JPH0545291B2 - - Google Patents

Info

Publication number
JPH0545291B2
JPH0545291B2 JP60103988A JP10398885A JPH0545291B2 JP H0545291 B2 JPH0545291 B2 JP H0545291B2 JP 60103988 A JP60103988 A JP 60103988A JP 10398885 A JP10398885 A JP 10398885A JP H0545291 B2 JPH0545291 B2 JP H0545291B2
Authority
JP
Japan
Prior art keywords
absorbent
alumina
copper
absorption
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60103988A
Other languages
Japanese (ja)
Other versions
JPS61263637A (en
Inventor
Shunichi Azuma
Sachio Asaoka
Ikuko Kawamura
Isao Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP60103988A priority Critical patent/JPS61263637A/en
Publication of JPS61263637A publication Critical patent/JPS61263637A/en
Publication of JPH0545291B2 publication Critical patent/JPH0545291B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一酸化炭素(以下COとする)の吸収
剤に関し、特にCOを含有する混合ガスから、CO
を選択的に吸収し、かつ被毒性ガスに対する劣化
性が少ない固体吸収剤に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an absorbent for carbon monoxide (hereinafter referred to as CO), and in particular to an absorbent for absorbing CO from a mixed gas containing CO.
The present invention relates to a solid absorbent that selectively absorbs gases and is less susceptible to deterioration due to toxic gases.

(従来の技術) COは合成化学の基礎原料であり、製鉄所副生
ガス、例えばコークス炉排出ガス中に含まれる
COの有効利用について各方面で研究が進められ
ている。
(Conventional technology) CO is a basic raw material in synthetic chemistry and is contained in steel mill byproduct gases, such as coke oven exhaust gas.
Research on the effective use of CO is underway in various fields.

一般に、工業的に混合ガスからCOを分離精製
して高純度COを製造する方法としては、銅液吸
収法、COSORB法あるいは、深冷分離法がある。
しかし、銅液吸収法は、操作の複雑さ、腐食性溶
液使用による装置の腐食、溶液損失、および建設
コストが高いなどの欠点により、経済性が低く、
現在ではほとんど工業的に採用されていない。
Generally, methods for industrially separating and purifying CO from a mixed gas to produce high-purity CO include a copper liquid absorption method, a COSORB method, and a cryogenic separation method.
However, the copper liquid absorption method is not economical due to drawbacks such as operational complexity, equipment corrosion due to the use of corrosive solutions, solution loss, and high construction costs.
At present, it is hardly used industrially.

COSORB法は、COを分離濃縮するために、銅
アルミニウム四塩化物(CuAlCl4)トルエン溶液
(COSORB溶液)からなる液体吸収剤を用いる。
この溶液を用いた場合には、吸収能が高いにもか
かわらず、被毒性ガス、特に水による劣化が著し
いこと、及び溶媒のトルエンがCO回収時に混入
する等の欠点がある。
The COSORB method uses a liquid absorbent consisting of a toluene solution of copper aluminum tetrachloride (CuAlCl 4 ) (COSORB solution) to separate and concentrate CO.
When this solution is used, despite its high absorption capacity, there are drawbacks such as significant deterioration due to toxic gases, especially water, and toluene as a solvent mixed in during CO recovery.

また深冷分離法は、混合ガス中に窒素が含まれ
る場合は窒素とCOとの沸点差が近接しているた
め、COを目的とした分離には一般的に経済的で
ない。
In addition, the cryogenic separation method is generally not economical for separating CO when nitrogen is included in the mixed gas because the boiling points of nitrogen and CO are close to each other.

一般に、COを原料として化学品を合成する場
合には、不純物が合成触媒に悪影響を及ぼすと共
に、COの分圧に大きく依存することが多いため、
化学品合成の際の原料のCO純度は厳しく規定す
るケースが多い。
In general, when synthesizing chemicals using CO as a raw material, impurities have a negative effect on the synthesis catalyst and are often highly dependent on the partial pressure of CO.
In many cases, the purity of CO in raw materials for chemical synthesis is strictly regulated.

(発明が解決しようとする問題点) 本発明は、COSORB溶液の長所とそのまま生
かし、かつ上記欠点を排除し、COの高選択性吸
収分離性能を有すると共に、水及び他の被毒性ガ
ス等に対する劣化性が極めて少ない固体状のCO
吸収分離剤を提案するものである。
(Problems to be Solved by the Invention) The present invention makes full use of the advantages of the COSORB solution, eliminates the above-mentioned disadvantages, has high selectivity absorption and separation performance for CO, and has a high resistance to water and other toxic gases. Solid CO with extremely low deterioration
This paper proposes an absorption/separation agent.

ところで、一般に、固体吸着剤を用いてCOを
選択的に、かつ効率的に分離しようとすると、次
のような問題点がある。
By the way, in general, when attempting to selectively and efficiently separate CO using a solid adsorbent, the following problems arise.

固体吸着剤は大別して二通り、すなわち一つと
して活性炭、ゼオライト、モレキユラーシーブ等
の分子ふるい効果を利用した物理吸着剤、他の一
つとして例えば特開昭58−49436号、特開昭58−
156517号公報で開示したような銅系の錯体を吸収
剤とする化学吸収剤がある。
Solid adsorbents can be roughly divided into two types: one is physical adsorbents that utilize the molecular sieve effect of activated carbon, zeolite, molecular sieves, etc., and the other is JP-A-58-49436, JP-A-Sho 58−
There is a chemical absorbent using a copper-based complex as an absorbent, as disclosed in Japanese Patent No. 156517.

細孔内へ吸着物質を取込むことにより該物質を
分離するという分子ふるい効果を利用した物理吸
着剤は、その細孔内への吸着の選択性が、周知の
通り化学吸収剤の吸収選択性に比べはるかに劣る
ため、高純度ガス得られていない。
Physical adsorbents utilize the molecular sieving effect to separate adsorbed substances by taking them into pores, and as is well known, the selectivity of adsorption into the pores is similar to that of chemical absorbents. High-purity gas cannot be obtained because it is far inferior to the conventional method.

銅()を用いた化学吸収剤は、一酸化炭素の
選択性が高いことが知られているが、そのままで
は不均化したり、酸化をうけやすく、銅()と
なつて吸収能が低下する。そのため、ハロゲン化
アルミニウム()等の対イオンとの複塩を形成
させ、銅を1価に保つ工夫もなされている。ま
た、銅()を効率よく使用するには多孔質体へ
の担持・分散が考えられ、均一に銅()を分散
させることによつて高選択性かつ高吸収能の化学
的吸収剤が調製される。
Chemical absorbents using copper () are known to have high selectivity for carbon monoxide, but if left as is, they are susceptible to disproportionation and oxidation, and become copper (), reducing absorption capacity. . Therefore, efforts have been made to keep copper monovalent by forming a double salt with a counter ion such as aluminum halide (2). In addition, supporting and dispersing copper () in porous materials is considered for efficient use of copper (), and by uniformly dispersing copper (), a chemical absorbent with high selectivity and high absorption capacity can be prepared. be done.

銅()を分散させる多孔質担体としては、
USP4034065に示されるようにゼオライトや、特
開昭58−156517号公報に示されるような活性炭が
知られている。しかし、これらの担体は、上述し
た通り選択性に劣るため、より高純度COを精製
するための化学吸収剤用担体としては若干の問題
がある。
As a porous carrier for dispersing copper (),
Zeolite as shown in USP 4034065 and activated carbon as shown in Japanese Patent Application Laid-Open No. 156517/1987 are known. However, as described above, these carriers have poor selectivity, and therefore have some problems as carriers for chemical absorbents for purifying CO with higher purity.

本発明は、以上の諸点に鑑み、銅()を用い
る化学吸収剤において、吸収能を低下させずに、
その混合ガス分離特性である高選択性をそのまま
生かし得る担体を見出し、高純度COの製造に有
効なCO吸収分離剤を提供せんとするものである。
In view of the above points, the present invention provides a chemical absorbent using copper () without reducing absorption capacity.
The aim is to find a carrier that can take advantage of the high selectivity that is the mixed gas separation property, and to provide a CO absorption and separation agent that is effective in producing high-purity CO.

(問題点を解決するための手段) 本発明者らは、上記担体を見出すべく研究を重
ねた結果、モレキユラーシービング能を持たない
アルミナが好適であることを見出し、本発明に到
達したものである。
(Means for Solving the Problems) As a result of repeated research to find the above-mentioned carrier, the present inventors discovered that alumina, which does not have molecular sieving ability, is suitable, and arrived at the present invention. It is something.

本発明は、塩化第一銅、塩化アルミニウムの低
級アルコールまたはテトラヒドロフラン(THF)
溶媒溶液をアルミナに十分接触させ、次いで上記
溶媒を除去してなる一酸化炭素吸収剤である。
The present invention uses lower alcohols of cuprous chloride, aluminum chloride or tetrahydrofuran (THF).
This is a carbon monoxide absorbent made by bringing a solvent solution into sufficient contact with alumina, and then removing the solvent.

本発明において、化学吸収剤の担体としてアル
ミナを用いる理由は次の通りである。すなわち、
ゼオライトのようなゼオリテイツクな細孔を持つ
もの、活性炭のようなマイクロ細孔を有るもの、
その他モレキユラーシービング能を有するもの
は、細孔内表面へ塩化第一銅、塩化アルミニウム
の低級アルコールまたはテトラヒドロフラン
(THF)溶媒溶液が入り込み難いため、COの高
選択性吸収性を十分に発揮することができない。
これに対し、本発明のモレキユラーシービング能
を持たないアルミナは、細孔径が大きく、上記溶
液が入り込み易く、COの高選択性吸収性を発揮
する銅()を十分に担持でき、銅()による
化学吸収能を低下させず、つその高選択特性をそ
のまま発揮し得るのである。
In the present invention, the reason why alumina is used as a carrier for the chemical absorbent is as follows. That is,
Those with zeolite pores such as zeolite, those with micro pores such as activated carbon,
Others that have molecular sieving ability exhibit sufficient high selectivity absorption of CO because it is difficult for lower alcohol or tetrahydrofuran (THF) solvent solutions of cuprous chloride and aluminum chloride to enter the inner surface of the pores. Can not do it.
On the other hand, the alumina of the present invention, which does not have molecular sieving ability, has large pore diameters, allows the above solution to easily enter, and can sufficiently support copper (), which exhibits highly selective absorption of CO. The chemical absorption ability of () is not reduced, and the high selectivity properties can be exhibited as they are.

本発明において使用されるアルミナはBET表
面40〜40m2/gのものが好ましい。
The alumina used in the present invention preferably has a BET surface of 40 to 40 m 2 /g.

また本発明者らは、先に、塩化第一銅、塩化ア
ルミニウムと複核錯体を形成する溶媒として芳香
族化合物を用いた固体吸収剤を提案している(特
願昭59−40292号明細書参照)。しかし、その後の
研究の結果、有機溶媒は芳香族化合物に限定され
ず、非芳香族化合物でもCu()、Al()と複核
錯体を形成しうることを見出した。
In addition, the present inventors have previously proposed a solid absorbent using an aromatic compound as a solvent that forms a dinuclear complex with cuprous chloride and aluminum chloride (see Japanese Patent Application No. 1983-40292). ). However, as a result of subsequent research, it was discovered that organic solvents are not limited to aromatic compounds, and that even non-aromatic compounds can form dinuclear complexes with Cu() and Al().

本発明はこの知見に基づくもので、メタノー
ル、エタノール、プロパノール、プタノールなど
の低級アルコールまたはTHFの塩化第一銅、塩
化アルミニウムと複核錯体を形成する非芳香族有
機溶媒を用いるものである。
The present invention is based on this knowledge, and uses a non-aromatic organic solvent that forms a dinuclear complex with lower alcohols such as methanol, ethanol, propanol, butanol, or cuprous chloride or aluminum chloride of THF.

本発明においては、塩化第一銅、塩化アルミニ
ウムの低級アルコールあるいはTHF溶媒溶液と、
アルミナとを十分接触させ、次いで溶媒を除し、
アルミナへの塩化第一銅と塩化アルミニウムとの
担持量を、アルミナ100重量部に対し、塩化第一
銅と塩化アルミニウムの合計として1〜50重量
部、好ましくは10〜40重量部とする。この場合、
塩化第一銅と塩化アルミニウムとは等mol存在す
ることが好ましい。
In the present invention, a lower alcohol or THF solvent solution of cuprous chloride or aluminum chloride,
sufficiently contact with alumina, then remove the solvent,
The amount of cuprous chloride and aluminum chloride supported on alumina is 1 to 50 parts by weight, preferably 10 to 40 parts by weight as a total of cuprous chloride and aluminum chloride, based on 100 parts by weight of alumina. in this case,
It is preferable that cuprous chloride and aluminum chloride exist in equal mol.

(発明の効果) 本発明吸収剤によれば、純度98%以上でCO分
離を行うことができ、そのままで通常の化学品合
成用の原料として十分使用することができる。従
つて、本発明吸収剤は、効率的かつ経済的に混合
ガスからCOを分離・精製して高純度COを回収す
るに有効である。
(Effects of the Invention) According to the absorbent of the present invention, CO separation can be performed with a purity of 98% or more, and it can be used as is as a raw material for ordinary chemical synthesis. Therefore, the absorbent of the present invention is effective in efficiently and economically separating and purifying CO from a mixed gas and recovering high-purity CO.

(実施例) 塩化銅()、塩化アルミニウム()、メチル
アルコールは和光純薬工業(株)製の特級試薬を使用
した。アルミナは触媒化成(株)製B type アルミ
ナ(球状1mmψ、平均細孔直径110Å、BET表面
積220m2/g)を550℃にて3時間焼成たものを使
用した。
(Example) Special grade reagents manufactured by Wako Pure Chemical Industries, Ltd. were used for copper chloride ( ), aluminum chloride ( ), and methyl alcohol. The alumina used was B type alumina manufactured by Catalysts Kasei Co., Ltd. (spherical shape: 1 mmψ, average pore diameter: 110 Å, BET surface area: 220 m 2 /g) calcined at 550° C. for 3 hours.

乾燥窒素下で200ml二口ナスフラスコにCuCl
0.6g、AlCl3 0.8g、メチルアルコール20mlを入
れ、室温で2時間撹拌した。この溶液に上記前処
理したアルミナ担体を10g入れて30分間浸漬し
た。この後、ナスフラスコ内を減圧(6mmHg)
にし、室温で一昼夜メタノールを排気し、吸収剤
を得た。
CuCl in a 200ml two-necked eggplant flask under dry nitrogen.
0.6 g, AlCl 3 0.8 g, and 20 ml of methyl alcohol were added, and the mixture was stirred at room temperature for 2 hours. 10 g of the pretreated alumina carrier was added to this solution and immersed for 30 minutes. After this, reduce the pressure inside the eggplant flask (6 mmHg)
Then, methanol was evacuated at room temperature overnight to obtain an absorbent.

この吸収剤に、CO66%、N234%の混合ガスを
10分間通気し、COを吸収させた。定圧容量法吸
収量測定装置でCO吸収量を測定したところ、CO
を64c.c.吸収していた。
A mixed gas of 66% CO and 34% N2 is added to this absorbent.
Aeration was performed for 10 minutes to allow CO to be absorbed. When the amount of CO absorbed was measured using a constant-pressure volumetric absorption measuring device, it was found that CO
had absorbed 64 c.c.

次に、90℃に加温し、COを脱離させた後、冷
却し、飽和蒸気圧のH2Oを含む窒素ガスを通気
した(H2O接触量約40mmol)。この後、再び上
記CO混合ガスを通気したところ、吸収量は62c.c.
で、H2Oによる吸収能の劣化は観察されなかつ
た。
Next, the mixture was heated to 90° C. to remove CO, and then cooled, and nitrogen gas containing H 2 O at a saturated vapor pressure was bubbled through (approximately 40 mmol of H 2 O contact amount). After this, when the above CO mixed gas was aerated again, the absorbed amount was 62c.c.
No deterioration of absorption capacity due to H 2 O was observed.

なお、メチルアルコールの代りにエタノール、
プロパノール、ブタノールなどの低級アルコール
を使用しても上記と同様な結果が得られた。
In addition, ethanol instead of methyl alcohol,
Similar results were obtained using lower alcohols such as propanol and butanol.

実施例 2 CuCl、AlCl3は実施例1と同一のものを使用し
た。
Example 2 The same CuCl and AlCl 3 as in Example 1 were used.

乾燥窒素下で200ml二口ナスフラスコにCuCl
0.6g、AlCl3 0.8g、THF20mlを入れ、室温で2
時間撹拌し、一昼夜放置した。黒透明色の溶液が
得られた。この溶液に、実施例1で使用したのと
同じアルミナ担体を10g投入し、30分間浸漬し
た。この後、ナスフラスコ内を減圧(6mmHg)
にし、5時間THFを排気した。フラスコ底部に
残つた乾燥したものを吸収剤とした。
CuCl in a 200ml two-necked eggplant flask under dry nitrogen.
Add 0.6g, 0.8g of AlCl 3 and 20ml of THF, and heat at room temperature.
The mixture was stirred for hours and left overnight. A black transparent solution was obtained. 10 g of the same alumina carrier used in Example 1 was added to this solution and immersed for 30 minutes. After this, reduce the pressure inside the eggplant flask (6 mmHg)
The THF was then evacuated for 5 hours. The dried material remaining at the bottom of the flask was used as an absorbent.

この吸収剤にCO 66%、N334%の混合ガスを
通気し、吸収量を測定した。CO吸収量は、フレ
ツシユな状態で58c.c.、実施例1と同様にH2Oと
接触させた後で60c.c.とやはりH2Oによる劣化は
観察されなかつた。
A mixed gas of 66% CO and 34% N 3 was passed through this absorbent, and the amount absorbed was measured. The CO absorption amount was 58 c.c. in a fresh state, and 60 c.c. after being brought into contact with H 2 O as in Example 1, and no deterioration due to H 2 O was observed.

比較例 1 CuCl、AlCl3、メチルアルコールは実施例1と
同じものを使用した。
Comparative Example 1 The same CuCl, AlCl 3 and methyl alcohol as in Example 1 were used.

乾燥窒素下で200ml二口ナスフラスコにCuCl
0.6g、AlCl3 0.8g、メタノール20mlを入れ、室温
で2時間撹拌し、黒色透明な溶液を得た。この溶
液に、550℃で3時間焼成し、デシケータ中で冷
却したY−ゼオライト(リンデ(株)社製)を10g投
入し、30分間浸漬した。この後、ナスフラスコ内
を減圧(6mmHg)にし、室温で一昼夜メタノー
ルを排気し、吸収剤を調製した。
CuCl in a 200ml two-necked eggplant flask under dry nitrogen.
0.6 g of AlCl 3 , 0.8 g of AlCl 3 and 20 ml of methanol were added thereto, and the mixture was stirred at room temperature for 2 hours to obtain a black transparent solution. To this solution, 10 g of Y-zeolite (manufactured by Linde Co., Ltd.), which had been calcined at 550° C. for 3 hours and cooled in a desiccator, was added and immersed for 30 minutes. Thereafter, the pressure inside the eggplant flask was reduced (6 mmHg), and methanol was evacuated at room temperature overnight to prepare an absorbent.

この吸収剤にCO66%、N234%の混合ガスを10
分間通気し、COを吸収させた。実施例1と同じ
方法でCO吸収量を測定したところ、吸収量は16
c.c.であり、CO吸収剤としての作用はないに等し
い量であつた。これを90℃に加温し、COを脱離
させた後、冷却し、再度上記原料ガスを通気した
ところ、吸収量は14c.c.となり、ほとんど吸収能を
示さないことが明らかとなつた。
Add a mixed gas of 66% CO and 34% N2 to this absorbent for 10 minutes.
It was vented for a minute to allow CO to be absorbed. When the amount of CO absorbed was measured using the same method as in Example 1, the amount absorbed was 16
cc, and the amount had almost no effect as a CO absorbent. When this was heated to 90℃ to desorb CO, it was cooled, and the above raw material gas was aerated again, the absorption amount was 14c.c., which revealed that it had almost no absorption capacity. .

Claims (1)

【特許請求の範囲】[Claims] 1 塩化第一銅、塩化アルミニウムの低級アルコ
ールまたはテトラヒドロフラン溶媒溶液をアルミ
ナに十分接触させ、次いで上記溶媒を除去してな
る一酸化炭素吸収剤。
1. A carbon monoxide absorbent obtained by bringing a solution of cuprous chloride or aluminum chloride in a lower alcohol or tetrahydrofuran solvent into sufficient contact with alumina, and then removing the solvent.
JP60103988A 1985-05-17 1985-05-17 Carbon monoxide absorbent Granted JPS61263637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60103988A JPS61263637A (en) 1985-05-17 1985-05-17 Carbon monoxide absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60103988A JPS61263637A (en) 1985-05-17 1985-05-17 Carbon monoxide absorbent

Publications (2)

Publication Number Publication Date
JPS61263637A JPS61263637A (en) 1986-11-21
JPH0545291B2 true JPH0545291B2 (en) 1993-07-08

Family

ID=14368682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60103988A Granted JPS61263637A (en) 1985-05-17 1985-05-17 Carbon monoxide absorbent

Country Status (1)

Country Link
JP (1) JPS61263637A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100884350B1 (en) * 2007-06-04 2009-02-18 한국에너지기술연구원 Adsorbent for selective adsorption of carbon monoxide and process for preparation thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215209A (en) * 1985-03-19 1986-09-25 Sumitomo Heavy Ind Ltd Separation of carbon monoxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215209A (en) * 1985-03-19 1986-09-25 Sumitomo Heavy Ind Ltd Separation of carbon monoxide

Also Published As

Publication number Publication date
JPS61263637A (en) 1986-11-21

Similar Documents

Publication Publication Date Title
US5529763A (en) CO adsorbents with hysteresis
Ma et al. CO adsorption on activated carbon-supported Cu-based adsorbent prepared by a facile route
US6491740B1 (en) Metallo-organic polymers for gas separation and purification
US6537348B1 (en) Method of adsorptive separation of carbon dioxide
JPH01155945A (en) Production of adsorbent for separating and recovering co
KR102100896B1 (en) Organic-inorganic porous hybrid material containing intramolecular anhydride groups, adsorbent composition comprising the same and usage thereof for the separation of gaseous hydrocarbon mixtures
JPS6265918A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering high-purity co by using its adsorbent
JPS6230550A (en) Adsorbent for selectively adsorbing and separating gas and its preparation
JP4025228B2 (en) Preparation method of molecular sieve adsorbent for selective separation of air size / morphology
CA2311848A1 (en) Gas processing agent and manufacturing method therefor, gas purification method, gas purifier and gas purification apparatus
JPH05103980A (en) Oxygen adduct in solid state of cyanocobaltate complex free from aluminum silicate
JPS58156517A (en) Adsorptive separation method of carbon monoxide
JPH0217214B2 (en)
KR20180051880A (en) Absorbent for highly selective separation of carbon monoxide and preparation method thereof
JPH0545291B2 (en)
WO2010113173A2 (en) A barium and potassium exchanged zeolite-x adsorbents for co2 removal from a gas mixture and preparation thereof
JPH07187608A (en) Separation of oxygen from oxygen-containing fluid stream
JP6578704B2 (en) Porous coordination polymer
JPH0421539B2 (en)
JP2551417B2 (en) Adsorbent for carbon monoxide separation
JPH05279046A (en) Solid state cyanocobaltate complex
JPS60187336A (en) Absorbent for carbon monoxide
JPS6148977B2 (en)
JPS6253223B2 (en)
JPH0724762B2 (en) Method for producing adsorbent for CO separation and recovery