JPS60187475A - Welding robot - Google Patents

Welding robot

Info

Publication number
JPS60187475A
JPS60187475A JP4139184A JP4139184A JPS60187475A JP S60187475 A JPS60187475 A JP S60187475A JP 4139184 A JP4139184 A JP 4139184A JP 4139184 A JP4139184 A JP 4139184A JP S60187475 A JPS60187475 A JP S60187475A
Authority
JP
Japan
Prior art keywords
welding
robot
torch
vector
teaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4139184A
Other languages
Japanese (ja)
Inventor
Shuzo Takebayashi
竹林 修三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4139184A priority Critical patent/JPS60187475A/en
Publication of JPS60187475A publication Critical patent/JPS60187475A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To provide a titled robot which performs satisfactory multi-layer welding in conformity with the direction of works in teaching playback welding of automatic multi-layer welding by calculating the direction of a torch and weld line direction by two-point teaching and recognizing the direction of the works from the result of the calculation and the conversion of the torch angle. CONSTITUTION:A weld line vector 13 is determined by a welding start point 11 and end point 12. A torch vector 14 perpendicular to a weld line 13 and a vector 15 perpendicular thereto are determined and a torch angle 16 is calculated. The vectors 14, 15 and the vector 13 are converted to axes and the vectors 17, 18 in the plane direction of works 2 is calculated. These vectors are converted and stored by the functional equation of a robot control device to the X-Y-Z vectors of the robot. If the welding torch is subjected to teaching of multi-layer welding along the weld line 13, the exact automatic multi-layer teaching playback robot welding is executed irrespectively of the attitude direction of the works.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は溶接ロボットの改良に関し、さらに詳しくは
与えられた教示データから、ワークの向き、つまυワー
ク座標系を算出し、算出されたワーク座標系に合せて多
層溶接が行なえる溶接ロボットに関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to the improvement of welding robots, and more specifically, calculates the orientation of a workpiece and the workpiece coordinate system from given teaching data, and calculates the calculated workpiece coordinates. This invention relates to a welding robot that can perform multilayer welding depending on the system.

〔従来技術〕[Prior art]

従来、この種のロボットとワークとは第1図の様に配置
されていた。第1図において、(1)は多層盛機能付ア
ーク溶接ロボット本体、(2)は溶接されるワーク、(
3)は溶接トーチ、(4)〜(9)は溶接ロボット(1
)によって肉盛りされた多層溶接部、即ち溶接肉盛であ
る。そして、第1図に示すように溶接ロボット(1)と
ワーク(2)は両者井水平面上に据付けられている。又
、α1は演算処理装置、メモリなどを有し、溶接ロボッ
ト本体(1)を制御する制御装置である。
Conventionally, this type of robot and workpiece were arranged as shown in Figure 1. In Fig. 1, (1) is the arc welding robot body with multilayer welding function, (2) is the workpiece to be welded, (
3) is a welding torch, (4) to (9) are welding robots (1
) is a multilayer weld that is built up by a weld build-up. As shown in FIG. 1, the welding robot (1) and the workpiece (2) are both installed on a horizontal plane. Further, α1 is a control device that includes an arithmetic processing unit, memory, etc., and controls the welding robot main body (1).

次に動作について説明する。溶接ロボット(1)には予
め溶接線が教示されておシ、自動溶接を開始すると、ま
ず溶接肉盛(4)の位置に溶接トーチ(3)を位置決め
し、第1層の溶接肉盛(4)を行なう。溶接肉盛(4)
が完了すると、溶接ロボット(1)は溶接トーチ(3)
を溶接肉盛(5)の位置に移動させ、第2層1パス目(
5)の溶接を行なう。この際、(4)から(5)への移
動量は制御盤aQ内へ記憶されている。同様の動作を溶
接肉盛(9)まで繰シ返し、全溶接を完了する。
Next, the operation will be explained. The welding robot (1) is taught the welding line in advance, and when it starts automatic welding, it first positions the welding torch (3) at the position of the weld overlay (4) and welds the weld overlay (4) of the first layer. Do 4). Weld overlay (4)
Once completed, the welding robot (1) will move the welding torch (3)
Move to the weld overlay (5) position, and perform the first pass of the second layer (
Perform welding in step 5). At this time, the amount of movement from (4) to (5) is stored in the control panel aQ. The same operation is repeated up to weld overlay (9) to complete all welding.

所で、上記従来の溶接ロボットは第2図の様に、ワーク
(2)が水平面でなく傾けて置かれている場合も、ロボ
ットは上記同様、第1図(4)、(5)・・・(9)位
置へと溶接トーチ(3)を移動させる為、結果として第
2図に示す(4a)〜(9a)の様な溶接となるばかシ
か、溶接トーチ(3)がワーク(2)と干渉することも
予想される。
By the way, as shown in Fig. 2, the conventional welding robot described above operates in the same way as shown in Figs. 1 (4), (5), etc. even when the workpiece (2) is placed not on a horizontal surface but at an angle.・Since the welding torch (3) is moved to the (9) position, the result will be welding as shown in (4a) to (9a) in Fig. 2. Either the welding torch (3) is moved to the workpiece (2) ) may also be expected to interfere.

従来のアーク溶接ロボットは以上の様な性質のものであ
る為、多層溶接を行なう場合、ワークの向きを限定しな
ければならないという欠点があった。
Conventional arc welding robots have the above-mentioned characteristics, and therefore have the disadvantage that the orientation of the workpiece must be limited when performing multilayer welding.

〔発明の概要〕[Summary of the invention]

この発明は上記の様な従来のものの欠点を除去する為に
なされたもので、演算処理装置によシ与えられた教示デ
ータから、ワークの向き、つまりワーク座標系を算出し
、算出されたワーク座標系に合せて多層溶接が行なえる
溶接ロボットを提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above.The invention calculates the orientation of the workpiece, that is, the workpiece coordinate system, from the teaching data given to the arithmetic processing unit, and The purpose is to provide a welding robot that can perform multilayer welding according to the coordinate system.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第3図において、(2)はワーク、(3)はけ第1図同
様、ロボットアーム先端に取シ付けられた溶接トーチ、
0])は溶接をスタートするポイント、すなわち教示ポ
イント1、(2)は溶接完了ポイント、すなわち教示ポ
イント2、α埠は教示ポイントデータよシ算出される溶
接線ベクトル、04は溶接線ベクトル(至)同様に算出
されるトーチベクトル、(ト)は溶接線ベクトル0→ト
ーチベクトル04両者と直交するベクトルである。また
OQは溶接トーチ角度である。
In Figure 3, (2) is a workpiece, (3) a brush, as in Figure 1, a welding torch attached to the tip of the robot arm;
0]) is the point at which welding starts, that is, teaching point 1, (2) is the welding completion point, that is, teaching point 2, α is the welding line vector calculated from the teaching point data, and 04 is the welding line vector (towards ) The similarly calculated torch vector (g) is a vector orthogonal to the welding line vector 0→torch vector 04. Further, OQ is the welding torch angle.

ロボット本体(1)及び制御装置00は従来同様である
The robot body (1) and the control device 00 are the same as the conventional robot.

なお、制御装置(10は図示を省略しである。Note that the control device (10 is not shown).

次に動作について説明する。溶接トーチ(3)の先端を
ポイントα■に位置決めし、この位置をロボットに教示
すると、制御装置内の演算処理装置でトーチベクトルα
→を算出する。次にポイント(6)を教示すると、溶接
線ベクトル(6)が算出され、ベクトル<11とベクト
ルα◆のベクトル外積によりベクトル(11を算出する
。実際のワーク座標系は(90°−トーチ角α→)回転
させたベクトルαη、0→となるのでベクトルα→、(
ト)をベクトルα→軸回υに回転させた時の座標変換式
によシベクトルαη% 0→を算出し、αηを2軸、0
呻をy軸、0→をy軸と定義し、ワーク座標系とする。
Next, the operation will be explained. When the tip of the welding torch (3) is positioned at point α and this position is taught to the robot, the arithmetic processing unit in the control device calculates the torch vector α.
→ Calculate. Next, when point (6) is taught, weld line vector (6) is calculated, and vector (11) is calculated by the vector cross product of vector < 11 and vector α◆.The actual workpiece coordinate system is (90° - torch angle α→) The rotated vector αη becomes 0→, so the vector α→, (
Calculate the vector αη% 0→ by the coordinate transformation formula when rotating the vector α→axis rotation υ,
Define moan as the y-axis and 0→ as the y-axis to form the work coordinate system.

次に、ロボットが持っているロボット座標系を(X、Y
、Z)とし、ワーク座標系・1 y、ン)のロボット座
標系(x、y、z)に対する方向余弦が で表わされるものとすると、各層各パスにおけるトーチ
(3)の狙い位置のワーク座標(χBHVB+ 夛8)
とロボット座標(Xs 、 Ys 、 Z s )との
関係は、下表で表わされる。
Next, define the robot coordinate system that the robot has (X, Y
. (χBHVB+ 夛8)
The relationship between the robot coordinates (Xs, Ys, Zs) is shown in the table below.

ここで、x、、 y、 、 z、は教示ポイント1αη
のロボット座標、x−、y−、ze は溶接開始点、す
なわち教示ポイント1α■でのトーチ(3)の狙い位置
でらる。
Here, x, y, , z are teaching points 1αη
The robot coordinates x-, y-, ze are obtained at the welding starting point, that is, the aiming position of the torch (3) at the teaching point 1α■.

一部、ワーク(2)の多層溶接部の各層各パス間のトー
チの移動量のデータは、ワーク座標系で制御装置α1内
に記憶されておシ、このデータを上記座標変換式によシ
ロボット座標系に変換することよシ、ワーク(2)の向
きに応じたロボットの動作方向と量がめられる。したが
って、あらゆる方向のワークに対して、ロボットの多層
溶接が可能となる0 なお、上記ベクトルの算出、座標変換の演算などは、あ
らかじめ記憶させたプログラムに従い制御装置C1O内
の演算処理装置によって行なわれる。
Part of the data on the amount of torch movement between each layer and each pass of the multi-layer welded part of the workpiece (2) is stored in the control device α1 in the workpiece coordinate system, and this data is converted into the above coordinate transformation formula. By converting to the robot coordinate system, the direction and amount of movement of the robot can be determined according to the orientation of the workpiece (2). Therefore, multi-layer welding by the robot is possible for workpieces in all directions. Note that the above vector calculations, coordinate transformation calculations, etc. are performed by the arithmetic processing unit in the control device C1O according to a pre-stored program. .

また、上記実施例は、隅肉溶接について述べたが、L形
、V形、J形、U形開先の溶接に実施にも一同様の効果
を奏する。
Further, although the above embodiments have been described with respect to fillet welding, the same effect can be obtained when welding L-shaped, V-shaped, J-shaped, and U-shaped grooves.

第4図はV開先の実施例を示し、(2a)はワーク、(
3)は溶接トーチ、なお、ロボットの図示は省略しであ
る。
Figure 4 shows an example of a V-groove, where (2a) is a workpiece, (
3) is a welding torch, and the robot is not shown.

〔発明の効果〕〔Effect of the invention〕

以上の様に、この発明によれば、溶接トーチの向きと溶
接線方向によシワーク座標を認知するようにしだので、
ワークが傾いて置かれても均一品質の多層溶接ができる
。さらに、ハードウェアに手を加えることが全く不敬で
メジ容易に機能追加ができる。また教示方法も従来と同
様で良いという大きな利点がある。
As described above, according to the present invention, the workpiece coordinates are recognized depending on the direction of the welding torch and the direction of the welding line.
Multi-layer welding with uniform quality is possible even if the workpiece is placed at an angle. Furthermore, it is completely disrespectful to modify the hardware, and functions can be added very easily. Another great advantage is that the teaching method can be the same as the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の溶接ロボットとワークの配置を示す一面
図、第2図は、第1図に示す従来の溶接ロボットにおい
てワークが傾いた場合の溶接状態を示す側面図、第6図
はこの発明の一実施例を示す斜視図、第4図は°この発
明の他の実施例を示す斜視図である。 図中、(1)はロボット本体、(2)、(2a[ワーク
、(3)は溶接トーチ、(4)〜(9)、(4a)〜(
9a)は溶接肉盛、(11はロボット制御装置、α■は
教示点1、(ハ)は教示点2、(2)は溶接線ベクトル
(y軸)、α→はトーチベクトル、(2)は直交ベクト
ル、αQはトーチ角、CLηはy軸、α樽はy軸でおる
。 なお、図中同一符号は同−又は相当部分を示す代理人 
弁理士 木 村 三 朗
Figure 1 is a front view showing the arrangement of a conventional welding robot and a workpiece, Figure 2 is a side view showing the welding state when the workpiece is tilted in the conventional welding robot shown in Figure 1, and Figure 6 is a side view of the conventional welding robot shown in Figure 1. FIG. 4 is a perspective view showing one embodiment of the invention. FIG. 4 is a perspective view showing another embodiment of the invention. In the figure, (1) is the robot body, (2), (2a [workpiece], (3) is the welding torch, (4) to (9), (4a) to (
9a) is the welding overlay, (11 is the robot control device, α■ is the teaching point 1, (c) is the teaching point 2, (2) is the welding line vector (y axis), α→ is the torch vector, (2) are orthogonal vectors, αQ is the torch angle, CLη is the y-axis, and α barrel is the y-axis. In addition, the same symbols in the figures represent the same or equivalent parts.
Patent Attorney Sanro Kimura

Claims (1)

【特許請求の範囲】[Claims] 多層溶接を自動的に行なう、ティチングプレイバック方
式の溶接ロボットにおいて、ロボット先端に取付けられ
た溶接トーチの向きと溶接線の向きを、2点の教示デー
タよシ算出し、この算出結果とトーチ角とからワークの
向きを認識し、ワークの向きに合わせて多層溶接ができ
るようにしたことを特徴とする溶接ロボット。
In a teaching playback type welding robot that automatically performs multi-layer welding, the direction of the welding torch attached to the tip of the robot and the direction of the welding line are calculated based on the teaching data of two points, and this calculation result and the direction of the welding line are This welding robot is characterized by being able to recognize the orientation of a workpiece based on its corners and perform multi-layer welding according to the orientation of the workpiece.
JP4139184A 1984-03-06 1984-03-06 Welding robot Pending JPS60187475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4139184A JPS60187475A (en) 1984-03-06 1984-03-06 Welding robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4139184A JPS60187475A (en) 1984-03-06 1984-03-06 Welding robot

Publications (1)

Publication Number Publication Date
JPS60187475A true JPS60187475A (en) 1985-09-24

Family

ID=12607072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4139184A Pending JPS60187475A (en) 1984-03-06 1984-03-06 Welding robot

Country Status (1)

Country Link
JP (1) JPS60187475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184284A (en) * 1992-01-16 1993-07-27 Nkk Corp Device for automatically diving frozen fish into two pieces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184284A (en) * 1992-01-16 1993-07-27 Nkk Corp Device for automatically diving frozen fish into two pieces

Similar Documents

Publication Publication Date Title
US4568816A (en) Method and apparatus for manipulator welding apparatus with improved weld path definition
CN106671079B (en) A kind of welding robot motion control method for realizing positioner collaboration
CN100591490C (en) Robot programming device
US9718186B2 (en) Robot
US6243621B1 (en) Method of determining workpiece positions including coordinated motion
GB2087107A (en) Manipulator welding apparatus with vision correction for workpiece sensing
JP2728399B2 (en) Robot control method
KR960001962B1 (en) Method of controlling tool attitude of a robot
CN108994418A (en) A kind of pipe-pipe intersection robot motion&#39;s method for planning track
US4706000A (en) Tool posture control system
JPS60187475A (en) Welding robot
JPS63256281A (en) Teaching system for welding torch position
JPS60213362A (en) Automatic weaving device of industrial robot
JPH06122025A (en) Followup method for work bending in press brake robot system
JP7436640B2 (en) Robot system, robot control device, control method and computer program
JPH06259119A (en) Industrial robot controller
JP7396829B2 (en) Device, robot control device, robot system, and method for setting robot coordinate system
JPS6049867A (en) Weaving method of industrial robot
JPS6054275A (en) Method for controlling driving of welding torch
JP2989693B2 (en) Control device for multi-layer welding robot
US20230226682A1 (en) Method for Teaching Torch Orientation for Robotic Welding
JPH01187602A (en) Robot controlling method
KR100288318B1 (en) How to use 8-axis robot for corner working
JPH04169909A (en) Robot attitude correcting system
JPS58221672A (en) Copying control system of welding robot