガラス繊維の軟化開始温度は約700’Cであり
、マイクログラスは約600℃までマットとして初期の
強度がある。一方Craneglassは約150℃よ
シ着色を開始し、500’Cで着色が消えるがバインダ
の蒸発と短繊維であるために、強度は低下し使用には耐
えられない。
Table 3 shows that the softening temperature of glass fiber is about 700'C, and microglass has initial strength as a mat up to about 600'C. On the other hand, Craneglass starts to color at about 150°C and disappears at 500°C, but due to evaporation of the binder and short fibers, its strength decreases and it cannot withstand use.

第io図に5oo℃で焼成したCraneglass 
230を用い、第8図の積層体(3+)を形成して貼合
せた場合の太陽電池パネルを示す。図を見てもわかるよ
うにCraneglasgのしわの発生と共にセル(3
)の移動によるセル(3)間の接触が起っている。また
第11図にマイクログラスCFG−24を用いて製造し
組立てた太陽電池パネルを示す。図を見てもわかるよう
にセル(3)の間隔が一定に保たれ良好なノミネルが出
来ている。
Figure io shows Craneglass fired at 50°C.
8 shows a solar cell panel in which the laminate (3+) of FIG. 8 is formed and bonded using 230. As can be seen from the figure, along with the occurrence of wrinkles in Crane Glass, the cells (3
) is causing contact between the cells (3). Moreover, FIG. 11 shows a solar cell panel manufactured and assembled using microglass CFG-24. As can be seen from the figure, the spacing between the cells (3) is kept constant and a good nominal is formed.

即ち、Craneglasg 230を用いて太陽電池
パネルを製造した場合にはセルの移動を防止できるが、
一方、短ガラス繊維を用い、バインダによシガラス繊維
間を固定して布としての強度を維持しているため、使用
するバインダViIO%を越えるような多量となり、信
頼性試験、特に高温での試験では変色が起こシ太陽電池
パネルの劣化となる。
That is, when a solar cell panel is manufactured using Craneglasg 230, cell movement can be prevented;
On the other hand, because short glass fibers are used and the fibers are fixed by a binder to maintain the strength of the cloth, the amount exceeds the ViIO% of the binder used, which makes reliability tests, especially tests at high temperatures, difficult. This will cause discoloration and deterioration of the solar panel.

一方マイクログラスCFG−24を用いた場合には、セ
ルの移動防止が可能であることのほかに長ガラス繊維を
用いているためマットとしての強度を保つのには少量の
バインダまたはバインダなしでも済み、信頼性試験にお
いて劣化を起こすようなことがない。またマイクログラ
スの価格も安く、安定したパネルの生産が可能であるの
みならず、低コスト、高信頼性の太陽電池パネルを提供
することが可能である。
On the other hand, when using microglass CFG-24, in addition to being able to prevent cell movement, since long glass fibers are used, a small amount of binder or no binder is required to maintain the strength of the mat. , no deterioration occurs in reliability tests. Moreover, the price of microglass is low, and it is not only possible to produce panels stably, but also to provide low-cost, highly reliable solar cell panels.

なお、本実施例では長ガラス繊維群からなるマイクログ
ラスを第8図に示すようにストリングの直下に挿入して
セルの移動を防止したが、ストリングの直上、即ち、第
8図の充填材Qυと太陽電池セル(3)の間に挿入して
も太陽電池セルの移動を防止できる。このようにセル(
3)の直上に挿入した場合には充填材eυとして例えば
BVAを用いた場合には、EVAとガラス繊維の屈折率
の差は小さいのでセル(3)直上での光の反射による損
失は殆ど無視できる。またストリングの少なくとも直上
あるいは直下に長ガラス繊維群よりなるマイクログラス
を挿入し、更に例えば真空排気などを目的として他の位
置例えばカバーガラス(1)と充姐■υの間に挿入して
もよいことはもちろんである。
In this example, microglass made of a group of long glass fibers was inserted directly under the string to prevent cell movement as shown in FIG. 8, but the filler Qυ shown in FIG. Even when inserted between the photovoltaic cell and the photovoltaic cell (3), movement of the photovoltaic cell can be prevented. In this way, the cell (
When inserted directly above cell (3), if BVA is used as the filler eυ, the difference in refractive index between EVA and glass fiber is small, so the loss due to light reflection directly above cell (3) is almost ignored. can. In addition, a microglass made of a group of long glass fibers may be inserted at least directly above or below the string, and may also be inserted at another location, for example between the cover glass (1) and the filler ■υ, for the purpose of evacuation, etc. Of course.

また本実施例ではストリング直下の位置に肉厚0、20
 mmのマイクログラスcFG−24を2枚用いたが、
これは1枚でもよいし、他の厚さのものを用いてもよい
In addition, in this example, the wall thickness is 0 and 20 mm at the position directly below the string.
Two sheets of mm microglass cFG-24 were used,
This may be one piece, or pieces of other thicknesses may be used.

なお、本実施例による長ガラス繊維群の長さは約2mの
ものを用い、太陽電池、oネルの大きさ約1210 y
 X約410閂に切断して用いたが、小型の太陽電池パ
ネルを考慮し、またCraneglass 230に用
いられている短ガラス繊維の長さが約20−〜30Uで
あるのに対し、長ガラス繊維の下限として100順もあ
れば、バインダの含有量を少量にすることが可能であシ
、本発明の効果が表われる。
The length of the long glass fiber group according to this example is about 2 m, and the size of the solar cell and o-nel is about 1210 y.
The length of the short glass fiber used in Craneglass 230 is about 20-30U, but the length of the short glass fiber used in Craneglass 230 is about 20-30U. If there is an order of 100 as the lower limit, it is possible to reduce the binder content to a small amount, and the effects of the present invention are exhibited.

また、本実施例による長ガラス繊維群として約120度
に交差したマットのCFG−24を用いた場合を例に取
り詳述したが、長ガラス繊維を用いたクロス例えばマイ
クログラス・クロス(商品名)(日本板硝子製Y E 
H1001等)を太陽電池セル下に敷いても同様の効果
、即ち、セルの移動を防ぐことができる。なお、Y E
H1001はEVAなどの充填材ガどと完全に々じませ
ることはできず、セル上に用いるとクロスの模様が残る
In addition, although the detailed description has been made by taking as an example the case where CFG-24, which is a matte crossed at about 120 degrees, is used as the long glass fiber group according to this embodiment, cloth using long glass fibers, such as Microglass Cloth (trade name) ) (Nippon Sheet Glass YE
H1001, etc.) can be placed under the solar cell to achieve the same effect, that is, to prevent the cell from moving. In addition, YE
H1001 cannot be completely blended with filler materials such as EVA and leaves a cross pattern when used on cells.

更に本発明の太陽電池パネルは高温高湿試験の他の信頼
性試験例えば−40℃〜80℃、RH90%、50サイ
クルの試験;−40℃での低温保持試験;塩水噴霧試験
においても長ガラス繊維群を用いたことによる障害をは
じめ他の問題も発生しない。
Furthermore, the solar cell panel of the present invention has also been tested in other reliability tests such as -40°C to 80°C, RH90%, 50 cycles; low temperature holding test at -40°C; and salt spray test. Other problems such as failures due to the use of fiber groups do not occur.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明によれば充填材として安価なEVA
を用いた場合にもセルの移動が起らない低コスト、高品
位、高信頼性の太陽電池パネルが提供できる。
As mentioned above, according to the present invention, inexpensive EVA can be used as a filler.
It is possible to provide a low-cost, high-quality, highly reliable solar cell panel in which no cell movement occurs even when using the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は太陽電池パネルの断面図、第2図は裏面材料の
概略断面図、第3図は二重真空方式の貼合せ装置の概略
説明図、第4図は従来の太陽電池パネルの積層体を示す
断面図、第5図及び第6図は太陽電池パネルの製造工程
中に発生するそれぞれ異なるセルの配列の不具合を示す
説明図、第7図はセルの配列の不具合をなくす構造の一
例を示す裏面図、第8図は本発明の太陽電池パネルの一
実施例の積層体を示す断面図、第9図は貼合せ工程の典
型的なスケジュール図、第10図はCrane−gla
ssを使用した時のセルの配列を示す説明図、第11図
はマイクログラスを使用した時のセルの配列を示す説明
図である。 1・・・カバーガラス 2.21.22・・・充Jl 
材3・・・太陽電池セル 4・・・裏面材料11・・・
第1の室 12・・・第2の室13・・・グイヤ7ラム
 14・・・積層体26・・・ブリッジ 31・・・長
ガ2ス繊維群代理人 弁理士 井 上 −力 筒 2 図 第 3 図 第 5 図 第 6 口 筒 7 図 第 8 図 j/4 第 9 図 両開(hr) 第10図 第11図
Figure 1 is a cross-sectional view of the solar panel, Figure 2 is a schematic cross-sectional view of the back material, Figure 3 is a schematic illustration of a double vacuum laminating device, and Figure 4 is a conventional lamination of solar panels. Figures 5 and 6 are explanatory diagrams showing defects in the arrangement of different cells that occur during the manufacturing process of solar cell panels, and Figure 7 is an example of a structure that eliminates defects in the arrangement of cells. 8 is a sectional view showing a laminate of an embodiment of the solar cell panel of the present invention, FIG. 9 is a typical schedule diagram of the bonding process, and FIG. 10 is a crane-glaze
FIG. 11 is an explanatory diagram showing the cell arrangement when using ss, and FIG. 11 is an explanatory diagram showing the cell arrangement when using microglass. 1...Cover glass 2.21.22...Jl.
Material 3...Solar cell 4...Back material 11...
First chamber 12...Second chamber 13...Guia 7 ram 14...Laminated body 26...Bridge 31...Long gas 2 gas fiber group agent Patent attorney Inoue - Power tube 2 Figure 3 Figure 5 Figure 6 Mouthpiece 7 Figure 8 Figure j/4 Figure 9 Double opening (hr) Figure 10 Figure 11

Claims (4)

【特許請求の範囲】[Claims] (1) カバーガラスの片面に接着され、内部に直列ま
たは並列に接続された複敷個の太陽電池セルよシなるス
) IJソング含む充填材と、前記充填材の裏面に形成
された裏面材料とを有する太陽電池パネルに於て、少な
くとも前記充填材中の前記ストリングの直下あるいは直
上にガラス繊維群を設けたことを特徴とする太陽電池パ
ネル。
(1) Consisting of multiple solar cells bonded to one side of a cover glass and connected in series or parallel inside) A filler containing an IJ song and a backing material formed on the back side of the filler. 1. A solar cell panel comprising: a group of glass fibers provided at least directly below or directly above the strings in the filler.
(2) ガラス繊維群が主に長さ100間以上の長ガラ
ス繊維からなることを特徴とする特許請求の範囲第1項
記載の太陽電池パネル。
(2) The solar cell panel according to claim 1, wherein the glass fiber group mainly consists of long glass fibers having a length of 100 mm or more.
(3) ガラス繊維群が主に長さ100朋以上の長ガラ
ス繊維のマットからなることを特徴とする特許請求の範
囲第1項記載の太陽電池パネル。
(3) The solar cell panel according to claim 1, wherein the glass fiber group mainly consists of a long glass fiber mat having a length of 100 mm or more.
(4) 充填材がエチレン・ビニル・アセテートである
ことを特徴とする特許請求の範囲第1項記載の太陽電池
ノゼネル。
(4) The solar cell nosenel according to claim 1, wherein the filler is ethylene vinyl acetate.
JP58109415A 1983-06-20 1983-06-20 Solar battery panel Granted JPS601875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58109415A JPS601875A (en) 1983-06-20 1983-06-20 Solar battery panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58109415A JPS601875A (en) 1983-06-20 1983-06-20 Solar battery panel

Publications (2)

Publication Number Publication Date
JPS601875A true JPS601875A (en) 1985-01-08
JPS6366072B2 JPS6366072B2 (en) 1988-12-19

Family

ID=14509664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58109415A Granted JPS601875A (en) 1983-06-20 1983-06-20 Solar battery panel

Country Status (1)

Country Link
JP (1) JPS601875A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095959A (en) * 1983-10-31 1985-05-29 Nippon Sheet Glass Co Ltd Solar cell panel and manufacture thereof
JPS61251176A (en) * 1985-04-30 1986-11-08 Toppan Printing Co Ltd Protective sheet for reverse side surface of solar cel
JPS63143879A (en) * 1986-12-08 1988-06-16 Hitachi Ltd Solar battery apparatus
JPH04124237U (en) * 1991-04-22 1992-11-12 株式会社ニコン Camera capable of long exposure photography
EP0536738A2 (en) * 1991-10-08 1993-04-14 Canon Kabushiki Kaisha Solar cell module with improved weathering characteristics
EP0625802A2 (en) * 1993-05-18 1994-11-23 Canon Kabushiki Kaisha Solar cell module and installation method thereof
JPH07297440A (en) * 1994-04-25 1995-11-10 Canon Inc Solar battery module
US5474620A (en) * 1994-05-16 1995-12-12 United Solar Systems Corporation Cut resistant laminate for the light incident surface of a photovoltaic module
WO1996002947A1 (en) * 1993-01-20 1996-02-01 Michael Christian Lenz Process for producing photovoltaic generators and hybrid collectors
US5578141A (en) * 1993-07-01 1996-11-26 Canon Kabushiki Kaisha Solar cell module having excellent weather resistance
US6331673B1 (en) 1995-10-17 2001-12-18 Canon Kabushiki Kaisha Solar cell module having a surface side covering material with a specific nonwoven glass fiber member
JP2004051960A (en) * 2002-05-27 2004-02-19 Nitto Denko Corp Resin sheet and liquid crystal cell base using the same
JP2007110174A (en) * 2007-02-01 2007-04-26 Sanyo Electric Co Ltd Solar cell module and method of manufacturing same
US7259803B2 (en) 2002-05-27 2007-08-21 Nitto Denko Corporation Resin sheet, liquid crystal cell substrate comprising the same
WO2013190823A1 (en) * 2012-06-22 2013-12-27 パナソニック株式会社 Solar cell module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56172957U (en) * 1980-05-23 1981-12-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56172957U (en) * 1980-05-23 1981-12-21

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095959A (en) * 1983-10-31 1985-05-29 Nippon Sheet Glass Co Ltd Solar cell panel and manufacture thereof
JPS61251176A (en) * 1985-04-30 1986-11-08 Toppan Printing Co Ltd Protective sheet for reverse side surface of solar cel
JPS63143879A (en) * 1986-12-08 1988-06-16 Hitachi Ltd Solar battery apparatus
JPH0573277B2 (en) * 1986-12-08 1993-10-14 Hitachi Ltd
JPH04124237U (en) * 1991-04-22 1992-11-12 株式会社ニコン Camera capable of long exposure photography
EP0536738A2 (en) * 1991-10-08 1993-04-14 Canon Kabushiki Kaisha Solar cell module with improved weathering characteristics
WO1996002947A1 (en) * 1993-01-20 1996-02-01 Michael Christian Lenz Process for producing photovoltaic generators and hybrid collectors
US5583057A (en) * 1993-05-18 1996-12-10 Canon Kabushiki Kaisha Method of making solar cell module and installation method thereof
US5697192A (en) * 1993-05-18 1997-12-16 Canon Kabushiki Kaisha Solar cell module and installation method thereof
US5480494A (en) * 1993-05-18 1996-01-02 Canon Kabushiki Kaisha Solar cell module and installation method thereof
EP0625802A2 (en) * 1993-05-18 1994-11-23 Canon Kabushiki Kaisha Solar cell module and installation method thereof
EP0625802A3 (en) * 1993-05-18 1997-05-28 Canon Kk Solar cell module and installation method thereof.
US5718772A (en) * 1993-07-01 1998-02-17 Canon Kabushiki Kaisha Solar cell having excellent weather resistance
US5578141A (en) * 1993-07-01 1996-11-26 Canon Kabushiki Kaisha Solar cell module having excellent weather resistance
JPH07297440A (en) * 1994-04-25 1995-11-10 Canon Inc Solar battery module
US5474620A (en) * 1994-05-16 1995-12-12 United Solar Systems Corporation Cut resistant laminate for the light incident surface of a photovoltaic module
US6331673B1 (en) 1995-10-17 2001-12-18 Canon Kabushiki Kaisha Solar cell module having a surface side covering material with a specific nonwoven glass fiber member
JP2004051960A (en) * 2002-05-27 2004-02-19 Nitto Denko Corp Resin sheet and liquid crystal cell base using the same
US7259803B2 (en) 2002-05-27 2007-08-21 Nitto Denko Corporation Resin sheet, liquid crystal cell substrate comprising the same
JP2007110174A (en) * 2007-02-01 2007-04-26 Sanyo Electric Co Ltd Solar cell module and method of manufacturing same
JP4597150B2 (en) * 2007-02-01 2010-12-15 三洋電機株式会社 Solar cell module and manufacturing method thereof
WO2013190823A1 (en) * 2012-06-22 2013-12-27 パナソニック株式会社 Solar cell module
JPWO2013190823A1 (en) * 2012-06-22 2016-02-08 パナソニックIpマネジメント株式会社 Solar cell module

Also Published As

Publication number Publication date
JPS6366072B2 (en) 1988-12-19

Similar Documents

Publication Publication Date Title
JPS601875A (en) Solar battery panel
US8512866B2 (en) Flexible solar panel with a multilayer film
JP6337898B2 (en) Double glazing
RU2006135008A (en) GLAZING
WO2019144501A1 (en) Laminated curved glass composite material and manufacturing method therefor
CN109390422B (en) Light photovoltaic module
JP2008282906A (en) Manufacturing method for solar cell module
WO2014153997A1 (en) Solar cell back panel and solar cell assembly
JPS6169179A (en) Manufacture of solar cell panel
WO2021115294A1 (en) Rear-view mirror
WO2019144500A1 (en) Interlayer curved-surface glass production method
CN211999556U (en) High-light-transmission heat-insulation EVA (ethylene-vinyl acetate) intermediate film for constructional engineering
CN107968131B (en) Solar cell back sheet, preparation method thereof and solar cell module comprising same
JP2500974Y2 (en) Laminated glass with built-in intermediate
CN218548444U (en) Light fireproof photovoltaic module and photovoltaic power generation system
KR0134745B1 (en) Aluminium sandwich panels for the interior or exterior materials of structures
JPWO2020067082A5 (en)
JP2003037279A (en) Solar battery module and manufacturing method therefor
JP2002111014A (en) Solar light generating plastic module
CN208157432U (en) A kind of double-side cell list glass solar components
JPS61272975A (en) Back protective sheet for solar cell
JP2013165092A (en) Manufacturing method of solar cell module
JPH0341481Y2 (en)
CN219363539U (en) Composite white glue film for photovoltaic module and photovoltaic module
CN210457976U (en) High-strength laminated glass