JPS60186083A - Distributed feedback type semiconductor laser element - Google Patents

Distributed feedback type semiconductor laser element

Info

Publication number
JPS60186083A
JPS60186083A JP60015422A JP1542285A JPS60186083A JP S60186083 A JPS60186083 A JP S60186083A JP 60015422 A JP60015422 A JP 60015422A JP 1542285 A JP1542285 A JP 1542285A JP S60186083 A JPS60186083 A JP S60186083A
Authority
JP
Japan
Prior art keywords
waveguide
active layer
directions
laser
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60015422A
Other languages
Japanese (ja)
Inventor
Naoki Kayane
茅根 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60015422A priority Critical patent/JPS60186083A/en
Publication of JPS60186083A publication Critical patent/JPS60186083A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To radiate a laser beam of isotropic high output having a small expensing angle in a single mode by providing a waveguide which has an active layer in a semiconductor, and forming the surface of the waveguide in irregular periodical surface in two dimensions therein, and uniformly exciting the active layer. CONSTITUTION:A waveguide 2 which contains an active layer is formed on a semiconductor substrate 1, and a semiconductor layer 3 is formed thereon, and an irregular periodical surface is formed on the surface of the waveguide 2 in the directions (x) and (y). When a current is flowed to the element or a light is excited, a distributed feedback occurs due to the diffraction grating in both the directions (x) and (y) to generate lasers in the directions (xsi) and (eta), and the sole distributed feedbacks of the grating in the directions (x) and (y) are generated. Accordingly, the laser lights of the directions (xsi) and (eta) are coupled, and the entire surface of the grating is oscillated in the same phase. In this case, the grating having high order grating of even number is provided and the period of the irregular surface is formed near the even times of the laser oscillation half wavelength of the laser in the active layer. Then, the laser light in the waveguide is radiated from the entire surface in the upward perpendicular direction from x-y plane. Thus, the two-dimensional expanding angle can be reduced and the large light output can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、2次元回折格子を設けた半導体レーザ素子に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor laser device provided with a two-dimensional diffraction grating.

〔発明の背景〕[Background of the invention]

従来、−次元の回折格子を設けた分布帰還形レーザは、
単−縦モードが得られることや、光集積回路への組込み
が容易であるなどの利点を有しており、半導体において
は、室温連続動作も確認されている(日本結晶学会誌、
V、18.397〜399頁(1976)参照)。
Conventionally, a distributed feedback laser equipped with a -dimensional diffraction grating is
It has advantages such as being able to obtain a single-longitudinal mode and being easy to incorporate into optical integrated circuits, and continuous operation at room temperature has been confirmed in semiconductors (Journal of the Japanese Society of Crystallography,
V, 18.397-399 (1976)).

ところで、高次の回折格子を設けると、導波路内のレー
ザ光が外部へ散乱されるが、この光は、長い区間にわた
ってコヒーレントに散乱されるので、拡がり角の小さな
ビームが得られる。ところが−次元の回折格子の場合に
は、一方向にのみ拡がり角が狭くなるが、他方向につい
ては、従来通りである。
By the way, when a high-order diffraction grating is provided, the laser light within the waveguide is scattered to the outside, but since this light is coherently scattered over a long section, a beam with a small divergence angle can be obtained. However, in the case of a -dimensional diffraction grating, the divergence angle is narrowed only in one direction, but the other directions remain the same as before.

〔発明の目的及び概要〕[Purpose and outline of the invention]

本発明は、この欠点を解消したもので、半導体内に活性
層を含む導波路を設け、この導波路の表面、あるいは、
その内部に周期性のある凹凸を2次元的に作りつけレー
ザ光が導路の外部に散乱されるようにし、その散乱光を
素子外部に取り出せるようにし、かつ、前記2次元周期
構造を持つ導波路内の活性層を一様に励起することを特
徴とずる分布帰還形半導体レーザ素子を提供するもので
ある。
The present invention eliminates this drawback by providing a waveguide including an active layer in a semiconductor, and
A periodic unevenness is created two-dimensionally inside the guide so that the laser light is scattered outside the guide, and the scattered light can be extracted to the outside of the element, and the guide with the two-dimensional periodic structure The present invention provides a shear distributed feedback semiconductor laser device characterized by uniformly exciting an active layer within a wave path.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

第1図は本発明の実施の一例を示す概略説明図であり、
同図を用いて本発明の詳細な説明する。
FIG. 1 is a schematic explanatory diagram showing an example of implementation of the present invention,
The present invention will be described in detail using the same figure.

第1図(a)に示すように、半導体基板1上に活性層を
含む導波路2、その上に半導体層3を設け、この導波路
20表面に周期性のある凹凸を第1図(b)に示すよう
に、X方向およびX方向につくりつけたものである。こ
の凹凸の周期は前記活性層内のレーザ発振半波長の整数
倍近傍とする。4,5は電極である。この素子に電流を
流すか、光で励起すると、X方向、X方向両方の回折格
子による分布帰還が生じてξ方向、η方向のレーザ発振
が4ミじる。ところが、X方向とX方向の各々の回折格
子単独の分布帰還も生じるので、ξ方向とη方向のレー
ザ光が結合し、回折格子のある面全体が同一位相で発振
する。この場合、偶数次の高次の回折格子を設けると、
すなわち、凹凸の周期を活性層内のレーザ発振半波長の
偶数倍の近傍にすると、導波路内のレーザ光は、x −
y面から上方垂直方向に放射される。この放射光は面全
体から放射されるので、2次元的に拡がり角の小さなレ
ーザ光が得られる。拡がり角は大体1°以内、10ミリ
ラジアン以内である。また、レーザ光は広し・面積から
放射されるので、大きな光出力が得られる。
As shown in FIG. 1(a), a waveguide 2 including an active layer is provided on a semiconductor substrate 1, and a semiconductor layer 3 is provided thereon, and periodic irregularities are formed on the surface of the waveguide 20 as shown in FIG. ), they are constructed in the X direction and in the X direction. The period of this unevenness is set to be around an integral multiple of a half wavelength of laser oscillation in the active layer. 4 and 5 are electrodes. When a current is passed through this element or it is excited by light, distributed feedback occurs due to the diffraction gratings in both the X and X directions, and the laser oscillations in the ξ and η directions are distorted by 4 times. However, since distributed feedback of the diffraction gratings in the X direction and the X direction alone also occurs, the laser beams in the ξ direction and the η direction are combined, and the entire surface of the diffraction grating oscillates with the same phase. In this case, if an even-order high-order diffraction grating is provided,
In other words, when the period of the unevenness is set close to an even number multiple of the laser oscillation half wavelength in the active layer, the laser light in the waveguide becomes x −
It is radiated vertically upward from the y-plane. Since this radiation light is emitted from the entire surface, laser light with a small two-dimensional spread angle can be obtained. The divergence angle is generally within 1° and within 10 milliradians. Furthermore, since the laser beam is emitted from a wide area, a large optical output can be obtained.

−例として、回折格子のある領域の大きさが200μm
 X 200μmとすると、パルスで20Wの出力が得
られる。また、分布帰還形であるから、縦モードは当然
単一モードである。このような素子のレーザ発振条件を
2次元の結合波方程式を解いてめると、従来の分布帰還
形レーザより小さなしきい電流密度で発振することが明
らかとなった。上記の素子の例では、室温で大体1,2
人程度のしきい電流値となる。
- As an example, the size of the area with the diffraction grating is 200 μm
If X is 200 μm, a pulse output of 20 W can be obtained. Furthermore, since it is a distributed feedback type, the longitudinal mode is naturally a single mode. When we solved the two-dimensional coupled wave equation for the laser oscillation conditions for such a device, it became clear that the device oscillates at a lower threshold current density than conventional distributed feedback lasers. In the above element example, approximately 1,2
The threshold current value is about that of a human.

本発明に用いる半導体材料としては、0.7〜0,9μ
mの発振波長では GaAlAs系を用いる。n形Ga
Asを基板とし、その上にn −Al□、3.GaO,
7AS’+P”0.05GaO,9!5As(活性層)
、P−Alo2Gao8AS、1 ]’ −AtolGa o、As の各層を順次エピタ
キシャル成長させ、その表面に0.233μ7n周期の
凹凸をX方向およびX方向にプリズム露光法等の従来技
術を用いて作り、さらに、その上にAlo3Gao7A
s層を成長させる。素子の中央から光が取り出せるよう
に、中央部分(上記の例では200μm x 200 
ttm )だけ残してOr −A、u電極を蒸着で形成
する。基板側には、AuGeNi −All 電極を蒸
着で形成する。連続動作させる場合は、P側をInある
いはAu −Snを半田として、Slあるいはダイヤモ
ンドにボンディングする。この場合、基板側の金属電極
膜に200μm×200μmの穴をあけ、さらに、Ga
As基板中にもn A l o、3 Ga o、 7 
As層まで化学食刻によって穴をあける。これKより、
レーザ光が基板によって吸収されるのを防ぐことができ
る。1.1〜1.5μmの発振波長では、Oa I n
A s P系を用いる。この場合、基板にIr1l)を
用いれば、連続動作の場合でも、基板がレーザ光に対し
て透明なので、基板に穴をあける必要はない。
As the semiconductor material used in the present invention, 0.7 to 0.9μ
For the oscillation wavelength of m, a GaAlAs system is used. n-type Ga
As a substrate, n-Al□ on it, 3. GaO,
7AS'+P"0.05GaO, 9!5As (active layer)
. On top of that Alo3Gao7A
Grow the s-layer. In order to extract light from the center of the element, the central part (in the above example, 200 μm x 200
ttm), the Or-A and u electrodes are formed by vapor deposition. On the substrate side, an AuGeNi-All electrode is formed by vapor deposition. For continuous operation, the P side is bonded to Sl or diamond using In or Au-Sn solder. In this case, a hole of 200 μm x 200 μm is made in the metal electrode film on the substrate side, and a Ga
There are also n A lo, 3 Ga o, 7 in the As substrate.
A hole is made by chemical etching up to the As layer. This is from K.
It is possible to prevent laser light from being absorbed by the substrate. At an oscillation wavelength of 1.1-1.5 μm, Oa I n
The A s P system is used. In this case, if Ir1l) is used for the substrate, there is no need to make holes in the substrate because the substrate is transparent to laser light even in the case of continuous operation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、縦、横単−モー
ドで、拡がり角の小さな、等方向な高出力のレーザ・ビ
ームを放射する半導体レーザ素子が得られる。また、本
発明によれば、素子表面からレーザ光が得られるので、
他の素子、例えば、FB’l’などとの集積化も容易で
ある。
As described above, according to the present invention, it is possible to obtain a semiconductor laser device that emits an equidirectional, high-output laser beam in single longitudinal and transverse modes with a small divergence angle. Further, according to the present invention, since laser light is obtained from the element surface,
Integration with other elements, such as FB'l', is also easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のレーザ素子の概略説明図である0 図において、 1:半導体基板 2:活性層を含む導波路 3:半導体層 4.5゛電極 代理人弁理士 中 村 純之助 FIG. 1 is a schematic explanatory diagram of the laser device of the present invention. In the figure, 1: Semiconductor substrate 2: Waveguide including active layer 3: Semiconductor layer 4.5゛ electrode Representative Patent Attorney Junnosuke Nakamura

Claims (1)

【特許請求の範囲】[Claims] ]、半導体内に活性層を含む導波路が設けられている半
導体レーザ素子において、前記活性層を含む導波路の表
面あるいは内部に凹凸を2次元的に設けて前記導波路内
で発振されたレーザ光が該導波路の外部に散乱されるよ
うにし、前記2次元周期構造をもつ導波路内の前記活性
層を一様に励起するとともに前記散乱光を素子外部に取
り出せるようにしたことを特徴とする分布帰還形半導体
レーザ素子。
], in a semiconductor laser device in which a waveguide including an active layer is provided in a semiconductor, a laser is oscillated within the waveguide by two-dimensionally providing unevenness on the surface or inside of the waveguide including the active layer. The light is scattered to the outside of the waveguide, the active layer in the waveguide having the two-dimensional periodic structure is uniformly excited, and the scattered light is taken out to the outside of the device. Distributed feedback semiconductor laser device.
JP60015422A 1985-01-31 1985-01-31 Distributed feedback type semiconductor laser element Pending JPS60186083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60015422A JPS60186083A (en) 1985-01-31 1985-01-31 Distributed feedback type semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60015422A JPS60186083A (en) 1985-01-31 1985-01-31 Distributed feedback type semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS60186083A true JPS60186083A (en) 1985-09-21

Family

ID=11888326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60015422A Pending JPS60186083A (en) 1985-01-31 1985-01-31 Distributed feedback type semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS60186083A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489491A (en) * 1987-09-30 1989-04-03 Hitachi Ltd Surface luminous semiconductor laser
EP0309744A2 (en) * 1987-09-29 1989-04-05 Siemens Aktiengesellschaft Arrangement with a thin-film waveguide extending in a flat manner
US4837775A (en) * 1985-10-21 1989-06-06 General Electric Company Electro-optic device having a laterally varying region
US4897844A (en) * 1986-04-03 1990-01-30 Schimpe Robert M Information transmission by mode modulation and laser oscillators thereof
US4975923A (en) * 1987-04-21 1990-12-04 Plessey Overseas Limited Semiconductor diode laser array
US5043994A (en) * 1989-06-15 1991-08-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
WO2003019741A3 (en) * 2001-08-24 2004-02-12 Bookham Technology Plc Surface emitting laser

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837775A (en) * 1985-10-21 1989-06-06 General Electric Company Electro-optic device having a laterally varying region
US4897844A (en) * 1986-04-03 1990-01-30 Schimpe Robert M Information transmission by mode modulation and laser oscillators thereof
US4975923A (en) * 1987-04-21 1990-12-04 Plessey Overseas Limited Semiconductor diode laser array
EP0309744A2 (en) * 1987-09-29 1989-04-05 Siemens Aktiengesellschaft Arrangement with a thin-film waveguide extending in a flat manner
US4869568A (en) * 1987-09-29 1989-09-26 Siemens Aktiengesellschaft Arrangement comprising a planarly extending thin-film waveguide
JPS6489491A (en) * 1987-09-30 1989-04-03 Hitachi Ltd Surface luminous semiconductor laser
US4894835A (en) * 1987-09-30 1990-01-16 Hitachi, Ltd. Surface emitting type semiconductor laser
US5043994A (en) * 1989-06-15 1991-08-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
WO2003019741A3 (en) * 2001-08-24 2004-02-12 Bookham Technology Plc Surface emitting laser

Similar Documents

Publication Publication Date Title
JP2768672B2 (en) Surface emitting semiconductor laser
US5345466A (en) Curved grating surface emitting distributed feedback semiconductor laser
US3484713A (en) Two-stage semiconductor coherent radiation source
JP2008004743A (en) Semiconductor laser array and optical apparatus
US4025939A (en) Semiconductor laser device and a method for fabricating the same
JPS60186083A (en) Distributed feedback type semiconductor laser element
US3768037A (en) Semiconductor diode laser device
JP2889626B2 (en) Semiconductor laser
JPS6395690A (en) Surface emission type semiconductor laser
JPS59152683A (en) Surface light emitting semiconductor laser
JPH04192483A (en) Semiconductor laser array device
JPS5980984A (en) Surface illuminant distribution feedback type semiconductor laser element
JPH04196187A (en) Method of driving semiconductor laser array and device thereof
JPH05226776A (en) Laser diode array
JPS63164290A (en) Semiconductor laser device
JP2817174B2 (en) Semiconductor laser
JP3144821B2 (en) Semiconductor laser device
RU2153745C1 (en) Semiconductor laser
JPH01310585A (en) Semiconductor laser device
JP2688443B2 (en) Semiconductor laser device
JPS6118189A (en) Semiconductor laser array device and manufacture thereof
JPH02201989A (en) Self-oscillation semiconductor laser device
JPS62162385A (en) Semiconductor laser device
JPS5948973A (en) Semiconductor laser
Uematsu et al. Characteristics of grating-coupled GaAs-GaAlAs lasers