JPS60187536A - Method and apparatus for preparing porous body made of tetrafluoroethylene resin - Google Patents

Method and apparatus for preparing porous body made of tetrafluoroethylene resin

Info

Publication number
JPS60187536A
JPS60187536A JP4327084A JP4327084A JPS60187536A JP S60187536 A JPS60187536 A JP S60187536A JP 4327084 A JP4327084 A JP 4327084A JP 4327084 A JP4327084 A JP 4327084A JP S60187536 A JPS60187536 A JP S60187536A
Authority
JP
Japan
Prior art keywords
tetrafluoroethylene resin
liquid lubricant
stretching
state
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4327084A
Other languages
Japanese (ja)
Inventor
Koichi Okita
晃一 沖田
Shinichi Toyooka
新一 豊岡
Shigeru Asako
茂 浅古
Katsuya Yamada
克弥 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4327084A priority Critical patent/JPS60187536A/en
Publication of JPS60187536A publication Critical patent/JPS60187536A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain to shorten a processing time and to conserve energy in preparing a tetrafluoroethylene resin porous body high in mechanical strength, by simultaneously applying four processes of the evaporative removal of a liquid lubricant, orientation in an unbaked state, baking in an oriented state and orientation in a baked state to an unbaked tetrafluoroethylene resin molded article containing the liquid lubricant at an atmospheric temp. of 390 deg.C or more. CONSTITUTION:After an unbaked tetrafluoroethylene resin mixture containing a liquid lubricant is molded by an extrusion method, a rolling method or a method containing both of them, four processes of the evaporative removal of the liquid lubricant, orientation in an unbaked state, baking in an oriented state and orientation in a baked state are simultaneously performed at an atmospheric temp. of 390 deg.C or more. By this method, both Young modulus of 10,000kg/cm<2> or more and matrix strength of 1,100kg/cm<2> are satisfied and a firm tetrafluoroethylene resin porous body easy to handle even at room temp. is obtained.

Description

【発明の詳細な説明】 (技術分野) 本発明は、機械的強度の大きい四弗化エチレン樹脂多孔
質体の製造方法において、液体潤滑剤の除去、延伸、焼
成工程における省エネルギープロセス並びにそれを可能
とする製造装置に関するものである。
Detailed Description of the Invention (Technical Field) The present invention provides an energy-saving process in the liquid lubricant removal, stretching, and sintering steps in a method for producing a porous tetrafluoroethylene resin material with high mechanical strength, and also enables the energy-saving process. The present invention relates to manufacturing equipment.

(従来技術とその問題点) 四弗化エチレン樹脂多孔質体は、四弗化エチレン樹脂の
殴れた耐熱性、耐薬品性、電気絶縁性、撥水性を生かし
各種フィルター、隔膜の他、防水通気性材料、電気被覆
材料、シール材料等に利用されている。その製造方法は
、既にいくつかの方法が知られているが、その中で商業
的に魅力あるものは、延伸操作により多孔質化する方法
である。
(Prior art and its problems) Tetrafluoroethylene resin porous materials are used for various filters, diaphragms, and waterproof ventilation, taking advantage of the superior heat resistance, chemical resistance, electrical insulation, and water repellency of tetrafluoroethylene resin. It is used in electrical materials, electrical coating materials, sealing materials, etc. Several methods are already known for producing the material, but the most commercially attractive method is to make it porous through a stretching operation.

基本的には特公昭4・2−13560で開示されている
がその第1の工程は四弗化エチレン樹脂粉末と液体潤滑
剤を混和した後ペースト押出法やカレンダー圧延法やこ
の両者を組合せることにより未焼成のフィルム、チュー
ブあるいはロッド等の形状の成形品を得る事である。第
2工程以降の工程ば■成形品に含まれる液体潤滑剤を蒸
発又は抽出により除去する工程、■延伸により多孔質化
する工程、■四弗化エチレン樹脂の融点以上の温度に上
げて焼成し多孔質構造を固定する工程よりなる。第2工
程以降の工程がこの様に分割されてきた理由は、以下の
通りである。
Basically, it is disclosed in Japanese Patent Publication No. 4/2-13560, and the first step is to mix tetrafluoroethylene resin powder and liquid lubricant, and then paste extrusion method, calender rolling method, or a combination of both. By doing so, a molded product in the shape of an unfired film, tube, or rod can be obtained. Steps after the second step are: 1) removing the liquid lubricant contained in the molded product by evaporation or extraction, 2) making it porous by stretching, and 2) firing at a temperature higher than the melting point of the tetrafluoroethylene resin. It consists of a step of fixing the porous structure. The reason why the steps after the second step have been divided in this way is as follows.

従来性われている延伸温度(室温から四弗化エチレン樹
脂の結晶融点以下)では、液体潤滑剤と樹脂の界面張力
の作用により延伸が均一に行なわれず、得られる多孔質
体の孔特性もまた不均質な4゛1η造となってしまう。
At conventional stretching temperatures (from room temperature to below the crystalline melting point of tetrafluoroethylene resin), stretching is not uniform due to the effect of the interfacial tension between the liquid lubricant and the resin, and the pore characteristics of the resulting porous material also deteriorate. This results in a non-uniform 4゛1η structure.

また焼成工程は四弗化エチレン樹脂の結晶融点以上の温
度で行うことが必要となるが、延伸工程を専ら結晶融点
以下で行っていたので延伸工程と分割されてきた。
Furthermore, the firing process needs to be carried out at a temperature above the crystalline melting point of the tetrafluoroethylene resin, but since the stretching process has been carried out exclusively below the crystalline melting point, it has been separated from the stretching process.

この様に第2工程以降の工程は幾つかの異った温度雰囲
気でそれぞれ分割して行なわれ、多大な加1−11# 
l出と工えルギーーhニジ当費七引、てキかのカニ州貯
〒ある。
In this way, the steps after the second step are performed separately in several different temperature atmospheres, and a large amount of stress is applied.
The production and production cost is seven, and there is a lot of savings.

本発明の目的は、この第2工程以降の工程を4・30℃
以上の雰囲気で同時に1工程で行うことを可能とする製
造方法を提供するものであり、またその製造装置を提供
することで四弗化エチレン樹脂多孔質体の製造にふ・け
る加工時間の大rlJを短縮と省エネルギーを図ったも
のである。
The purpose of the present invention is to heat the second and subsequent steps at 4.30°C.
The purpose is to provide a manufacturing method that allows the above-mentioned atmosphere to be carried out simultaneously in one step, and by providing the manufacturing equipment, it is possible to reduce the processing time involved in manufacturing a porous polytetrafluoroethylene resin material. This is intended to shorten rlJ and save energy.

(発明の構成) 本発明者は、先にのべた第2工程以降の工程における温
度と操作条件の厳密な検討を重ねた結果、精密な温度分
布を制御した条件では390℃以上の雰囲気温度で液体
潤滑剤を含んだ未焼成の四弗化エチレン樹脂成形品を延
伸すると、液体潤滑剤の蒸発除去が行なわれ同時に延伸
も進み、さらに焼成も行なわれると同時に焼成後の延伸
も行なわれることを見い出した。
(Structure of the Invention) As a result of rigorous study of the temperature and operating conditions in the second and subsequent steps mentioned above, the inventor has discovered that under conditions where precise temperature distribution is controlled, an ambient temperature of 390°C or higher When an unfired tetrafluoroethylene resin molded product containing a liquid lubricant is stretched, the liquid lubricant is evaporated and the stretching progresses at the same time.Furthermore, firing occurs and at the same time, stretching after firing also occurs. I found it.

これらの工程を更に容易に実現する条件を検討した結果
、温度分布の制御方式として熱風循環炉方式が優れ、ま
た炉内に液体潤滑剤の燃焼を促進する触媒を設けること
で、本発明の好適な実施が行なえることを見い出し本発
明を完成させた。
As a result of examining the conditions for realizing these steps more easily, we found that the hot air circulation furnace method is superior as a temperature distribution control method, and that the present invention is preferable by providing a catalyst in the furnace to promote combustion of the liquid lubricant. The present invention was completed by discovering that the present invention can be implemented easily.

rfM体潤滑剤を含んだ未焼成の四弗化エチレン樹脂成
形品が四弗化エチレン樹脂の結晶融点以上の雰囲気に入
ると、樹脂温度は上昇してくるが同時に液体潤滑剤が蒸
発し始め、この蒸発潜熱の吸収により(樹脂の温度は液
体潤滑剤の沸点以下に維持される。この状態で張力が加
わるので、まず未焼成状態での限られた範囲の延伸が進
み、液体潤滑型の除去された部分を核として成形品の多
孔質化が生じる。このようにして生じた多孔質化は、成
形品内部に伺残存している液体潤滑剤の蒸発を容易にす
る。即ち多孔質化と潤滑剤の蒸発が同時に進行すること
になる。液体潤滑剤が蒸発してしまうと次第に樹脂温度
が上昇し結晶融点以上になると焼成が開始される。四弗
化エチレン樹脂は結晶融点以上でも粘度が高く、その両
端から加わる張力により更に延伸が行なわれ、繊維構造
が進行する。
When an unfired tetrafluoroethylene resin molded product containing an RFM body lubricant enters an atmosphere above the crystalline melting point of the tetrafluoroethylene resin, the resin temperature rises, but at the same time the liquid lubricant begins to evaporate. By absorbing this latent heat of vaporization (the temperature of the resin is maintained below the boiling point of the liquid lubricant), since tension is applied in this state, stretching in a limited range in the unfired state progresses, and the liquid lubricant is removed. The molded product becomes porous, with the molten parts as the core.The porosity that occurs in this way facilitates the evaporation of the liquid lubricant remaining inside the molded product.In other words, it becomes porous. Evaporation of the lubricant will proceed at the same time.Once the liquid lubricant has evaporated, the resin temperature will gradually rise, and when it exceeds the crystal melting point, sintering will begin.Tetrafluoroethylene resin has a low viscosity even above the crystal melting point. Due to the high tension applied from both ends, further stretching is performed and the fiber structure progresses.

以上のプロセスは図1から図5によって模式的に表わさ
れる。図1は昇温過程の温度プロファイルを示す。室温
の成形品が炉入口A点に達し、順次昇温されて液体潤滑
剤の初留点Bにまで来ると、蒸発潜熱のために昇温速度
が遅くなり、更に乾留点#に達すると再び昇温速度が上
昇し、四弗化エチレン樹脂の結晶融点りに達する。設定
された炉温度は更に高いため、一定の潜熱を吸収した後
、炉温度に近すいていく。
The above process is schematically represented by FIGS. 1 to 5. Figure 1 shows the temperature profile during the heating process. When the molded product at room temperature reaches point A at the furnace inlet and is gradually heated up to the initial boiling point B of the liquid lubricant, the rate of temperature rise slows down due to the latent heat of vaporization, and when it reaches the carbonization point #, the temperature rises again. The temperature rise rate increases and reaches the crystalline melting point of the tetrafluoroethylene resin. Since the set furnace temperature is even higher, after absorbing a certain amount of latent heat, the temperature approaches the furnace temperature.

一方図2には未焼成四弗化エチレン樹脂成形品の結晶融
点近傍における示差熱分析結果を示す。
On the other hand, FIG. 2 shows the results of differential thermal analysis near the crystal melting point of an unfired tetrafluoroethylene resin molded product.

吸熱ピークは34・8°Cにピークと338°Cのショ
ルダーを示す。更に380’C近傍に小さなピークが表
われる。これらのピークは四弗化エチレン樹脂の重合時
に形成された結晶構造に起因している。
The endothermic peak shows a peak at 34.8°C and a shoulder at 338°C. Furthermore, a small peak appears near 380'C. These peaks are due to the crystal structure formed during polymerization of the tetrafluoroethylene resin.

一方焼成後にはこれらのピークが大巾に減少すると同時
に327’Cに鋭いピークが表われてくる。
On the other hand, after firing, these peaks are drastically reduced and at the same time a sharp peak appears at 327'C.

このことは焼成という工程の前後で結晶構造が変化して
いることを意味しており、更に昇温・降温速度が太きい
と吸熱ピークが高温側へと移行していくことが観測され
た。
This means that the crystal structure changes before and after the firing process, and it was observed that the endothermic peak shifts to the higher temperature side when the temperature increase/decrease rate is rapid.

図8には炉の中で液体潤滑剤の蒸発除去、未焼結状態で
の延伸、そして焼成、さらに焼成後の延伸が行なわれて
いる定常状態において、どの様な変形張力が加わってい
るかを測定した時の模式図を示す。歪ゲージを取りつけ
た張力計を滑車と連結し、炉内の四弗化エチレン樹脂の
両端に負荷されている応力を連続的に記録する。
Figure 8 shows what kind of deformation tension is applied in the steady state where the liquid lubricant is evaporated and removed in the furnace, the unsintered state is stretched, fired, and then stretched after firing. A schematic diagram of the measurement is shown. A tension meter equipped with a strain gauge is connected to a pulley to continuously record the stress applied to both ends of the tetrafluoroethylene resin in the furnace.

図4・は31yi 7分の供給速度で炉に供給しながら
、一定炉内温度で延伸率を変えた時の動的張力の値を示
しており、炉温度は200℃から4・50℃までの測定
結果を記載している。
Figure 4 shows the dynamic tension values when the stretching ratio is changed at a constant furnace temperature while being fed to the furnace at a feed rate of 31yi 7 minutes, and the furnace temperature is from 200℃ to 4.50℃. The measurement results are listed.

図5は図4・のグラフから、一定の動的張力における炉
温度と延伸率の関係をめたものである。
FIG. 5 shows the relationship between furnace temperature and stretching ratio at a constant dynamic tension, based on the graph in FIG. 4.

松15から判ることは、例えば動的張力が1’0(1と
いう応力が負荷されている状態で、図1の如く液状潤滑
剤を含んだ四弗化エチレン樹脂成形品が炉に人ってくる
と、図1のAからBの間ではほとんど延伸が生じていな
いこと、BからCの間では、0点が250℃程度である
と約1oo96未満の延伸が生じ、CからDの間では3
50℃位にまで昇温されるので800%にまで延伸され
ること、DからEの興では焼成が生じると同時に炉設定
温度の」1限がたとえば4・00℃であるならば、14
.00%以上の延伸が生じていること等が推測できる。
What can be seen from Matsu 15 is that under a dynamic tension of 1'0 (1), for example, a tetrafluoroethylene resin molded product containing liquid lubricant is placed in a furnace as shown in Figure 1. In Figure 1, there is almost no stretching between A and B, and between B and C, when the 0 point is about 250°C, stretching of less than about 1oo96 occurs, and between C and D. 3
Since the temperature is raised to about 50°C, it will be stretched to 800%, and at the same time as firing occurs from D to E, if the first limit of the furnace setting temperature is, for example, 4.00°C, then 14
.. It can be inferred that stretching of 00% or more has occurred.

勿論通常は炉の上下において延伸率を先に決定するので
、その値に応じて動的張力が変わり、その結果、各温度
毎で発生する延伸率の割合もまた変わってくる。
Of course, since the stretching ratio is usually determined first in the upper and lower parts of the furnace, the dynamic tension changes depending on that value, and as a result, the ratio of the stretching ratio that occurs at each temperature also changes.

しかしながら幾つかの実験を繰り返す中で、図2の38
0℃の吸熱ピークを超える炉温度をたとえば4・00℃
に設定したところ。得られた四弗化エチレン樹脂多孔質
体の機械強度、特に室温にて測定した時のヤング率とマ
トリックス没、強度が急に大きくなることを見い出した
However, while repeating several experiments, we found that 38 in Figure 2
If the furnace temperature exceeds the endothermic peak of 0℃, for example, 4.00℃
I set it to . It was found that the mechanical strength of the obtained porous tetrafluoroethylene resin material, especially Young's modulus, matrix decay, and strength suddenly increased when measured at room temperature.

即ち、380℃以下の炉設定温度ではヤング率10.0
00 K97cm”以上、及びマトリックス強度1,1
00に9/cm2以上の両方を満足することができない
が、890℃以上の炉設定温度とすることによって、こ
の両方が満足され、室温においても取扱い易すい腰のあ
る四弗化エチレン樹脂多孔質体が得られるようになった
In other words, Young's modulus is 10.0 at a furnace temperature of 380°C or lower.
00 K97cm” or more, and matrix strength 1.1
However, by setting the furnace temperature to 890°C or higher, both of these requirements can be satisfied, and the porous tetrafluoride ethylene resin is easy to handle even at room temperature. Now I can get a body.

また液体潤滑剤を除いた四弗化エチレン樹脂成彫物を炉
内に供給した時にも、このヤング率10,000 K9
/鎖2以上及びマトリックス強度1,100に97cm
”以上の両方をi+:+f足できないことを確めた。
Furthermore, when a tetrafluoroethylene resin molding without liquid lubricant was supplied into the furnace, the Young's modulus was 10,000 K9.
/97cm for 2 or more chains and matrix strength 1,100
``I have confirmed that it is not possible to add both of the above to i+:+f.

本発明の製造方法の物理的背景については、j−1不明
であるが、380℃の吸熱ピーク以上の高温に昇温する
速度、及び昇温後の冷却速度に関係しているものと予想
される。
Regarding the physical background of the production method of the present invention, j-1 is unknown, but it is expected to be related to the rate of temperature increase to a high temperature higher than the endothermic peak of 380°C and the cooling rate after temperature increase. Ru.

本発明の製造法は、成形品の形状がフィルム、チューブ
あるいはロンドでもいずれも好適に実施できる。
The manufacturing method of the present invention can be suitably carried out regardless of whether the molded product has a film, tube or rond shape.

また四弗化エチレン樹脂と混和される液体潤滑剤は、従
来からペースト押出法で用いられている樹脂表面を濡ら
す事が出来、樹脂の分解温度以下で蒸発できるものであ
れば使用出来るが、成形品からの蒸発が容易に行なわれ
る260°C以下の沸点範囲を有する溶剤がより好適に
利用できる。石油系炭化水素溶剤が取り扱いの容易き、
価格などから一般に利用される。
In addition, liquid lubricants that are mixed with tetrafluoroethylene resin can be used as long as they can wet the resin surface and evaporate below the decomposition temperature of the resin, which is conventionally used in the paste extrusion method. A solvent having a boiling point range of 260° C. or less, which can be easily evaporated from the product, is more preferably used. Petroleum-based hydrocarbon solvent is easy to handle,
It is commonly used due to its price.

本発明が実施される雰囲気温度は、390℃以上が必要
である。四弗化エチレン樹脂の結晶融点は34.7°C
であるが、高いヤング率とマトリックス強度の両方を満
足するには、更に高い結晶融点である380’(:を超
える必要がある。
The ambient temperature in which the present invention is carried out needs to be 390°C or higher. The crystalline melting point of tetrafluoroethylene resin is 34.7°C
However, in order to satisfy both a high Young's modulus and matrix strength, it is necessary to have an even higher crystal melting point of 380' (:).

一方、雰囲気温度は樹脂の昇温速度に影響を与える。即
ち雰囲気温度を上げていくとより早い速度で、液体潤滑
剤の蒸発除去、延伸、焼成の同時処理が可能となる。そ
して雰囲気温度が450’C以上でも更に500°C以
上でもその炉内温度分布を30℃以下で制御すれば本発
明の実施は可能であり、更に両方の強度を大巾に上げる
ことが出きることを確認した。炉内の温度分布は雰囲気
温度が高いほどより精度が必要となる。精度の高い温度
制御は、樹脂の均質高速な昇温と冷却を可能にする。
On the other hand, the ambient temperature affects the rate of temperature rise of the resin. That is, as the ambient temperature is raised, it becomes possible to simultaneously perform evaporation removal of the liquid lubricant, stretching, and firing at a faster rate. Even if the ambient temperature is above 450'C or even above 500°C, the present invention can be carried out by controlling the temperature distribution in the furnace to below 30°C, and the strength of both can be greatly increased. It was confirmed. The higher the ambient temperature, the more accurate the temperature distribution within the furnace is required. Highly accurate temperature control enables homogeneous and rapid heating and cooling of resin.

精度が低いと結晶の融触と再結晶にバラツキが生じ、処
理中に樹脂分解等による破断を起しやす(、また多孔質
体物性のバラツキの原因となる。この様な高精度の温度
制御を高い温度雰囲気で実現する加熱手段としては加熱
空気を高速で循環させることによりその炉内温度分布を
均質化できる熱風循環炉が最適であることがわかった。
If the precision is low, there will be variations in the melting and recrystallization of the crystals, which will easily cause breakage due to resin decomposition during processing (and cause variations in the physical properties of porous materials.Such high-precision temperature control It has been found that a hot air circulation furnace is the most suitable heating means for achieving this in a high temperature atmosphere, as it can homogenize the temperature distribution within the furnace by circulating heated air at high speed.

更にこの炉に蒸発する11ダ体潤滑剤の酸化を促進する
触媒を組みこむことが、炉内の溶剤濃度を下げて爆発限
界以下を維持し、またその燃焼による熱エネルギーを有
効利用することになるので本発明の実施に必要’lx、
エネルギーコストを太rlJに下げうろことを見い出し
た。この時循環風速は早いほど炉内の温度分布精度を高
めるため、望ましくは使用温度雰囲気テ5 ” /秒以
」二カ必要であり、1o 〜4. Ottr /秒程度
の風速がIα適となるが、成型品の形状に応じて変える
必要がある。次に本発明の実施が好適に行なえる装置に
ついて説明する。
Furthermore, incorporating a catalyst that promotes the oxidation of the evaporating lubricant into this furnace lowers the concentration of solvent in the furnace, keeping it below the explosion limit, and making effective use of the thermal energy from its combustion. Therefore, it is necessary to carry out the present invention.
We have found a way to reduce energy costs to a low level. At this time, the faster the circulating air speed, the more accurate the temperature distribution within the furnace will be. Therefore, it is desirable that the working temperature atmosphere should be 5"/sec or more, and should be 1 to 4. A wind speed of about Ottr/sec is suitable for Iα, but it needs to be changed depending on the shape of the molded product. Next, an apparatus that can suitably carry out the present invention will be described.

基本的構造は図6に示すとおりである。即ち加熱手段と
、処理する成形品を送りおよび巻取る手段から成る。加
熱手段は既に述べた様に熱風循環方式にする。このため
成形品が通過する内筒部分(4)とヒーターが組み込ま
れた外筒部分(5)の二重構造になる。この二つの部分
は連絡しており、炉内加熱空気はファン(7)により一
定流速で循環される。
The basic structure is as shown in FIG. It consists of heating means and means for feeding and winding up the molded product to be treated. The heating means is of the hot air circulation type as already mentioned. Therefore, it has a double structure consisting of an inner cylinder part (4) through which the molded product passes and an outer cylinder part (5) in which the heater is installed. These two parts are in communication, and the heated air in the furnace is circulated at a constant flow rate by a fan (7).

炉内温度は内筒部分を中心に設置した熱電対(8)等に
より検出し、ヒーターにフィード・バックさせて温度制
御を行なう。炉内温度は流速や液体潤滑剤の燃焼発熱量
の他に、炉入口および出口からの外気の流入量も関係す
る。
The temperature inside the furnace is detected by a thermocouple (8) installed around the inner cylinder, and the temperature is controlled by feeding it back to the heater. The temperature inside the furnace is related not only to the flow rate and the amount of heat generated by combustion of the liquid lubricant, but also to the amount of outside air flowing in from the furnace inlet and outlet.

炉入口および出口には、室内圧力が調整できるプレッシ
ャーボックス(2)や長さを調整できるノズルu])等
を設置し、外気の流入量がコントロールできる機構にす
る。又外気の流入と共に炉内加熱空気の1部は、排気管
叫により強制排気され、炉内の燃焼に必要な酸素濃度を
保つ様にする。
A pressure box (2) that can adjust the indoor pressure and a nozzle (u) that can adjust its length are installed at the furnace inlet and outlet to create a mechanism that can control the amount of outside air flowing in. In addition, as outside air flows in, a portion of the heated air inside the furnace is forcibly exhausted through the exhaust pipe to maintain the oxygen concentration necessary for combustion inside the furnace.

又加熱空気が循環する所の1ケ所以上に触媒を設ける。A catalyst is also provided at one or more locations where the heated air circulates.

白金族系触媒は最もすぐれた酸化能力を持つ触媒の1つ
であり、本目的に好適に利用される。
A platinum group catalyst is one of the catalysts with the best oxidation ability and is preferably used for this purpose.

次に成形品の送りおよび巻取手段について述べる。基本
的に延伸操作が入るため巻取部分は送り部分より大きい
速度で駆動できる必要がある。またその形は、成形品が
例えばフィルムの場合、ロールが適しており、チューブ
やロンドの場合はその外径に合わせた溝を設けた1対の
キヤプスタンが有用である。この他、適宜ガイドロール
、サプライスクンド、巻取機、あるいは各種検出器等が
配置されることになる。
Next, the means for feeding and winding up the molded product will be described. Basically, since a stretching operation is involved, the winding section needs to be able to be driven at a higher speed than the feeding section. In addition, when the molded product is a film, for example, a roll is suitable, and in the case of a tube or a rond, a pair of capstans provided with a groove that matches the outer diameter of the molded product is useful. In addition, guide rolls, supply scunds, winders, various detectors, etc. will be arranged as appropriate.

(実施例1) 四弗化エチレン樹脂ファインパウダーF104・(ダイ
キン工業社製)100重量部に液体潤滑剤ナフサA5(
シェル石油社製、沸点範囲152〜197’c)25重
量部の割合で配合・混合し、予備成形後、ラム押出機で
外径3程、内径2鑞のチューブを押出成形した。次に該
成形品を液体潤滑剤を含んだまま図6に記載した装置を
用いて表−1に示す如く、炉内1LiL度350’Cか
ら520℃の範囲で液体潤滑剤の除去、延伸、焼成の同
時処理を行なった。
(Example 1) Liquid lubricant Naphtha A5 (
(manufactured by Shell Oil Co., Ltd., boiling point range: 152-197'c) was blended and mixed at a ratio of 25 parts by weight, and after preforming, a tube with an outer diameter of about 3 and an inner diameter of 2 was extruded using a ram extruder. Next, using the apparatus shown in FIG. 6 with the liquid lubricant still contained in the molded product, the liquid lubricant was removed, stretched, and Simultaneous firing was performed.

その結果いずれの場合も均質な多孔質チューブが得られ
た。液体潤滑剤は完全に蒸発除去されており、アセトン
によりデユープの抽出残量(デユープをア七l・ン中で
2時間還流抽出し、その抽出前後の重量変化を読む)を
1llII定した所、いずれも(1,1重量%以下であ
った。
As a result, homogeneous porous tubes were obtained in all cases. The liquid lubricant has been completely removed by evaporation, and the remaining amount of dupe extracted with acetone (extract dupe under reflux for 2 hours in an acetone and read the weight change before and after extraction) is determined to be 1llII. In both cases, the content was 1.1% by weight or less.

又表−2に得られた多孔質チューブの物性をまとめてい
るが、390’C,の炉内温度以上を用いたチューブの
強度特性はマトリックス強度がl100KF/α2とな
り、同時にヤング率も10,0OOK)/(1)2以上
となる。一方360°Cの雰囲気温度を用いるとマトリ
ックス強度またはヤング率の少なくとも一つの値が上記
の限界以下になってしまう。
In addition, Table 2 summarizes the physical properties of the porous tube obtained, and the strength characteristics of the tube using the furnace temperature of 390'C or higher are that the matrix strength is 1100KF/α2, and at the same time, the Young's modulus is 10, 0OOK)/(1)2 or more. On the other hand, if an ambient temperature of 360° C. is used, at least one value of matrix strength or Young's modulus will be below the above-mentioned limit.

表−2実4つ↓より得られた多孔質チューブの特性・次
の計算式に従い算出 2.2 FM == Fn X□ R FM; マトリックス強度 K9/m1lL”Flti
 多孔性試料の実際の引張強度に9/#1M”an ;
 多孔性試料の見掛は比重 実施例2゜ 四弗化エチレン樹脂ファインパウダーF104100重
量部に液体潤滑剤ナフサ!5を26重量部の割合で配合
・混合し、予備成形後、ラム押出機で外径25門のビー
ド状成形品を押出し、次いでロール圧延機にかけ、I’
ll 650 am、厚さ0,25ruLのフィルムを
得た。次に該フィルムを液体潤滑剤を含んだまま、図に
記載した熱風循環炉とフィルムに適したサプライスタン
ド、ガイドロール巻取機を備えた装置により表−8に示
す条件で液体潤滑剤の除去、延伸、焼成の同時処理を行
なつガ。得られた多孔質フィルムの特性を表−4・に示
す。いずれも高い強度と十分な通気性を有するフィルム
が得られていることがわかる。
Characteristics of porous tube obtained from Table 2 4 pieces ↓ Calculated according to the following formula 2.2 FM == Fn
The actual tensile strength of the porous sample is 9/#1M”an;
The apparent specific gravity of the porous sample is Example 2゜Tetrafluoroethylene resin fine powder F104 100 parts by weight plus liquid lubricant naphtha! 5 in a ratio of 26 parts by weight, and after preforming, a bead-shaped molded product with an outer diameter of 25 gates was extruded using a ram extruder, and then passed through a roll mill to form I'
A film of 1 650 am and a thickness of 0.25 ruL was obtained. Next, while the film still contains the liquid lubricant, the liquid lubricant is removed under the conditions shown in Table 8 using a device equipped with the hot air circulation oven shown in the figure, a supply stand suitable for the film, and a guide roll winder. , stretching and firing at the same time. The properties of the obtained porous film are shown in Table 4. It can be seen that in all cases, films with high strength and sufficient air permeability were obtained.

表−4゜ (発明の効果) 従来四弗化エチレン樹脂多孔質体を製造する時、ベース
ト法で成形した液体潤滑剤を含む未焼成成形品から多孔
質体を得るために液体潤滑剤の除去、延伸、焼成という
3つの独立した工程を通る必要があったが、本発明によ
りこれら3つの工程が同時に行なえることになり、加工
設備、加工時間、エネルギーコスト、いずれも大巾な短
縮が可能となり省エネルギー、省人化に寄与する所が太
きい。
Table 4゜ (Effects of the invention) When conventionally producing a porous tetrafluoroethylene resin body, liquid lubricant was removed in order to obtain a porous body from an unfired molded article containing liquid lubricant molded by the base method. However, with the present invention, these three steps can be performed simultaneously, making it possible to significantly reduce processing equipment, processing time, and energy costs. This greatly contributes to energy and labor savings.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は炉内での昇温過程を示す模式図、図2は結晶融点
近傍における示差熱スペクトル、図3は炉内での延伸張
力を測定する模式図、図4・はその張力の測定結果、図
5は一定の張力下で生じている四弗化エチレン樹脂の温
度と延伸率の関係、図6は、本発明の方法を実施するに
用いる装置である。 図1において、Toは炉設定温度、TIは結晶融点であ
り、図3において(イ)炉体、(イ)供給成形品、(ハ
)張力測定計、(ハ)ガイドシーブであり、図5におい
て、FDは動的張力であり、また図6にあ・いて、(1
)送りキャプスタン、(2)プレッシャーボックス、(
3)炉体、(4)内筒部分、(5)外筒部分、(6)触
媒、(7)ファン、(8)熱電対、(9)ヒーター、(
10排気管、0ωノズル、μs巻取キャプスタン、αJ
サプライスタンド、(縛巻取機、である。 図1 図2 図3 図4 図5
Figure 1 is a schematic diagram showing the temperature rising process in the furnace, Figure 2 is a differential thermal spectrum near the crystal melting point, Figure 3 is a schematic diagram showing the measurement of stretching tension in the furnace, and Figure 4 is the measurement result of the tension. , FIG. 5 shows the relationship between temperature and stretching ratio of tetrafluoroethylene resin under constant tension, and FIG. 6 shows an apparatus used to carry out the method of the present invention. In FIG. 1, To is the furnace setting temperature, TI is the crystal melting point, and in FIG. In, FD is the dynamic tension, and in Fig. 6, (1
) feed capstan, (2) pressure box, (
3) Furnace body, (4) Inner cylinder part, (5) Outer cylinder part, (6) Catalyst, (7) Fan, (8) Thermocouple, (9) Heater, (
10 exhaust pipe, 0ω nozzle, μs winding capstan, αJ
Supply stand (tie winder) Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】 (1)液体潤滑剤を含む未焼成の四弗化エチレン樹脂混
和物を押出または圧延または両者を含む方法にて成形し
た後、390 ’C以上の雰囲気温度にて、a)液体潤
滑剤の蒸発除去 b)未焼成状態での延伸 C)延伸された状態での焼成 d)焼成状態での延伸 の4・工程を同時に行うことにより、ヤング率10.0
00 Ky/cm2マトリックス強度1,100 K9
7cm2 以上の機械強度を有することを特徴とする四
弗化エチレン樹脂多孔質体の製造方法。 (2)液体潤滑剤の蒸発除去、未焼成状態での延伸、延
伸された状態での焼成、焼成状態での延伸の4工程を同
時に行う雰囲気温度の制御を風速5 m /した液体潤
滑剤を酸化触媒により燃焼することを特徴とする特許請
求の範囲第(1)項記載の四弗化エチレン樹脂多孔質体
の製造方法。 (3)液体潤滑剤委含む未焼成の四弗化エチレン樹脂混
和物を押出または圧延または両者を含む方法にて成形し
た成形品の形状が、フィルム状、チューブ状、ロッド状
のいずれかであることを特徴とする特許請求の範囲第(
1)項記載の四弗化エチレン樹脂多孔質体の製造方法。 (4)液体潤滑剤の沸点範囲が260゛C以下であるこ
とを特徴とする特許請求の範囲第(1)項記載の四弗化
エチレン樹脂多孔質体の製造方法。 、枦1 4 (5) /&体温潤滑剤蒸発除去、未焼成状態での
延伸、延伸された状態での焼成、焼成状態での延伸の4
工程を同時に行う雰囲気温度が4.50 ’C以上であ
り炉内温度分布が80゛C以下であることを特徴とする
特許請求の範囲第(1)項記載の四弗化エチレン樹脂多
孔質体の製造方法。 (6)液体潤滑剤の蒸発除去、未焼成状態での延伸、工
程を同時に行う雰囲気温度が500℃以上であり炉内温
度分布が30℃以下であることを特徴とする特許請求の
範囲第(1)項記載の四弗化エチレン樹脂多孔質体の製
造方法。 (7)液体潤滑剤を含む未焼成の四弗化エチレン樹脂成
形品を390℃以上の雰囲気温度にて液体潤滑剤の蒸発
除去、未焼成状態での延伸、延伸された状態での焼成、
焼成状態での延伸の4工程を同時に行い、四弗化エチレ
ン樹脂多孔質体を製造させるための装置において、その
加熱炉は、成形品が通過する内筒部品とヒーターが組み
込まれた外筒部分の二重構造より成り、この二つの部分
は両端部で連結しており、この中の雰囲気を循環させる
手段、雰囲気温度を検出し、ヒーターの発熱を調整する
手段、炉入口および出口での外気の流入を調整する手段
、炉内雰囲気の一部を強制排気する手段、および液体潤
滑剤の酸化を進める触媒より構成される熱風循環炉であ
り、これに成形品を炉内に送り込む手段とそれ以上の速
度を有する巻取手段が配置されていることより成る四弗
化エチレン樹脂多孔質体の製造装置。
[Scope of Claims] (1) After molding an unfired tetrafluoroethylene resin mixture containing a liquid lubricant by extrusion, rolling, or a method including both, a. ) Evaporation removal of the liquid lubricant b) Stretching in the unfired state C) Firing in the stretched state d) Stretching in the fired state By performing the 4 steps simultaneously, the Young's modulus is 10.0.
00 Ky/cm2 Matrix strength 1,100 K9
A method for producing a porous tetrafluoroethylene resin material having a mechanical strength of 7 cm2 or more. (2) The liquid lubricant was subjected to the four steps of evaporation removal of the liquid lubricant, stretching in the unfired state, firing in the stretched state, and stretching in the fired state at a controlled atmospheric temperature at a wind speed of 5 m/min. A method for producing a porous tetrafluoroethylene resin material according to claim (1), wherein the porous material is combusted using an oxidation catalyst. (3) The shape of the molded product formed by extrusion or rolling, or a method including both, of an unfired tetrafluoroethylene resin mixture containing a liquid lubricant is either film-like, tube-like, or rod-like. Claim No. 1 characterized in that (
1) A method for producing a porous tetrafluoroethylene resin body as described in item 1). (4) The method for producing a porous tetrafluoroethylene resin material according to claim (1), wherein the liquid lubricant has a boiling point range of 260°C or less. , 枦1 4 (5) /& Body temperature lubricant evaporation removal, stretching in unfired state, firing in stretched state, stretching in fired state 4
The tetrafluoroethylene resin porous body according to claim (1), wherein the atmospheric temperature in which the steps are simultaneously performed is 4.50°C or higher, and the temperature distribution in the furnace is 80°C or lower. manufacturing method. (6) The atmosphere temperature in which the evaporation removal of the liquid lubricant, the stretching in the unfired state, and the process are performed simultaneously is 500°C or higher, and the temperature distribution in the furnace is 30°C or lower. 1) A method for producing a porous tetrafluoroethylene resin body as described in item 1). (7) Evaporating and removing the liquid lubricant from an unfired tetrafluoroethylene resin molded product containing a liquid lubricant at an ambient temperature of 390°C or higher, stretching the unfired state, and firing the stretched state;
In an apparatus for manufacturing a porous polytetrafluoroethylene resin body by simultaneously performing four steps of stretching in a fired state, the heating furnace consists of an inner cylinder part through which the molded product passes and an outer cylinder part in which a heater is installed. The two parts are connected at both ends, and there is a means for circulating the atmosphere, a means for detecting the atmosphere temperature and adjusting the heat generation of the heater, and a means for controlling the outside air at the furnace inlet and outlet. A hot air circulation furnace consists of a means for adjusting the inflow of liquid, a means for forcibly exhausting part of the furnace atmosphere, and a catalyst for oxidizing liquid lubricant. 1. An apparatus for producing a porous tetrafluoroethylene resin body, comprising a winding means having a speed as high as 1000.degree.
JP4327084A 1984-03-06 1984-03-06 Method and apparatus for preparing porous body made of tetrafluoroethylene resin Pending JPS60187536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4327084A JPS60187536A (en) 1984-03-06 1984-03-06 Method and apparatus for preparing porous body made of tetrafluoroethylene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4327084A JPS60187536A (en) 1984-03-06 1984-03-06 Method and apparatus for preparing porous body made of tetrafluoroethylene resin

Publications (1)

Publication Number Publication Date
JPS60187536A true JPS60187536A (en) 1985-09-25

Family

ID=12659133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4327084A Pending JPS60187536A (en) 1984-03-06 1984-03-06 Method and apparatus for preparing porous body made of tetrafluoroethylene resin

Country Status (1)

Country Link
JP (1) JPS60187536A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102324A (en) * 1980-12-16 1982-06-25 Nitto Electric Ind Co Ltd Production of porous body of polytetrafluoroethylene
JPS6341938A (en) * 1986-08-07 1988-02-23 Sanyo Electric Co Ltd Microcomputer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102324A (en) * 1980-12-16 1982-06-25 Nitto Electric Ind Co Ltd Production of porous body of polytetrafluoroethylene
JPS6341938A (en) * 1986-08-07 1988-02-23 Sanyo Electric Co Ltd Microcomputer

Similar Documents

Publication Publication Date Title
JPS59109534A (en) Porous polytetrafluoroethylene object
JP4094056B2 (en) Method for producing porous fluoropolymer film
Warner et al. Oxidative stabilization of acrylic fibres: Part 1 Oxygen uptake and general model
US2702408A (en) Extrusion of thermoplastic materials
JPH0472845B2 (en)
JP5656185B2 (en) Method for producing flame-resistant acrylonitrile polymer
CA2968266C (en) Continuous carbonization process and system for producing carbon fibers
US4671754A (en) Apparatus for manufacturing porous polytetrafluoroethylene material
JP3996473B2 (en) Method and apparatus for producing polytetrafluoroethylene porous membrane
EP0155337B1 (en) Method and apparatus for manufacturing porous polytetrafluoroethylene material
JPS60187536A (en) Method and apparatus for preparing porous body made of tetrafluoroethylene resin
Warner et al. Oxidative stabilization of acrylic fibres: Part 2 Stabilization dynamics
CN111645308A (en) Preparation method of high-uniformity expanded PTFE (Polytetrafluoroethylene) membrane
US5306415A (en) Oxygenated pitch and processing same
JPS6341938B2 (en)
CA1254707A (en) Method and apparatus for manufacturing porous polytetrafluoroethylene material
JP3221074B2 (en) Method for producing continuous molded article of high crystallinity polytetrafluoroethylene
EP0515387A1 (en) A process for manufacture of low density polytetrofluoroethylene insulated cable.
JPS58119834A (en) Manufacture of porous polytetrafluoroethylene film
EP0132147A1 (en) Manufacture of insulated wires and cables
RU2170745C2 (en) Method of hardening composite material
CN100519149C (en) Biaxial drawing micro-porous teflon film manufacturing method
EP3597801A1 (en) Method for manufacturing acrylonitrile based fiber bundle and method for manufacturing carbon fiber bundle
KR20070040585A (en) Manufacturing method of uniaxially drawn porous polytetrafluoroethylene membrane
JPS59126438A (en) Preparation of porous material of tetrafluoroethylene resin