JPS6018701Y2 - Solenoid flow control valve - Google Patents

Solenoid flow control valve

Info

Publication number
JPS6018701Y2
JPS6018701Y2 JP11976278U JP11976278U JPS6018701Y2 JP S6018701 Y2 JPS6018701 Y2 JP S6018701Y2 JP 11976278 U JP11976278 U JP 11976278U JP 11976278 U JP11976278 U JP 11976278U JP S6018701 Y2 JPS6018701 Y2 JP S6018701Y2
Authority
JP
Japan
Prior art keywords
permanent magnet
valve body
magnetic pole
force
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11976278U
Other languages
Japanese (ja)
Other versions
JPS5536738U (en
Inventor
通雄 藤原
栄治 野沢
基裕 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP11976278U priority Critical patent/JPS6018701Y2/en
Publication of JPS5536738U publication Critical patent/JPS5536738U/ja
Application granted granted Critical
Publication of JPS6018701Y2 publication Critical patent/JPS6018701Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【考案の詳細な説明】 本考案は電磁力を利用して流体出口側の圧力を制御する
よう構成された電磁式流量制御弁に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic flow control valve configured to control pressure on the fluid outlet side using electromagnetic force.

第1図に従来のこの種流量制御弁の構造を示す。FIG. 1 shows the structure of a conventional flow control valve of this type.

図中、1は弁本体、2は図示しない流体流入管に連結さ
れる流体人口2aを設けた一次室、3は弁本体1内壁に
形成された弁座、4は弁本体1内の流体通路に介装され
た弁体で、弁座3に接触し得るようになっている。
In the figure, 1 is the valve body, 2 is a primary chamber provided with a fluid port 2a connected to a fluid inflow pipe (not shown), 3 is a valve seat formed on the inner wall of the valve body 1, and 4 is a fluid passage inside the valve body 1. The valve body is interposed in the valve body so that it can come into contact with the valve seat 3.

5は弁体4上端部に固定板6を介して固定装着された永
久磁石、7は中心部が弁体4と固定板6とで挟持され周
縁部が弁本体1壁部で支持されたダイアフラムで、弁体
4を支持する。
5 is a permanent magnet fixedly attached to the upper end of the valve body 4 via a fixing plate 6, and 7 is a diaphragm whose center portion is held between the valve body 4 and the fixing plate 6 and whose peripheral portion is supported by the wall portion of the valve body 1. and supports the valve body 4.

8は図示しない流体流出管に連結される流体出口8aを
設けた二次室で、弁体4を介して一次室2と連通可能で
ある。
A secondary chamber 8 is provided with a fluid outlet 8a connected to a fluid outflow pipe (not shown), and can communicate with the primary chamber 2 via the valve body 4.

9はダイアフラム7により一次室2と仕切られた上部空
間を大気連通ずるための連通口、10は弁本体1に固定
された外磁極、11は外磁極10内の中央部に永久磁石
5に対向して設けられた固定鉄心、12は固定鉄心11
の外周部に嵌合された巻枠、13は巻枠12に巻回され
た電磁コイルである。
9 is a communication port for communicating the upper space partitioned from the primary chamber 2 with the atmosphere by the diaphragm 7; 10 is an outer magnetic pole fixed to the valve body 1; and 11 is a central part of the outer magnetic pole 10 facing the permanent magnet 5. A fixed core 12 is provided as a fixed core 11.
13 is an electromagnetic coil wound around the winding frame 12.

かかる構成の流量制御弁の動作を説明すると、電磁コイ
ル13に所定の通電を行なうと固定鉄心11と外磁極1
0とに磁束ができ磁気回路が形成され永久磁石5に対し
て上記通電量に見合った電磁反発力Frが第1図中矢印
方向に作用して弁体4を押し下げる。
To explain the operation of the flow control valve having such a configuration, when the electromagnetic coil 13 is energized to a predetermined value, the fixed iron core 11 and the outer magnetic pole 1
0, a magnetic circuit is formed, and an electromagnetic repulsive force Fr commensurate with the amount of current applied to the permanent magnet 5 acts in the direction of the arrow in FIG. 1 to push down the valve body 4.

一方、流体人口2aを介して一次室2内に圧送された流
体は弁体4にFl、ダイアフラム7にF2という図中矢
印方向の力を作用させ、更に押し下げられた弁体4と弁
座3とによって形成された間隙を通過し二次室8へ流入
し流体出口8aを介して図示しない流出管へ二次室B内
の圧力に見合った圧力(二次圧力)で噴出する。
On the other hand, the fluid forced into the primary chamber 2 through the fluid flow 2a exerts a force Fl on the valve body 4 and a force F2 on the diaphragm 7 in the direction of the arrow in the figure, and the valve body 4 and the valve seat 3 are further pushed down. The fluid passes through the gap formed by the fluid, flows into the secondary chamber 8, and is ejected through the fluid outlet 8a to an outflow pipe (not shown) at a pressure corresponding to the pressure in the secondary chamber B (secondary pressure).

このとき、上記圧力に見合ったF3なる力が矢印の如く
弁体4に作用する。
At this time, a force F3 corresponding to the above pressure acts on the valve body 4 as shown by the arrow.

コノ場合、各力F□、F2.F3.Frのバランス及び
各圧力P1.P2 (1図中に追記)また、ダイアフラ
ムの有効面積AD(図1に示す)、及び弁座面積AV
(図1に示す)の関係は次式の様になる。
In this case, each force F□, F2. F3. Fr balance and each pressure P1. P2 (Added in Figure 1) Also, the effective area AD of the diaphragm (shown in Figure 1) and the valve seat area AV
The relationship (shown in FIG. 1) is as shown in the following equation.

先ず入口2aより流入した流体の圧力P1は、弁体4と
弁座3の間の開口部で圧力損失を生じてF2となる。
First, the pressure P1 of the fluid flowing in from the inlet 2a causes a pressure loss at the opening between the valve body 4 and the valve seat 3, and becomes F2.

弁体を図中下方向に押し下げる力F1は、弁座面積AV
とPlを乗じた値 F =AVxP、・・・(1) ダイアフラムを図中上方向に押し上げる力F2は、ダイ
アフラムの有効面積叩とPlを乗じた値F2=油xP、
・・・(2)また、弁体を
上へ押し上げる力F3は、弁座の面積AVとF2を乗じ
た値 F =AVxP2−(31 これらFl、F2.F3.及びFrがバランスした時の
弁体と弁座の間の開口部面積に対応した圧力損失により
、入口圧力P1で流入した流体が吐出時の圧力P2にな
るのであるから、(1)、 (2)、 (31式及びF
rの関係は次式の様になる。
The force F1 that pushes the valve body downward in the figure is the valve seat area AV.
and the value F2 multiplied by Pl = AVxP, ... (1) The force F2 that pushes the diaphragm upward in the figure is the value F2 multiplied by the effective area of the diaphragm and Pl = Oil x P,
...(2) Also, the force F3 that pushes the valve body upward is the value F2 multiplied by the area AV of the valve seat F = AVxP2 - (31 The valve when Fl, F2, F3. and Fr are balanced Due to the pressure loss corresponding to the opening area between the body and the valve seat, the fluid that flows in at the inlet pressure P1 becomes the pressure P2 at the time of discharge, so (1), (2), (Equation 31 and F
The relationship between r is as shown in the following equation.

Fr十F□=p2千F3 + f
”(4)上式中fは、流体が比例弁の中を流れる時に働
く流体力である。
Fr10F□=p2,000F3 + f
(4) In the above equation, f is the fluid force that acts when the fluid flows through the proportional valve.

fは値の他の項に比べて極めて少なく現実的には無視し
得る。
f is extremely small compared to other terms of value and can be ignored in reality.

さて、(4)式でfΣ0とおき、(1)、 (2)、
(31式を代入すると Fr十AvxP1=ADxP1+AvxP2 −−−
(5)これをF2に関して整理すると次式の様になる。
Now, by setting fΣ0 in equation (4), (1), (2),
(Substituting formula 31, Fr 0 AvxP1 = ADxP1 + AvxP2 ---
(5) When this is rearranged with respect to F2, it becomes as follows.

p2=キ■V−AI弊五 ・・・(6)V この式が本比例弁の基本特性を示す式であって、AVI
IADの様に設計を行なえば(6)式は、次式の様に簡
略化できる。
p2=K V-AI 5... (6) V This equation shows the basic characteristics of this proportional valve, and AVI
If designed like an IAD, equation (6) can be simplified as shown in the following equation.

Fr P、=i −(7)本式ではPl
が含まれておらず、またAVは一定値であり、F2はF
rのみの関数となっている。
Fr P, = i − (7) In this formula, Pl
is not included, AV is a constant value, and F2 is F
It is a function only of r.

即ち、Fr=一定とすればP2=一定であり、F2はP
□に無関係に一定値である。
That is, if Fr=constant, P2=constant, and F2 is P
It is a constant value regardless of □.

つまりガバナーとしての機能を有する訳である。In other words, it has the function of a governor.

またFrを変化させればF2はFrに正比例して変化す
る。
Furthermore, if Fr is changed, F2 changes in direct proportion to Fr.

F2は流出管(図示されない)を通じて吐出される流体
の圧力であり、吐出量とは次式の様な関係がある。
F2 is the pressure of the fluid discharged through the outflow pipe (not shown), and has a relationship with the discharge amount as shown in the following equation.

Q:吐出流量 Q=に−A−,/P2 K:比例定数 A:吐吐出管開面面 積ってFrを変化させてF2を制御すれば、吐出流量の
制御ができる訳である。
Q: Discharge flow rate Q=-A-, /P2 K: Proportionality constant A: Discharge tube open area If Fr is changed and F2 is controlled, the discharge flow rate can be controlled.

従って、電磁コイル13への通電量を制御することによ
り流体噴出量を制御することができる。
Therefore, by controlling the amount of current applied to the electromagnetic coil 13, the amount of fluid ejected can be controlled.

しかし、制御の対象となる流体が燃料ガスの場合には圧
力、流量とも各種のガスが存在する。
However, when the fluid to be controlled is fuel gas, there are various gases in both pressure and flow rate.

例えば市販LPGの場合には、供給圧力Pt = 28
0WH20が標準であり、これに対し吐出圧力P2は2
50mmH,0程度にしたいという様な場合もあり、ま
た一般の都市ガスの場合は、供給圧力P□=100mm
H201吐出圧力P2=5orH1H20という圧力が
割合と一般的なものである。
For example, in the case of commercially available LPG, the supply pressure Pt = 28
0WH20 is the standard, whereas the discharge pressure P2 is 2
There are cases where you want to set it to about 50mmH, 0, and in the case of general city gas, the supply pressure P = 100mm
The pressure of H201 discharge pressure P2=5orH1H20 is a common ratio.

本出願の考案者等の試験した結果においては、燃料ガス
で常用する範囲においては上記LPGのP2= 250
mH2Oという様な圧力を得る場合に、前出(7)式の
Frは最大の値となり、電磁石の磁気回路の設計寸法d
、D1.D29g、h、を等を厳密に選定しないと目的
の圧力に達しない事が判った。
According to the results of tests conducted by the inventors of the present application, P2 of the above LPG is 250 within the range of commonly used fuel gas.
When obtaining a pressure such as mH2O, Fr in equation (7) above becomes the maximum value, and the design dimension d of the electromagnet's magnetic circuit
, D1. It was found that unless D29g, h, etc. were selected strictly, the desired pressure could not be reached.

本考案は上記の点に鑑みて威されたもので、永久磁石、
固定鉄心及び外磁極の構成並びにこれらの相互位置関係
を1選択することにより、電磁反発力の効率向上を計り
実用に供することのできるコンパクトな流量制御弁を提
供することを目的とする。
The present invention was developed in view of the above points, and permanent magnets,
It is an object of the present invention to provide a compact flow control valve that can improve the efficiency of electromagnetic repulsion and can be put to practical use by selecting one configuration of a fixed core and an outer magnetic pole, and their mutual positional relationship.

即ち、本願考案は、流体の通路内に介装されダイアフラ
ムに支持された弁体と、該弁体に一体的に取付けられた
永久磁石と、外磁極の内部に設けられ前記永久磁石に対
向する固定鉄心を有し通電されると永久磁石とは反発す
る方向の極力を発生する電磁コイルとを備え、電磁反発
力と、ダイアフラム及び弁体に作用する流体圧とのバラ
ンスにより弁開度を制御する電磁式流量制御弁において
、前記固定鉄心の永久磁石対向側先端部の外径をd1永
久磁石の外径をDl、外磁極の永久磁石対向側に形成さ
れる開口の穴径をD2、外磁極の開口面と固定鉄心の永
久磁石対向側端面との距離をり1、固定鉄心と永久磁石
との最小間隙をgとした時、 d/D□=0.5〜0.9へD2/Ds=1.1〜1.
5゜h≦t/2十ノe 1/2 (D2−Dz)> 9
vなる条件を満足するよう構成した。
That is, the present invention has a valve body interposed in a fluid passageway and supported by a diaphragm, a permanent magnet integrally attached to the valve body, and a permanent magnet provided inside an outer magnetic pole facing the permanent magnet. It has a fixed iron core and is equipped with an electromagnetic coil that generates a maximum force in the direction of repelling the permanent magnet when energized, and the valve opening is controlled by the balance between the electromagnetic repulsion force and the fluid pressure acting on the diaphragm and valve body. In the electromagnetic flow control valve, the outer diameter of the tip of the fixed iron core on the side facing the permanent magnet is d1, the outer diameter of the permanent magnet is Dl, the hole diameter of the opening formed on the side of the outer magnetic pole facing the permanent magnet is D2, and the outside diameter is D1. When the distance between the opening surface of the magnetic pole and the end face of the fixed core facing the permanent magnet is 1, and the minimum gap between the fixed core and the permanent magnet is g, d/D□=0.5 to 0.9D2/ Ds=1.1-1.
5゜h≦t/20e 1/2 (D2-Dz)>9
It is configured to satisfy the condition v.

従って、かかる条件にすることにより、前述した条件を
満足するよう固定鉄心、外磁極並びに永久磁石を構成配
置すれば永久磁石に対する電磁反発力の効率を改善でき
、同一起磁力において従来のものより大きな電磁反発力
を得ることができる。
Therefore, by setting these conditions, if the fixed iron core, outer magnetic pole, and permanent magnet are configured and arranged so as to satisfy the above-mentioned conditions, the efficiency of the electromagnetic repulsive force against the permanent magnet can be improved, and the efficiency of the electromagnetic repulsion force against the permanent magnet can be improved, and it is larger than the conventional one for the same magnetomotive force. You can obtain electromagnetic repulsion.

以下、本考案の1実施例を図面に基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図は本実施例による流量制御弁の固定鉄心、外磁極
及び永久磁石の形状並びに相互位置関係をモデル化した
ものである。
FIG. 2 is a model of the shapes and mutual positional relationships of the fixed iron core, outer magnetic pole, and permanent magnet of the flow control valve according to this embodiment.

図中、15は従来と同様、図示しない弁体と一体に上下
動可能な永久磁石、16は弁本体と固着される側の壁面
中央部に円形の開口16aが形成された外磁極、17は
外磁極16内に設けられた固定鉄心で、一側の端面が外
磁極16上壁の略中夫に固着され他側の端面が永久磁石
15に対向している。
In the figure, 15 is a permanent magnet that can move up and down integrally with the valve body (not shown), 16 is an outer magnetic pole with a circular opening 16a formed in the center of the wall surface on the side that is fixed to the valve body, and 17 is a permanent magnet that can move up and down as in the conventional case. A fixed iron core is provided in the outer magnetic pole 16 , and one end face is fixed to a substantially central core of the upper wall of the outer magnetic pole 16 , and the other end face faces the permanent magnet 15 .

そして、永久磁石15の外径をDl、厚さをt1外磁極
16に形成された開口16aの穴径をD2、固定鉄心1
7の永久磁石15と対向している先端部の外径をd1更
に永久磁石15と固定鉄心17の最小間隙をg1外磁極
16の開口面、即ち弁本体と固着さされた面2と固定鉄
心17の永久磁石対向側端面との距離をhとした時、こ
れらの形状並びに相互位置関係は次の条件を満足するよ
うに構成されている。
Then, the outer diameter of the permanent magnet 15 is Dl, the thickness is t1, the hole diameter of the opening 16a formed in the outer magnetic pole 16 is D2, and the fixed iron core 1
The outer diameter of the tip facing the permanent magnet 15 of No. 7 is d1, and the minimum gap between the permanent magnet 15 and the fixed iron core 17 is g1. When the distance from the end face of the magnet 17 facing the permanent magnet is h, the shapes and mutual positional relationships thereof are configured to satisfy the following conditions.

1 d/D□=0.5〜0.95 2 D2/D1 = 1−1〜1.5 功≦t/2+9 4 1/2 (D2 DI)> 9 次にこれら条件と電磁反発力Frとの関係を第3図〜第
5図に示す。
1 d/D□=0.5~0.95 2 D2/D1 = 1-1~1.5 Gong≦t/2+9 4 1/2 (D2 DI)>9 Next, these conditions and the electromagnetic repulsion force Fr The relationships are shown in FIGS. 3 to 5.

第3図は固定鉄心の端部の外径dと永久磁石の外径D1
との比と電磁反発力Frとの関係を一定起磁力下のもと
で示したものである。
Figure 3 shows the outer diameter d of the end of the fixed iron core and the outer diameter D1 of the permanent magnet.
This figure shows the relationship between the ratio of and the electromagnetic repulsive force Fr under a constant magnetomotive force.

尚、起磁力は電磁コイルの巻数をN、該コイルに流れる
電流をIとするとN、 Iで表わされるものである。
The magnetomotive force is expressed by N and I, where N is the number of turns of the electromagnetic coil and I is the current flowing through the coil.

図よりd/DIが約0.75付近で電磁反発力Frが最
大を示し、d/D1が0.5〜0.95の範囲内におい
て上記反発力Frが有効に作用することがわかる。
From the figure, it can be seen that the electromagnetic repulsive force Fr shows a maximum when d/DI is around 0.75, and the repulsive force Fr acts effectively when d/D1 is in the range of 0.5 to 0.95.

第4図は一定起磁力下で外磁極の開口の穴径D2と永久
磁石の外径D□との比と電磁反発力Frとの関係を示し
、D2/DIが略1.1〜1.5の範囲内にあれば電磁
反発力Frが有効に作用することがわかる。
FIG. 4 shows the relationship between the ratio of the hole diameter D2 of the opening of the outer magnetic pole to the outer diameter D□ of the permanent magnet and the electromagnetic repulsion force Fr under a constant magnetomotive force, and D2/DI is about 1.1 to 1. It can be seen that within the range of 5, the electromagnetic repulsive force Fr acts effectively.

即ちD2/D1が1.1よりも小さくなると外磁極16
と永久磁石15との吸引力が顕著になり電磁反発力Fr
を弱め、またD2/Dtが1.5より大きくなると電磁
反発力Fr自体が弱くなってしまう。
That is, when D2/D1 becomes smaller than 1.1, the outer magnetic pole 16
The attractive force between the permanent magnet 15 and the permanent magnet 15 becomes remarkable, and the electromagnetic repulsion force Fr
If D2/Dt becomes larger than 1.5, the electromagnetic repulsion force Fr itself becomes weaker.

第5図は外磁極16の2面に対して永久磁石15の上部
端面を0〜t(永久磁石15の厚さ分)まで変化させた
場合の永久磁石15と外磁極16とに作用する軸方向の
反発力と吸引力を示めす。
FIG. 5 shows the axis that acts on the permanent magnet 15 and the outer magnetic pole 16 when the upper end surface of the permanent magnet 15 is changed from 0 to t (thickness of the permanent magnet 15) with respect to the two surfaces of the outer magnetic pole 16. Indicates directional repulsive and attractive forces.

図において、永久磁石15の厚さの中間部が上記2面に
あるとき永久磁石15と外磁極16間に作用する力は零
となり、この位置から永久磁石15がどちらかにずれる
と、元の位置に戻ろうとする磁気力Fが作用する。
In the figure, when the middle part of the thickness of the permanent magnet 15 is on the above two sides, the force acting between the permanent magnet 15 and the outer magnetic pole 16 becomes zero, and if the permanent magnet 15 shifts from this position to either side, it returns to its original state. A magnetic force F acts to return it to its position.

また、永久磁石15のどちらか一端が2面の位置にある
ときには上記磁気力Fは零となるような傾向を示すこと
がわかる。
It can also be seen that when either end of the permanent magnet 15 is at the position of the two surfaces, the magnetic force F tends to be zero.

このことから、電磁反発力Frを有効に利用するには第
2図中のXの値を0〜t/2の範囲内にすればよい。
From this, in order to effectively utilize the electromagnetic repulsive force Fr, the value of X in FIG. 2 may be set within the range of 0 to t/2.

以上、第3図〜第5図で明らかなように、前述した1)
〜4)の条件を満足するよう固定鉄心、外磁極並びに永
久磁石を構成配置すれば永久磁石15に対する電磁反発
力の効率を改善でき、同一起磁力において従来のものよ
り大きな電磁反発力を得ることができる。
As mentioned above, as is clear from Figures 3 to 5, the above-mentioned 1)
By configuring and arranging the fixed core, the outer magnetic pole, and the permanent magnets so as to satisfy the conditions of ~4), the efficiency of the electromagnetic repulsion force against the permanent magnet 15 can be improved, and a larger electromagnetic repulsion force can be obtained than the conventional one with the same magnetomotive force. I can do it.

第6図に永久磁石に作用する電磁反発力Frと起磁力と
の関係を従来の制御弁と本発明のものとを比較したもの
を示す、図中、曲線Aが本発明であり、曲線Bは従来の
ものを示し格段の差があることがわかる。
FIG. 6 shows a comparison of the relationship between the electromagnetic repulsion force Fr acting on the permanent magnet and the magnetomotive force between a conventional control valve and that of the present invention. In the figure, curve A is for the present invention, and curve B is for the present invention. shows the conventional one, and it can be seen that there is a significant difference.

これにより、従来に比べて電磁コイルの巻線数を約17
2、巻線抵抗を約1n程度にすることが可能であり流量
制御弁をコンパクトなものにすることができる。
As a result, the number of turns of the electromagnetic coil has been reduced to approximately 17 compared to the conventional method.
2. It is possible to reduce the winding resistance to about 1n, and the flow control valve can be made compact.

尚、本考案では弁部は一次圧制御形のガバナを示したが
、ダイアフラムに作用する反力が制御弁の所定の一次圧
変動範囲内において略一定となるような機能を有する弁
部構造をもつものであればよいことは言うまでもない。
In the present invention, the valve part is a primary pressure control type governor, but it is also possible to use a valve part structure that has a function such that the reaction force acting on the diaphragm is approximately constant within a predetermined primary pressure fluctuation range of the control valve. Needless to say, it's good as long as it lasts.

以上述べたように本考案によれば、永久磁石に対する電
磁反発力の効率が極めてよく、このため電磁コイルの巻
線数が少なくてすみ以って制御弁をコンパクトなものに
することができ従来困難であった実用範囲内の大きさで
流量制御弁を構成することができる。
As described above, according to the present invention, the efficiency of the electromagnetic repulsive force against the permanent magnet is extremely high, and as a result, the number of windings of the electromagnetic coil can be reduced, making it possible to make the control valve more compact than before. It is possible to configure a flow control valve with a size within a practical range, which was previously difficult.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電磁式流量制御弁の構造を説明する縦断
面図、第2図は本考案に係る電磁式流量制御弁の主要部
の1実施例をモデル的に示した説明図、第3図は固定鉄
心と永久磁石との径の比率と電磁反発力との関係を示す
図、第4図は永久磁石と外磁極に設けた穴との径の比率
と電磁反発力との関係を示す図、第5図は永久磁石の位
置と、その時の永久磁石と外磁極間に作用する磁気力と
の関係を示す図、第6図は従来と本考案による各制御弁
の永久磁石に対する電磁反発力を比較した図である。 1・・・・・・弁本体、4・・・・・・弁体、7・・・
・・・ダイアフラム、13・・・・・・電磁コイル、1
5・・・・・・永久磁石、16・・・・・・外磁極、1
6a・・・・・・開口、17・・・・・・固定鉄心。
FIG. 1 is a vertical cross-sectional view explaining the structure of a conventional electromagnetic flow control valve, FIG. Figure 3 shows the relationship between the ratio of the diameters of the fixed iron core and the permanent magnet and the electromagnetic repulsion force, and Figure 4 shows the relationship between the ratio of the diameters of the permanent magnet and the hole provided in the outer magnetic pole and the electromagnetic repulsion force. Figure 5 is a diagram showing the relationship between the position of the permanent magnet and the magnetic force acting between the permanent magnet and the outer magnetic pole at that time, and Figure 6 is a diagram showing the relationship between the position of the permanent magnet and the magnetic force acting between the permanent magnet and the outer magnetic pole. It is a diagram comparing repulsion forces. 1... Valve body, 4... Valve body, 7...
...Diaphragm, 13...Electromagnetic coil, 1
5...Permanent magnet, 16...Outer magnetic pole, 1
6a...Opening, 17...Fixed iron core.

Claims (1)

【実用新案登録請求の範囲】 流体の通路内に介装されダイアフラムに支持された弁体
と、該弁体に一体的に取付けられた永久磁石と、外磁極
の内部に設けられ前記永久磁石に対向する固定鉄心を有
し通電されると永久磁石とは反発する方向の磁力を発生
する電磁コイルとを備え、電磁反発力と、ダイアフラム
及び弁体に作用する流体圧とのバランスにより弁開度を
制御する電磁式流量制御弁において、前記固定鉄心の永
久磁石対向側先端部の外径d1永久磁石の外径をD□、
外磁極の永久磁石対向側に形成される開口の穴径をD2
、外磁極の開口面と固定鉄心の永久磁石対向側端面との
距離をh、固定鉄心と永久磁石との最小間隙をgとした
時、 d/D、=0.5〜0.9へD2/D□=1.1〜1.
5゜h≦t/2+9.172 (D2−Dl)>ダ。 なる条件を満足するよう構成したことを特徴とする電磁
式流量制御弁。
[Claims for Utility Model Registration] A valve body interposed in a fluid passage and supported by a diaphragm, a permanent magnet integrally attached to the valve body, and a permanent magnet provided inside an outer magnetic pole. Equipped with an electromagnetic coil that has fixed iron cores facing each other and generates magnetic force in a direction that repels the permanent magnet when energized, the valve opening is determined by the balance between the electromagnetic repulsion force and the fluid pressure acting on the diaphragm and valve body. In the electromagnetic flow control valve, the outer diameter of the permanent magnet is D□,
The hole diameter of the opening formed on the side facing the permanent magnet of the outer magnetic pole is D2.
, when the distance between the opening surface of the outer magnetic pole and the end surface of the fixed core facing the permanent magnet is h, and the minimum gap between the fixed core and the permanent magnet is g, d/D = 0.5 to 0.9D2 /D□=1.1~1.
5゜h≦t/2+9.172 (D2-Dl)>da. An electromagnetic flow control valve characterized by being configured to satisfy the following conditions.
JP11976278U 1978-08-31 1978-08-31 Solenoid flow control valve Expired JPS6018701Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11976278U JPS6018701Y2 (en) 1978-08-31 1978-08-31 Solenoid flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11976278U JPS6018701Y2 (en) 1978-08-31 1978-08-31 Solenoid flow control valve

Publications (2)

Publication Number Publication Date
JPS5536738U JPS5536738U (en) 1980-03-08
JPS6018701Y2 true JPS6018701Y2 (en) 1985-06-06

Family

ID=29075329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11976278U Expired JPS6018701Y2 (en) 1978-08-31 1978-08-31 Solenoid flow control valve

Country Status (1)

Country Link
JP (1) JPS6018701Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082542Y2 (en) * 1989-09-22 1996-01-29 株式会社ユニシアジェックス Solenoid valve device

Also Published As

Publication number Publication date
JPS5536738U (en) 1980-03-08

Similar Documents

Publication Publication Date Title
US3837618A (en) Electro-pneumatic valve
WO2002006911A3 (en) Proportional pressure adjustment valve
US4262877A (en) Solenoid fluid valves
JPH0215751B2 (en)
JPH0219845Y2 (en)
JPS60159481A (en) Control valve
JPS6018701Y2 (en) Solenoid flow control valve
JP2685732B2 (en) Pilot kick type solenoid valve
JPH06241341A (en) Solenoid valve
US4046351A (en) Solenoid fluid valves
US4088975A (en) Alternating current solenoids
JPH0248793B2 (en)
JPS6128943Y2 (en)
US20020195580A1 (en) Solenoid valve with magnetic fluid filled between a magnetically conductive winding reel and a magnetically insulating tube
JPS5846861A (en) Electromagnetic drive device
JP3038643B2 (en) Three-way valve seat structure
JP2551917Y2 (en) solenoid valve
JPH0353095Y2 (en)
JPH0384285A (en) Flow rate regulating valve with shutoff function
JP2000120911A (en) Solenoid valve
JPS589287Y2 (en) Solenoid flow control valve
JP3074709B2 (en) Flow control valve
JPH0720461Y2 (en) solenoid valve
JPH0434575U (en)
JPS6334245Y2 (en)