JPS60187336A - Absorbent for carbon monoxide - Google Patents

Absorbent for carbon monoxide

Info

Publication number
JPS60187336A
JPS60187336A JP59040292A JP4029284A JPS60187336A JP S60187336 A JPS60187336 A JP S60187336A JP 59040292 A JP59040292 A JP 59040292A JP 4029284 A JP4029284 A JP 4029284A JP S60187336 A JPS60187336 A JP S60187336A
Authority
JP
Japan
Prior art keywords
absorbent
component
amt
toluene
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59040292A
Other languages
Japanese (ja)
Inventor
Sachio Asaoka
佐知夫 浅岡
Hidehiko Kudo
英彦 工藤
Isao Suzuki
功 鈴木
Shinichi Nakada
真一 中田
Tadami Kondo
忠美 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP59040292A priority Critical patent/JPS60187336A/en
Publication of JPS60187336A publication Critical patent/JPS60187336A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To prepare a solid CO absorbent having high selective absorption characteristic for CO and very high resistance to deterioration due to water and other poisoning gas by prepg. a compsn. consisting of CuCl, AlCl3, aromatic compd., and acidic oxide. CONSTITUTION:CuCl, AlCl3, and an arom. compd. (e.g. toluene) are mixed with an acidic oxide (e.g. Al2O3). The proportion of each component is 1-50pts.wt. the first and the second component per 100pts.wt. Al2O3, and the amt. of the first component is made slightly larger than the amt. of the second component. Furhter, the amt. of the arom. compd. is regulated to be 0.1-0.5mol basing on the amt. of the first component. The absorbent has resistance to water and to deterioration due to O2, H2S, CO2, NO, SO2, etc. Accordingly, it is highly effective for separation by absorption of CO from gaseous mixture contg. large amt. of H2O and O2 together with CO, such as waste gas from coke oven. Moreover, elimination and regeneration of the absorbent are easy, so the absorbent is industrially highly valuable.

Description

【発明の詳細な説明】 本発明は、−酸化炭素(以下COとする。)の吸収剤に
関し、特にCOを含有する混合ガスから。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorbent for -carbon oxide (hereinafter referred to as CO), particularly from a mixed gas containing CO.

COを選択的に吸収し、かつ、水に対する劣化性が少な
い固体状吸収剤に関する。
This invention relates to a solid absorbent that selectively absorbs CO and is less susceptible to water deterioration.

COは、合成化学の基礎原料であり、コークス炉排ガス
中に含まれるCOの有効利用について各方面で研究が進
められている。COを分離・濃縮するための吸収剤に関
しては銅アルミニウム四塩化物(CuA10/4) ト
/’エン溶液(0O8ORB溶液)がよく知られている
。この溶液を用いた場合には、吸収能が高いにも拘らず
水による劣化が著しいこと及び溶媒のトルエンがCO回
収時に混入する等の欠点がある。
CO is a basic raw material in synthetic chemistry, and research is underway in various fields on the effective use of CO contained in coke oven exhaust gas. As for an absorbent for separating and concentrating CO, a copper aluminum tetrachloride (CuA10/4) t/'ene solution (0O8ORB solution) is well known. When this solution is used, there are drawbacks such as significant deterioration due to water despite its high absorption capacity and toluene as a solvent being mixed in during CO recovery.

本発明は、0O8ORB溶液の長所をそのまま生かし、
かつ上記欠点を排除し、COの高選択性吸収分離性能を
有すると共に、水及び他の被毒ガス等に対する劣化性が
極めて少ない固体状のCO吸収分離剤を提案するもので
ある。
The present invention makes full use of the advantages of the 0O8ORB solution,
In addition, the present invention proposes a solid CO absorption/separation agent that eliminates the above-mentioned drawbacks, has a highly selective absorption and separation performance for CO, and is extremely resistant to deterioration due to water and other poisonous gases.

すなわち、本発明は塩化第一銅、塩化アルミニウム、芳
香族化合物及び酸性酸化物を含む耐水性−酸化炭素吸収
剤に関するものである。
That is, the present invention relates to a water-resistant carbon oxide absorbent containing cuprous chloride, aluminum chloride, an aromatic compound, and an acidic oxide.

本発明の吸収剤は、C080RB溶液に比して極めて耐
水性が高い上、逆に水によって活性化される性質を有す
る。これらの理由は明らかでないが、本発明では、塩化
第一銅、塩化アルミニウム及び芳香族化合物からなる三
成分が酸性酸化物上で錯体を形成し安定化され、かつ錯
体中の芳香族化合物が担体として作用する酸性酸化物と
何らかの相互作用を示すためと考えられる。
The absorbent of the present invention not only has extremely high water resistance compared to the C080RB solution, but also has the property of being activated by water. Although the reasons for these are not clear, in the present invention, the three components consisting of cuprous chloride, aluminum chloride, and an aromatic compound form a complex on an acidic oxide and are stabilized, and the aromatic compound in the complex is stabilized on a carrier. This is thought to be due to some kind of interaction with acidic oxides that act as oxidants.

本発明における第一成分の塩化第一銅の一価の銅イオン
(cu(iDはco ?r:よく吸収することが知られ
ている。例えば特開昭58−156517号公報には、
ハロゲン化第−銅と活性炭とからなるCOの吸収剤が提
案されている。
The first component of the present invention is cuprous chloride monovalent copper ion (cu (iD stands for co?r), which is known to be well absorbed.
A CO absorbent consisting of cupric halide and activated carbon has been proposed.

しかしながら、本発明では、構成する4成分の一つでも
欠けた場合には、耐水性を有する吸収剤を提供できない
。すなわち第一成分塩化銅、第二成分塩化アルミニウム
、第三成分芳香族化合物及び第四成分酸性酸化物はいず
れも本発明にとって必要不可欠な成分である。
However, in the present invention, if even one of the four constituent components is missing, an absorbent having water resistance cannot be provided. That is, the first component copper chloride, the second component aluminum chloride, the third component aromatic compound, and the fourth component acidic oxide are all essential components for the present invention.

例えば後述する実験例2で示した第二成分たる塩化アル
ミニウムを除いて、塩化第一銅とトルエンとをアルミナ
に担持させた吸収剤では、cu(1)が微量の酸素で容
易に酸化されてCu(町となり吸収能が低下する。これ
は、吸収剤のESRスペクトルで明らかとなった。すな
わち、cu(I)イオンEARでは検知されないのに対
し、Cu(Ir)イオンは検出されることを利用して、
塩化第一銅トルエン及びアルミナからなる吸収剤を微量
酸素通気前後でESRで測定した。第2図にその結果を
示したが、これから第二成分塩化アルミニウムを欠く吸
収剤が酸素によりCu(U)が増加し吸収能力が低下す
ることが判る。
For example, in an absorbent in which cuprous chloride and toluene are supported on alumina, except for aluminum chloride as the second component shown in Experimental Example 2 described later, cu(1) is easily oxidized by trace amounts of oxygen. The absorption capacity decreases due to the formation of Cu (molecular weight). This was revealed in the ESR spectrum of the absorbent. In other words, Cu (I) ions are not detected in the EAR, whereas Cu (Ir) ions are detected. Take advantage of
An absorbent made of cuprous toluene chloride and alumina was measured by ESR before and after aeration of a trace amount of oxygen. The results are shown in FIG. 2, from which it can be seen that in the absorbent lacking the second component aluminum chloride, Cu (U) increases due to oxygen and the absorption capacity decreases.

従って、塩化アルミニウムは、塩化第一銅と芳香族化合
物と錯体を形成し銅イオンを一価に安定に保つように作
用することが明らかであり、必須成分である。
Therefore, it is clear that aluminum chloride acts to form a complex with cuprous chloride and an aromatic compound to keep copper ions monovalent and stable, and is an essential component.

又、第三成分の芳香族化合物は、第−成分及び第二成分
と錯体を形成すると同時に、本発明の吸着剤の特性であ
る耐水性のためにも必要である。さらに、この芳香族化
合物はCOの吸脱着に極めてM要な機能を果している。
Further, the aromatic compound as the third component is necessary not only to form a complex with the first component and the second component, but also to provide water resistance, which is a characteristic of the adsorbent of the present invention. Furthermore, this aromatic compound plays an extremely important function in the adsorption and desorption of CO.

(後記実験例1参照) 吸収剤を劣化する温度は、錯体を形成する芳香族化合物
の種類によって異なる。トルエンを用いた場合、約12
0Cまでは安定で、GOの吸収脱離を連続的に行い得る
。一般には、使用した芳香族化合物の沸点より20〜3
0C高い温度で、該芳香族化合物は錯体から脱離し、除
去され、吸収剤は劣化するものと考えられる。従って、
COの吸収・脱離を行う操作条件によって、錯体を形成
する芳香族化合物を適宜選択すればよい。
(See Experimental Example 1 below) The temperature at which the absorbent deteriorates varies depending on the type of aromatic compound forming the complex. When using toluene, about 12
It is stable up to 0C and can continuously absorb and desorb GO. Generally, 20 to 3 points higher than the boiling point of the aromatic compound used.
It is believed that at temperatures higher than 0C, the aromatic compounds decomplex and are removed and the absorbent deteriorates. Therefore,
The aromatic compound that forms the complex may be appropriately selected depending on the operating conditions for absorbing and desorbing CO.

一般には、ベンゼン、トルエン、キシレン、ポリスチレ
ン等の汎用のものが使用される。ただし塩化銅や塩化ア
ルミニウムを溶解する能力のない溶媒は好ましくない。
Generally, general-purpose materials such as benzene, toluene, xylene, and polystyrene are used. However, solvents that do not have the ability to dissolve copper chloride or aluminum chloride are not preferred.

また本発明吸収剤はCO吸収後の脱離操作を通常加温し
て行なうため低沸点溶媒ないし高揮発性溶媒は好ましく
ない。
Furthermore, since the absorbent of the present invention usually performs the desorption operation after CO absorption by heating, low boiling point solvents or high volatility solvents are not preferred.

第四成分の酸性酸化物は塩化第一銅、塩化アルミニウム
及び芳香族化合物とからなる錯体を均一に分散固定化す
る担体としての作用を示す。
The acidic oxide as the fourth component acts as a carrier that uniformly disperses and immobilizes the complex consisting of cuprous chloride, aluminum chloride, and an aromatic compound.

この場合、酸性酸化物とは表面に低温で安定なグレンス
テッド酸点あるいは高温で生成し易いルイス酸点のいず
れかの酸点を有するものであり、錯体が十分に分散する
と同時に、錯体中の芳香族化合物が相互作用を保持でき
得るものが望ましい。例えばアルミナ、チタニア、シリ
カ、シリカ−マグネシア、又はシリカ−アルミナ等であ
る。
In this case, the acidic oxide has either a Gronsted acid site, which is stable at low temperatures, or a Lewis acid site, which is easily generated at high temperatures, on its surface, and at the same time the complex is sufficiently dispersed. Desirably, aromatic compounds are capable of maintaining interactions. Examples include alumina, titania, silica, silica-magnesia, and silica-alumina.

又表面積は余り太き過ぎると、細孔が小さくなりすぎて
錯化合物の分散性を低下させるため好ましくない。通常
はBET表面積で40〜400Il12/g、好ましく
は50〜300m2/9のものが使用される。
Further, if the surface area is too large, the pores become too small and the dispersibility of the complex compound decreases, which is not preferable. Usually, those having a BET surface area of 40 to 400 Il12/g, preferably 50 to 300 m2/9 are used.

錯体の構造は明らかでないが、塩化第一銅、塩化アルミ
ニウム及び芳香族化合物がほぼ各1モルで形成されてい
るものと考えられる。酸性酸化物への担持量は酸性酸化
物100重量部に対し、第−及び第二成分の合計として
1〜50重量部、好ましくは10〜40重量部である。
Although the structure of the complex is not clear, it is thought that it is formed of cuprous chloride, aluminum chloride, and an aromatic compound in approximately 1 mole each. The amount supported on the acidic oxide is 1 to 50 parts by weight, preferably 10 to 40 parts by weight, as a total of the first and second components, per 100 parts by weight of the acidic oxide.

この場合、塩化アルミニウムが過剰に存在すると、水と
反応してMCI!を発生し、吸収剤を劣化せしめること
もある。従って塩化第一銅が僅かに過剰となるように担
持することが好ましい。
In this case, if aluminum chloride is present in excess, it will react with water and cause MCI! may occur and cause the absorbent to deteriorate. Therefore, it is preferable to support cuprous chloride in a slight excess.

さらに、芳香族化合物は一般的には上記第一成分(又は
第二成分)に対し0.1〜0.5モルとなるように担持
する。特に担持量は0.25モル以上が好ましい。
Furthermore, the aromatic compound is generally supported in an amount of 0.1 to 0.5 mol relative to the first component (or second component). In particular, the supported amount is preferably 0.25 mol or more.

上記の如く、本発明の吸収剤は、耐水性を有し、かつ酸
素H8,Go No、802等による劣化も少2 2 ないため、コークス炉排ガス等のCOと共に水分、酸素
等を多量に含む混合ガスからCOを吸収分離するのに極
めて有効である。又脱離再生も容易で工業的価値も高い
ものと言える。
As mentioned above, the absorbent of the present invention has water resistance and is less likely to be degraded by oxygen H8, Go No, 802, etc. 2 2 , so it contains a large amount of moisture, oxygen, etc. together with CO from coke oven exhaust gas etc. It is extremely effective in absorbing and separating CO from mixed gas. Furthermore, it can be easily desorbed and regenerated and has high industrial value.

実施例1 塩化銅は市販の特級試薬(和光紬薬工業製)を用い、塩
化アルミニウムはPCB定量用試薬(和光紬薬工業製)
をそのまま使用した。乾燥悩素下で200にロナスフラ
スコに上記塩化銅0−6 & (6m −vnol )
と塩化アルミニウム0.81 (6B−rnol )を
いれ、芳香族化合物としてトルエン20rnlf加えて
溶解し、60Cで2時間加熱保温した。溶液はCuC7
−Aj’O1!5− トルエン錯体溶液特有の黒透明色
を呈した。なお上記の9素は市販の窒素(ここでは帝国
酸素株式会社製の純度99,999%のもの)を使用直
前に市販のモレキュラーシーブ3A(ここでは日化精工
株式会社製のもの)を充填した塔に通過させて精製した
ものを使用した。
Example 1 For copper chloride, a commercially available special grade reagent (manufactured by Wako Tsumugi Pharmaceutical Industries) was used, and for aluminum chloride, a PCB quantitative reagent (manufactured by Wako Tsumugi Pharmaceutical Industries) was used.
was used as is. Copper chloride 0-6 & (6 m-vnol) above in a Ronas flask to 200 m under drying conditions
and 0.81 (6B-rnol) of aluminum chloride were added and dissolved by adding 20rnlf of toluene as an aromatic compound, and the mixture was heated and kept at 60C for 2 hours. The solution is CuC7
-Aj'O1!5- It exhibited a transparent black color characteristic of toluene complex solutions. For the above 9 elements, commercially available nitrogen (here, 99,999% purity manufactured by Teikoku Sanso Co., Ltd.) was filled with commercially available molecular sieve 3A (here, manufactured by Nikka Seiko Co., Ltd.) immediately before use. The product was purified by passing it through a column.

酸性酸化物として550Cにて3時間焼成したアルミナ
A担体(触媒化成株式会社製の平均細孔直径108A、
BET表面積230 m2/ l ’)を10J1.2
00d二ロナスフラスコにいれ、真空ポンプを用いてナ
スフラスコ内を十分に脱気した後、この中に滴下ロート
を用いて先に調製した溶液を加えた。その後ナスフラス
コ内を減圧(6w Hg)にして−昼夜排気し、トルエ
ンを十分に除去して吸収剤を得た。
Alumina A carrier calcined at 550C for 3 hours as an acidic oxide (average pore diameter 108A manufactured by Catalysts Kasei Co., Ltd.)
BET surface area 230 m2/l') 10J1.2
After the inside of the flask was sufficiently degassed using a vacuum pump, the solution prepared earlier was added thereto using a dropping funnel. Thereafter, the inside of the eggplant flask was reduced in pressure (6w Hg) and evacuated day and night to sufficiently remove toluene and obtain an absorbent.

この吸収剤のカーボンを分析したところC=1.4wt
%となり、溶媒のトルエンは除去されたが錯体を形成す
るトルエンは残存しておりトルエンとOuとが0.25
 : 1のモル比で存在することがわかった。
Analysis of carbon in this absorbent revealed that C=1.4wt
%, and the solvent toluene was removed, but the toluene forming the complex remained, and the toluene and Ou were 0.25%.
: was found to exist in a molar ratio of 1.

この吸収剤にj atmのGOとN2の混合ガス(co
分圧0.79 atm )を通気し、coの吸収性能を
確認したところ、10分で1.5 m −mol!のC
Oを吸収した。次に吸収剤を1 atmで9ocに加熱
し、Coを脱離させた。このときCOは1.3m −m
ol脱離した。さらに吸収剤を冷却後窒素をキャリアー
ガスとして約16 m −rnolのN2゜を吸収剤に
通気し、その後前述の混合ガスを通気したところ10分
で3.5 m −mol!OCOを吸収した。以後H2
0通気と混合ガス通気をくり返したところ、CO吸収量
は約56 m −matで平衡となった。
A mixed gas of J ATM GO and N2 (co
When we checked the absorption performance of CO by aerating the partial pressure (0.79 atm), we found that it was 1.5 m-mol in 10 minutes! C of
Absorbed O. The absorbent was then heated to 9 oc at 1 atm to desorb Co. At this time, CO is 1.3 m -m
ol was released. After cooling the absorbent, about 16 m-rnol of N2° was passed through the absorbent using nitrogen as a carrier gas, and then the above-mentioned mixed gas was passed through the absorbent, resulting in 3.5 m-mol in 10 minutes! Absorbed OCO. From then on H2
When zero aeration and mixed gas aeration were repeated, the CO absorption amount reached equilibrium at about 56 m -mat.

また、この平衡吸収剤に賭素−酸素混合ガス(02分圧
0.o 05 atm )、9素−H2S混合ガス(H
2S分圧0,003atm )、C02ガス(CO21
atm )、N2−8o2−No混合ガス(S02分圧
0.005atm、No分圧0,003atm )等を
通気した後もCO吸収量に変化は見られなかった。
In addition, this equilibrium absorbent contains a nitrogen-oxygen mixed gas (0.02 partial pressure 0.05 atm) and a 9-H2S mixed gas (H2S).
2S partial pressure 0,003 atm), CO2 gas (CO21
Atm), N2-8o2-No mixed gas (S02 partial pressure 0.005 atm, No partial pressure 0.003 atm), etc. were passed through, and no change was observed in the amount of CO absorbed.

実施例2〜6 実施例1の550Cにて焼成したアルミナA担体の代わ
りに表−1の担体を使用した以外は実施例1と同様の操
作を行った。酸性酸化物の使用量は実施例1と同じとし
た。−酸化炭素の吸収量を後述の表−5に合わせて示す
Examples 2 to 6 The same operation as in Example 1 was performed except that the carrier shown in Table 1 was used instead of the alumina A carrier fired at 550C in Example 1. The amount of acidic oxide used was the same as in Example 1. -The absorption amount of carbon oxide is also shown in Table 5 below.

表−1 実施例7〜8 実施例1のトルエンの代りに、表−2の溶媒を使用した
以外は実施例1と同様の操作を行った。溶媒使用量は実
施例1と同じとした。結果を表−5に合わせて示す。
Table 1 Examples 7 to 8 The same operations as in Example 1 were performed except that the solvents in Table 2 were used instead of toluene in Example 1. The amount of solvent used was the same as in Example 1. The results are also shown in Table-5.

表−2 実施例9 実施例1で吸収剤を調製する際にトルエンの替りに二硫
化炭素20m1を使用し、ポリスチレン(分子量800
)IJFを添加した以外は実施例1と同じ操作で吸収剤
を得た。
Table 2 Example 9 When preparing the absorbent in Example 1, 20 ml of carbon disulfide was used instead of toluene, and polystyrene (molecular weight 800
) An absorbent was obtained in the same manner as in Example 1 except that IJF was added.

この吸収剤を使用してCOとN2の混合ガスからCOの
吸収分離を実施例1と同じ操作で行なった。脱離温度を
1200とし、冷却後H2016m −rnolを吸収
剤に通気した稜再びCOガスを吸収させた。こうして吸
収・脱離をくり返した結果を表−3に示した。
Using this absorbent, CO was absorbed and separated from a mixed gas of CO and N2 in the same manner as in Example 1. The desorption temperature was set to 1200, and after cooling, H2016m-rnol was passed through the absorbent to absorb CO gas again. The results of repeated absorption and desorption are shown in Table 3.

また、本吸収剤の使用後のFT−IRスペクトルには2
925cm 、2850cm 、1470cm。
In addition, the FT-IR spectrum after using this absorbent shows 2
925cm, 2850cm, 1470cm.

740 cm−1にそれぞれ−CH2非対称型伸縮振動
、−0M2対称型伸縮振動、−CH2はさみ振動、芳香
族G−H面外変角振動の各特性吸収帯が見られポリスチ
レンと同定された。120Cに加温した際に二硫化炭素
は除去されてしまっており、表−3のとおりの安定な吸
収能を示したのは0uCI!−A10J5−ポリスチレ
ン錯体がアルミナ担体上で水処理されても安定に存在し
たためである。
Characteristic absorption bands of -CH2 asymmetric stretching vibration, -0M2 symmetric stretching vibration, -CH2 scissor vibration, and aromatic G-H out-of-plane bending vibration were observed at 740 cm-1, and it was identified as polystyrene. Carbon disulfide was removed when heated to 120C, and 0uCI showed stable absorption capacity as shown in Table 3! This is because the -A10J5-polystyrene complex existed stably on the alumina carrier even after water treatment.

表−3 実施例10〜11 実施例1の塩化銅及び塩化アルミニウムの担持量を6 
m −mo/から18m−m。z 、 24m−m0/
に増した以外は実施例1と同様の操作を行なった。結果
を表−5にあわせて示す。
Table-3 Examples 10 to 11 The supported amount of copper chloride and aluminum chloride in Example 1 was 6
m-mo/ to 18 m-m. z, 24m-m0/
The same operation as in Example 1 was performed except that the amount was increased to . The results are also shown in Table-5.

担持量を増してもGOの吸収l・は一定l−以上増えな
い。
Even if the supported amount is increased, the GO absorption l· does not increase beyond a certain l−.

表−4 表−5 実験例1 実施例1と同じ操作で得られた吸収剤を、COの平衡吸
収能を示すまで吸収・脱離及びN20の通気を行ったも
の、!u FT−工Rスペクトルを第1図に示す。トル
エン特有のピークが700 cm−’と2900 cm
−’に明らかにあられれている。(第1図のa)この吸
収剤を15DCに加熱した後、同様にGOの吸収を行っ
たが、H2OB m −vnolを通気した後にはCO
の吸着能は著しく低下した。
Table 4 Table 5 Experimental Example 1 An absorbent obtained in the same manner as in Example 1 was subjected to absorption/desorption and N20 aeration until it exhibited an equilibrium absorption capacity for CO. The u FT-E spectrum is shown in FIG. The peaks characteristic of toluene are at 700 cm and 2900 cm.
−' is clearly covered. (Figure 1 a) After heating this absorbent to 15 DC, GO was absorbed in the same way, but after aerating H2OB m -vnol, CO
The adsorption capacity of was significantly decreased.

この加熱後の吸収剤のFT(Fスペクトルにはトルエン
のピークの強度が減少した。(第1図のb)このことか
らトルエンすなわち芳香族化合物の存在が耐水性に影響
を与えると同時にCOの吸脱着の連続的作用に重要な因
子となっていることが判った。
After heating, the intensity of the toluene peak decreased in the FT (F) spectrum of the absorbent (Fig. 1b). This shows that the presence of toluene, or aromatic compounds, affects water resistance and at the same time that CO It was found that this is an important factor in the continuous action of adsorption and desorption.

なお第1図のFT−4Rスペクトルは、日本電子M、y
ut−1ooを使用して行ったもので、KBrの透過率
を100とし、各資料の透過率は、資料(吸収剤)3%
をKBr (97%)で希釈したもの〜相対透過率で示
した。
The FT-4R spectrum in Figure 1 is of JEOL M, y
This was done using ut-1oo, and the transmittance of KBr was 100, and the transmittance of each material was 3% (absorbent).
is diluted with KBr (97%) ~ Relative transmittance is shown.

実験例2 塩化第一銅のみをトルエンに溶解し、実施例1と同じ操
作で塩化アルミニウムなしの吸収剤を得た。この吸収剤
に実施例1で用いた微量酸素混合ガスを5 JJ / 
minで30分通気した後COとN2の混合ガスを通気
した。GOは殆んど吸収されなかった。酸素通気前の吸
収剤と劣化した吸収剤のESRスペクトルを比較したと
ころ酸素通気前にはピークが小さかったのが劣化吸収剤
では大きなピークになっているのがわかった。
Experimental Example 2 Only cuprous chloride was dissolved in toluene, and an absorbent without aluminum chloride was obtained in the same manner as in Example 1. The trace amount oxygen mixed gas used in Example 1 was added to this absorbent at a rate of 5 JJ/
After aeration for 30 minutes at min., a mixed gas of CO and N2 was aerated. GO was hardly absorbed. When comparing the ESR spectra of the absorbent before oxygen aeration and the deteriorated absorbent, it was found that the peak was small before oxygen aeration, but the peak was large in the deteriorated absorbent.

第2図のKSRスペクトルは日本電子MFg2xcを用
いて、2360〜4560G(ガウス)の範囲で測定し
た。第2図の左方は2360G。
The KSR spectrum shown in FIG. 2 was measured in the range of 2360 to 4560 G (Gauss) using JEOL MFg2xc. The left side of Figure 2 is 2360G.

右方は4360Gである。縦軸はスピンラジカル濃度を
示す。
The one on the right is 4360G. The vertical axis shows the spin radical concentration.

第2図において、a、bは共に未使用の吸収剤のESn
スペクトルで、aはbを感度2000倍にして測定した
ものである。0は酸素通気後に測定したもので、感度は
bと同じである。この場合、感度はCu++ の存在量
に比例する。なおCu+は検知されない。bと0とを比
較することにより、この吸収剤は酸素通気後Ou++ 
の割合が増加していることがわかる。
In Figure 2, both a and b are the ESn of unused absorbent.
In the spectrum, a is measured by increasing the sensitivity of b by 2000 times. 0 is measured after oxygen ventilation, and the sensitivity is the same as b. In this case, the sensitivity is proportional to the amount of Cu++ present. Note that Cu+ is not detected. By comparing b and 0, this absorbent has Ou++ after oxygen aeration.
It can be seen that the proportion of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例1で得られた吸収剤のCOの
平衡吸収能を示すまで吸収脱離及びH2Oの通気を行っ
たもの〜FT−IRスペクトルと、該吸収剤を150C
に加熱した際のFT−工Rスペクトルを示す。 第2図は、本発明吸収剤の成分より塩化アルミニウムを
除いた吸収剤の、酸素通気前と後のR8Rスペクトルを
示す。 代理人 内 1) 明 代理人 萩 原 亮 − (ズ)讃劉7
Figure 1 shows the FT-IR spectrum of the absorbent obtained in Example 1 of the present invention after absorption desorption and aeration of H2O until it exhibits the equilibrium absorption capacity of CO, and the FT-IR spectrum of the absorbent obtained in Example 1 of the present invention at 150C.
The FT-E spectrum is shown when heated to . FIG. 2 shows the R8R spectra of the absorbent of the present invention, excluding aluminum chloride, before and after oxygen aeration. Agents 1) Akira agent Ryo Hagiwara - Sanryu 7

Claims (1)

【特許請求の範囲】[Claims] 塩化第一銅、塩化アルミニウム、芳香族化合物及び酸性
酸化物を含むことを特徴とする耐水性−酸化炭素吸収剤
A water-resistant carbon oxide absorbent comprising cuprous chloride, aluminum chloride, an aromatic compound and an acidic oxide.
JP59040292A 1984-03-05 1984-03-05 Absorbent for carbon monoxide Pending JPS60187336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59040292A JPS60187336A (en) 1984-03-05 1984-03-05 Absorbent for carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59040292A JPS60187336A (en) 1984-03-05 1984-03-05 Absorbent for carbon monoxide

Publications (1)

Publication Number Publication Date
JPS60187336A true JPS60187336A (en) 1985-09-24

Family

ID=12576526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59040292A Pending JPS60187336A (en) 1984-03-05 1984-03-05 Absorbent for carbon monoxide

Country Status (1)

Country Link
JP (1) JPS60187336A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256708A (en) * 1986-04-28 1987-11-09 Kobe Steel Ltd Method for purifying co
JPS62256709A (en) * 1986-04-28 1987-11-09 Kobe Steel Ltd Method for purifying co

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256708A (en) * 1986-04-28 1987-11-09 Kobe Steel Ltd Method for purifying co
JPS62256709A (en) * 1986-04-28 1987-11-09 Kobe Steel Ltd Method for purifying co
JPH048368B2 (en) * 1986-04-28 1992-02-14 Kobe Steel Ltd
JPH048369B2 (en) * 1986-04-28 1992-02-14 Kobe Steel Ltd

Similar Documents

Publication Publication Date Title
US4433981A (en) CO2 Removal from gaseous streams
US5529970A (en) CO adsorbents with hysteresis
US5656064A (en) Base treated alumina in pressure swing adsorption
US4587114A (en) Method for separating carbon dioxide from mixed gas
KR100186680B1 (en) Absorbent for removal of trace oxygen from inert gases
US6350298B1 (en) Adsorbents and adsorptive separation process
AU625032B1 (en) A process for removing trialkyl arsines from fluids
AU2004289867B2 (en) Removal of mercury compounds from glycol
JP2001508390A (en) How to recover sulfur hexafluoride
ES2380507T3 (en) Procedure for the elimination of oxygenated molecules present in an organic effluent using alumina agglomerates
JP2001129342A (en) Thermal swing adsorption method for removing very small amount of impurities from air
EP0045422B1 (en) Process for the adsorptive elimination of hydrogen sulfide from gaseous mixtures
JPS60187336A (en) Absorbent for carbon monoxide
JP2002012418A (en) Method of separation by absorbing molecules in gas phase using aggregated solid inorganic absorbent having calibrated narrow distribution of meso-pore
JPS60147240A (en) Zeolite type olefin gas adsorbent and adsorption of olefin gas
KR102176439B1 (en) Amine adsorbent for co2 capture process
JPS60114338A (en) Carbons and carbon molecular sieves as mercury adsorbent
JPS6253223B2 (en)
JPS6148977B2 (en)
JP2551417B2 (en) Adsorbent for carbon monoxide separation
US5888465A (en) Process for separating hydrogen halides from gases containing sulphur dioxide
RU2036701C1 (en) Method of separation of gas from hydrogen sulfide; absorbent used
JP2597252B2 (en) Adsorption remover for low concentration nitrogen oxides
JPH0545291B2 (en)
SU1586751A1 (en) Method of producing sorbent for absorbing carbon monoxide from gaseous mixtures