JPS6018602B2 - Method for producing high temperature reducing gas from light hydrocarbons - Google Patents

Method for producing high temperature reducing gas from light hydrocarbons

Info

Publication number
JPS6018602B2
JPS6018602B2 JP7100077A JP7100077A JPS6018602B2 JP S6018602 B2 JPS6018602 B2 JP S6018602B2 JP 7100077 A JP7100077 A JP 7100077A JP 7100077 A JP7100077 A JP 7100077A JP S6018602 B2 JPS6018602 B2 JP S6018602B2
Authority
JP
Japan
Prior art keywords
gas
reducing gas
temperature
carbon
steam reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7100077A
Other languages
Japanese (ja)
Other versions
JPS545896A (en
Inventor
太 高橋
昭 鈴木
喬彦 白井
和雄 店網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP7100077A priority Critical patent/JPS6018602B2/en
Publication of JPS545896A publication Critical patent/JPS545896A/en
Publication of JPS6018602B2 publication Critical patent/JPS6018602B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 本発明は軽質炭化水素からの高温還元ガスの製造方法に
関し、詳しくは軽質炭化水素の水蒸気教質を二段に分け
るとともに第一段の水蒸気改費を比較的低温にて行なう
ことによって熱効率よくしかも良質の高温還元ガスを製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-temperature reducing gas from light hydrocarbons, and more specifically, the present invention relates to a method for producing high-temperature reducing gas from light hydrocarbons. The present invention relates to a method for producing high-temperature reducing gas with high thermal efficiency and high quality.

一般に、ガスおよびナフサ留分に相当する竪質炭化水素
を原料として水蒸気教質を行ない直接製鉄用の高温還元
ガスを製造する場合、ェタン以上の竪質炭化水素におい
てはメタンと比較して炭素対水素比(原子比)が高いた
め、触媒性能の点から水蒸気の導入量を多くして酸素対
炭素比(原子比)の高い条件下で水蒸気改質を行なわな
いと勉煤管内における炭素析出などのトラブルが生ずる
In general, when steam-cooking is performed using vertical hydrocarbons equivalent to gas and naphtha fractions as raw materials to directly produce high-temperature reducing gas for steelmaking, the carbon content of vertical hydrocarbons of ethane and higher is higher than that of methane. Since the hydrogen ratio (atomic ratio) is high, from the viewpoint of catalyst performance, unless the amount of steam introduced is increased and steam reforming is performed under conditions with a high oxygen-to-carbon ratio (atomic ratio), carbon precipitation in the study soot tube may occur. Problems will occur.

そのため、従来は第1図に示す如く、まず水蒸気敢質装
置1に原料たる軽質炭化水素と水蒸気を高い酸素対炭素
比(原子比)で導入し700〜850ooの高温にて水
蒸気改質を行なって改質ガスを製造し、次いでこのガス
を廃熱ボイラー2にて急冷し、さらに一酸化炭素変成反
応器3にてガス中の一酸化炭素に水蒸気を反応させて炭
素ガスと水素に変換し、その後冷却器4にて冷却してか
ら気液分離器5に導入して水分を除去し、さらに炭酸ガ
ス除去装置6にて炭酸ガスを除去して所望の組成の還元
ガスとして、しかる後に加熱器7にて昇温せしめた高温
還元ガスを製造していた。
Therefore, conventionally, as shown in Fig. 1, light hydrocarbons and steam as raw materials are first introduced into a steam reformer 1 at a high oxygen to carbon ratio (atomic ratio), and steam reforming is performed at a high temperature of 700 to 850 oo. This gas is then rapidly cooled in a waste heat boiler 2, and further in a carbon monoxide shift reactor 3, carbon monoxide in the gas is reacted with steam to convert it into carbon gas and hydrogen. After that, it is cooled in a cooler 4 and then introduced into a gas-liquid separator 5 to remove moisture, and then carbon dioxide is removed in a carbon dioxide removal device 6 to produce a reducing gas with a desired composition, which is then heated. A high-temperature reducing gas was produced by raising the temperature in vessel 7.

しかし、上記従来法では水蒸気政質装置1から出る高温
のガスを後続する各工程にて、常温程度にまで冷却する
ため大量のスチームが副生するとともに、得られた還元
ガスを製鉄用等に利用するために、さらに加熱器7にて
800〜950午0に再加熱する必要があった。
However, in the above-mentioned conventional method, a large amount of steam is produced as a by-product because the high-temperature gas emitted from the steam conditioning device 1 is cooled down to room temperature in each subsequent process, and the resulting reducing gas is used for steel manufacturing, etc. In order to use it, it was necessary to reheat it in the heater 7 from 800 to 950 o'clock.

このように従来方法では高温の還元ガスを一度冷却して
から再び加熱するという極めて熱効率の悪い方法が探ら
れており、しかも大量に創生するスチームを処理する対
策を講じなければならなかった。また再加熱器内では一
酸化炭素の不均化反応(次OZC02十C↓)による炭
素析出およびメタンの熱分解反応による炭素析出の問題
をも包含している。
As described above, the conventional method involves cooling the high-temperature reducing gas and then heating it again, which is an extremely inefficient method of thermal efficiency, and measures had to be taken to deal with the large amount of steam generated. Furthermore, within the reheater, problems include carbon precipitation due to the disproportionation reaction of carbon monoxide (the following OZC020C↓) and carbon precipitation due to the thermal decomposition reaction of methane.

そこで本発明者らは、上記従来法の欠点を克服して熱効
率よくかつ良質高温還元ガスを大量に製造することので
きる方法を開発すべく鋭意研究を重ねた。
Therefore, the present inventors have conducted extensive research in order to develop a method that can overcome the drawbacks of the above-mentioned conventional methods and produce a large amount of high-quality, high-temperature reducing gas with high thermal efficiency.

その結果、水蒸気改質を二段階に分けて行ない、かつ第
一段目の水蒸気敦質を比較的低温で行なうことによって
上記目的を達成しうろことを見出し、本発明を完成する
に至った。すなわち本発明は、軽質炭化水素を原料とし
て高温還元ガスを製造する方法において、第一段の水蒸
気改質を450〜550oo、常圧〜50k9/地G、
酸素対炭素比(原子比)が2〜5の条件下にて行ない、
次いで前記第一段の水蒸気改質で得らる改質ガスの脱水
蒸気および脱炭酸ガス処理を行なった後、第二段の水蒸
気改質を800〜950午○、常圧〜10k9/仇G、
酸素対炭素比(原子比)が1.1〜1.5の条件下にて
行なうことを特徴とする高温還元ガスの製造方法を提供
するものである。
As a result, they found that the above object could be achieved by carrying out steam reforming in two stages and carrying out the steam reforming in the first stage at a relatively low temperature, thus completing the present invention. That is, the present invention provides a method for producing high-temperature reducing gas using light hydrocarbons as a raw material, in which the first stage steam reforming is carried out at 450 to 550 oo, normal pressure to 50 k9/G,
It is carried out under conditions where the oxygen to carbon ratio (atomic ratio) is 2 to 5,
Next, after the reformed gas obtained in the first stage steam reforming is dehydrated and decarbonated, the second stage steam reforming is carried out at 800 to 950 pm at normal pressure to 10 k9/g. ,
The present invention provides a method for producing a high-temperature reducing gas, characterized in that the process is carried out under conditions where the oxygen to carbon ratio (atomic ratio) is 1.1 to 1.5.

本発明の方法の一例を第2図に基づいて説明すれば次の
如くである。
An example of the method of the present invention will be described below with reference to FIG.

まず原料たる竪質炭化水素と水蒸気を水蒸気改質装置8
に導入して第一段の水蒸気故質を行なう。ここで行なう
水蒸気改質は従来法の場合に比べて低温の温度条件とす
る。この温度条件としては特に制限はないが、一般的に
は450〜550ooの範囲が好適である。さらに、竪
質炭化水素と水蒸気との導入割合は特に制限はないが、
通常は酸素対炭素比(原子比)が2〜5となるように選
定する。また、この水蒸気改質にて進行する反応は主と
して次の(1}、■および(3}である。CmHm+N
H20→nCO十(n+m/2)日2(吸熱反応)
・・・・・・【11CO+日2
0こCQ+日2(発熱反応) ・・・・・・■CO十
が2こCH4十日20(発熱反応) ・・・・・・‘3
’本発明の方法における第一段の水蒸気改質は従来法に
比べて低温で反応させるため、上記‘21および‘3}
反応が右寄りに進行し、その結果敦賀装置8を出る改質
ガスには水素およびメタンガスが多量に含有され、一方
一酸化炭素の含有量は極めて少量である。なお、従釆法
を用いる場合には上記の如き低温条件下ではメタンガス
の含有量が多すぎて還元ガスとしては不適当であるが、
本発明の方法ではタンガスの含有量が多くとも、後の工
程にて再度水蒸気改質を行なうため最終的に得られる還
元ガスにはメタンガスはほとんど含有されていない。第
一段の水蒸気改質に用いられる水蒸気教質装置8として
は外熱型あるいは断熱型の反応器のいずれでもよい。
First, the raw materials, vertical hydrocarbons, and steam are converted into a steam reformer 8.
The first stage of water vapor treatment is carried out. The steam reforming performed here is performed under lower temperature conditions than in the conventional method. Although there are no particular restrictions on this temperature condition, a range of 450 to 550 oo is generally suitable. Furthermore, there is no particular restriction on the introduction ratio of vertical hydrocarbons and steam;
Usually, it is selected so that the oxygen to carbon ratio (atomic ratio) is 2 to 5. In addition, the reactions that proceed in this steam reforming are mainly the following (1}, ■, and (3}.CmHm+N
H20→nCO10 (n+m/2) day 2 (endothermic reaction)
・・・・・・【11CO+day 2
0 ko CQ + day 2 (exothermic reaction) ・・・・・・■ CO 10 ga 2 ko CH 4 10 days 20 (exothermic reaction) ・・・・・・'3
'Since the first stage steam reforming in the method of the present invention is carried out at a lower temperature than in the conventional method, the above '21 and '3}
The reaction proceeds to the right, and as a result, the reformed gas exiting the Tsuruga apparatus 8 contains a large amount of hydrogen and methane gas, while the content of carbon monoxide is extremely small. In addition, when using the secondary method, the content of methane gas is too large under the above-mentioned low temperature conditions and is inappropriate as a reducing gas.
In the method of the present invention, even if the content of methane gas is large, since steam reforming is performed again in a later step, the reducing gas finally obtained contains almost no methane gas. The steam instructing device 8 used in the first stage steam reforming may be either an external heating type or an adiabatic type reactor.

なお、外熱型反応器を用いる場合、従来法の如く加熱炉
の頚射部において反応させることはもちろん、その他反
応の温度条件が450〜550qoと低温であって必要
熱量が少ないため、後の工程である第二段の水蒸気改質
装置12からの廃熱を熱源として利用することもできる
。また、この第一段水蒸気改質の際の圧力条件は−般に
常圧〜50k9/塊Gが好ましい。次に、本発明の方法
においては第一段の水蒸気改質後直ちに第二段の水蒸気
政質を行なってもよいが、通常は第一段の水蒸気故買に
よって得られた改質ガスに対してまず従来から行なわれ
ている方法によって酸化度調整を行なう。
In addition, when using an external heating type reactor, the reaction is not only carried out in the neck of the heating furnace as in the conventional method, but also because the temperature condition for the reaction is low at 450 to 550 qo and the required amount of heat is small. Waste heat from the second stage steam reformer 12, which is the process, can also be used as a heat source. Further, the pressure conditions during this first stage steam reforming are generally preferably normal pressure to 50 k9/mass G. Next, in the method of the present invention, the second stage steam reforming may be carried out immediately after the first stage steam reforming, but normally the reformed gas obtained by the first stage steam reforming is First, the degree of oxidation is adjusted by a conventional method.

すなわち第一段の水蒸気改質装置8を出た改質ガスを廃
熱ボイラー9に導いて冷却してガス中のスチームを除去
し、さらに気液分離器10、炭酸ガス除去装置11、ま
た必要に応じて水冷式冷却器、ボイラー水予熱器等を用
いて水分、炭酸ガスを十分に除去し、かつ水蒸気を加え
ることにより改質ガス中の酸素対炭素比(原子比)を適
正な範囲に調整する。このような調整の行なわれた改質
ガスは、第二の水蒸気改質装置12へ導入する前の温度
としては通常100〜250oC程度に冷却されている
。なお、本発明の方法においては、前記改質ガス中の水
分、炭酸ガスの調整にあたり、上述した装置を所望する
高温還元ガスの条件に応じて適宜組合せて用いればよい
。また、第一段の水蒸気改質によって得られる改質ガス
は前述の如く、従来法による場合に比べて一酸化炭素の
含有量が少ないため一酸化炭素変成反応器を用いること
を要しない。なお第一段の水蒸気改質装置8で製造され
る改質ガスの一部を直接後述する第二段の水菱気改質装
置12導入するとともにその残部を前述の廃熱ボイラー
9、気液分離器10、炭酸ガス除去装置11等の一連の
装置に導入し、総体的に所望の組成の高温還元ガスを得
る方法も有効である。本発明の方法においては上述の工
程を経て水分、炭酸ガスを除去してメタンおよび水素を
多く含み、所望の酸化度を達成すべく調整された100
〜25000の改費ガスを、さりこ第二段の水蒸気改質
装置12に導入して第二段目の水蒸気改質を行なう。
That is, the reformed gas exiting the first-stage steam reformer 8 is guided to the waste heat boiler 9 and cooled to remove steam from the gas, and then the gas-liquid separator 10, the carbon dioxide removal device 11, and the necessary Depending on the situation, water and carbon dioxide are sufficiently removed using a water-cooled cooler, boiler water preheater, etc., and water vapor is added to keep the oxygen to carbon ratio (atomic ratio) in the reformed gas within an appropriate range. adjust. The reformed gas subjected to such adjustment is usually cooled to a temperature of about 100 to 250 oC before being introduced into the second steam reformer 12. In addition, in the method of the present invention, in adjusting the water content and carbon dioxide gas in the reformed gas, the above-mentioned apparatuses may be used in appropriate combinations depending on the desired high-temperature reducing gas conditions. Furthermore, as described above, the reformed gas obtained by the first stage steam reforming has a lower carbon monoxide content than in the case of the conventional method, so there is no need to use a carbon monoxide shift reactor. A part of the reformed gas produced in the first-stage steam reformer 8 is directly introduced into the second-stage steam-gas reformer 12 (described later), and the remainder is transferred to the aforementioned waste heat boiler 9, gas-liquid. It is also effective to introduce the gas into a series of devices such as the separator 10 and the carbon dioxide removal device 11 to obtain a high-temperature reducing gas having the overall desired composition. In the method of the present invention, water and carbon dioxide are removed through the above-mentioned steps, and the 100% carbon dioxide containing a large amount of methane and hydrogen is adjusted to achieve the desired degree of oxidation.
~25,000 of reformed gas is introduced into the Sariko second stage steam reformer 12 to perform second stage steam reforming.

ここで、前記水蒸気改質装置12に導入される故質ガス
の成分は前述の如くメタン、水素が主成分であってその
ほか一酸化炭素、炭酸ガス、水蒸気等を含むものであり
、炭素数が2以上の炭化水素はほとんど存在しない。そ
のため、水蒸気改質を、酸素対炭素比(原子比)の比較
的低い条Z件にて行なっても炭素析出の問題は生じない
。この第二段の水蒸気改質にあたって導入すべき前記改
質ガスと水酸気の割合は、所望する高温遼元ガスの組成
、温度、圧力その他の条件により異なるが、一般的には
酸素対炭素比(原子比)で1.1〜ZI.5の範囲内と
するのが好ましい。1.1未満では炭素析出の問題が生
じ触媒活性の低下が急速に進み実用的でない。
Here, as mentioned above, the components of the waste gas introduced into the steam reformer 12 are mainly methane and hydrogen, and also contain carbon monoxide, carbon dioxide, steam, etc., and the number of carbon atoms is Hydrocarbons of two or more are almost never present. Therefore, even if steam reforming is performed under conditions where the oxygen to carbon ratio (atomic ratio) is relatively low, the problem of carbon precipitation does not occur. The ratio of the reformed gas and hydroxyl gas to be introduced in this second stage steam reforming varies depending on the composition, temperature, pressure, and other conditions of the desired high-temperature oxidation gas, but generally speaking, the ratio of oxygen to carbon Ratio (atomic ratio) of 1.1 to ZI. It is preferable to set it within the range of 5. If it is less than 1.1, the problem of carbon deposition occurs and the catalyst activity rapidly decreases, making it impractical.

また1.5を超えると得られる還元ガスの酸化度が高く
なり、その結果還元反応に不適となり好ましくない。さ
らに、この水蒸気政質の圧力条件としては一般に低圧ほ
ど望ましい。すなわち低圧の場合にはメタンの改質反応
(前述の反応式脚)の平衡関係からメタンが減じ、それ
と共に水蒸気および炭酸ガスが少なくなり水素ガスの豊
富な良質な還元ガスとなる。そのため通常は常圧〜10
k9/仇Gにて水蒸気改質を行なう。さらに温度条件に
ついては、前述の反応式■および{3’からわかるよう
に高温ほどメタン、水蒸気および炭酸ガスが減少し、水
素および一酸化炭素が増加して良質の還元ガスになる。
従って、本発明の第二段の水蒸気改質の温度条件、所望
する還元ガスの組成、含有熱量さらには反応の圧力条件
等を考慮して適宜選定すべきであるが、一般的には80
0〜950qoの範囲とすることが好ましい。このよう
に第二段の水蒸気改質は第一段に比べて高温条件で行な
うため、用いる第二段の水蒸気改質装置12は外熱型反
応器が利用される。上記の如く、本発明の方法によって
得られた還元ガスは良質であるとともに既に800〜9
50qoと極めて高温となっており、そのまま還元製鉄
装置たとえばシャフト炉などへ導入することができる。
従来の方法では前述したように水蒸気改質装置の出口温
度が非常に高温であるが、触媒上の炭素析出を回避する
ため改質反応の際の酸素対炭素比(原子比)を高くする
関係上、得られる改質ガスは還元ガスとしては不適当な
組成のものとなり、それ故、常温近傍の低温にまで冷却
して脱炭酸ガスおよび脱水蒸気の工程を踏まなければな
らなかった。しかも、敦賀ガスをいったん80000前
後の高温にした後に冷却するため、廃熱ボイラーの容量
を大きくせざるを得ず、大量のスチームが発生し、熱効
率が極めて悪いという欠点があった。これに対して本発
明によれば、第一段の水蒸気改質装置の出口温度が45
000〜550qoと低温であるため、廃熱ボイラふく
の容量を小規模とすることができ、ひいてはパッケージ
型ボイラーなどを活用することによりシステム全系のス
チームを自己バランスさせることも可能であり、熱効率
の面ですぐれている。また、本発明の方法においては第
一段の水蒸気政質後に設置すべき冷却、脱炭酸ガス等の
各種装置を様々に組合わせることができるため、最終的
に製造される高温還元ガスの組成および酸化度などを広
範囲に選定することが可能であり、従って運転のフレキ
シビリティーが拡張される。しかも得られる高温還元ガ
スの組成は従来法によるものに比して水素の含有量が多
く、還元反応に適した良質な還元ガスである。このこと
は次の実施例により明らかである。
On the other hand, if it exceeds 1.5, the degree of oxidation of the resulting reducing gas becomes high, which makes it unsuitable for the reduction reaction, which is not preferable. Furthermore, as for the pressure conditions for this water vapor regime, lower pressures are generally more desirable. That is, in the case of low pressure, methane is reduced due to the equilibrium relationship of the methane reforming reaction (the leg of the reaction equation described above), and along with this, water vapor and carbon dioxide gas are reduced, resulting in a high-quality reducing gas rich in hydrogen gas. Therefore, normal pressure ~ 10
Perform steam reforming at k9/KuG. Furthermore, regarding the temperature conditions, as can be seen from the above-mentioned reaction equations (1) and {3', the higher the temperature, the less methane, water vapor, and carbon dioxide gas, and the more hydrogen and carbon monoxide, resulting in a high-quality reducing gas.
Therefore, it should be selected appropriately taking into consideration the temperature conditions of the second stage steam reforming of the present invention, the composition of the desired reducing gas, the amount of heat contained, and the pressure conditions of the reaction.
It is preferably in the range of 0 to 950 qo. As described above, the second stage steam reforming is performed under higher temperature conditions than the first stage, and therefore, the second stage steam reformer 12 used is an external heating type reactor. As mentioned above, the reducing gas obtained by the method of the present invention is of good quality and already has a
It has an extremely high temperature of 50 qo, and can be directly introduced into a reduction iron manufacturing apparatus such as a shaft furnace.
As mentioned above, in the conventional method, the outlet temperature of the steam reformer is extremely high, but in order to avoid carbon deposition on the catalyst, the oxygen to carbon ratio (atomic ratio) during the reforming reaction is increased. Moreover, the resulting reformed gas has a composition inappropriate for use as a reducing gas, and therefore has to be cooled to a low temperature near room temperature and then subjected to decarbonation and dehydration steps. Moreover, since the Tsuruga gas was heated to a high temperature of around 80,000 ℃ and then cooled, the capacity of the waste heat boiler had to be increased, resulting in a large amount of steam and extremely poor thermal efficiency. On the other hand, according to the present invention, the outlet temperature of the first stage steam reformer is 45
Because the temperature is low (000 to 550 qo), the capacity of the waste heat boiler can be reduced, and by using a packaged boiler, it is also possible to self-balance the steam in the entire system, which improves thermal efficiency. It is excellent in terms of In addition, in the method of the present invention, various devices such as cooling and decarbonization equipment that should be installed after the first stage steam formation can be combined in various ways, so that the composition of the high temperature reducing gas finally produced can be changed. It is possible to select the degree of oxidation, etc. over a wide range, thus increasing operational flexibility. Furthermore, the composition of the resulting high-temperature reducing gas has a higher hydrogen content than that obtained by conventional methods, and is a high-quality reducing gas suitable for reduction reactions. This is clear from the following example.

すなわち原料炭化水素としてnーヘキサンを用い、第一
段の水蒸気改質の条件を入口温度450qo、出口温度
50000、圧力5k9/塊Gとし、一方、第二段の水
蒸気改質の条件を出口温度95000、圧力2k9/仇
Gに設定して、この条件で第一段および第二段の水蒸気
と原料炭化水素の混合比、すなわち酸素対炭素比(原子
比)を種々に変動させた。この操作によって得られた高
温還元ガスのR値すなわち(水素ガス十一酸化炭素)/
(炭酸ガス十水蒸気)(モル比)を第3図に示した。ま
た、その条件および結果は第1表、第2表に示した。図
中、Aは第二段の水蒸気改質の酸素対炭素比(原子比)
が1.1の場合、Bは1.2の場合である。またCは酸
素対炭素比(原子比)以外は前記第二段の水蒸気教質と
同条件で行なった従来型の一段水蒸気改質法によるもの
であり、酸素対炭素比(原子比)については第3図のグ
ラフの横軸の数値に表示される条件とした。この第3図
からわかるように、本発明の方法によれば、従来法によ
る場合に比得られる還元ガスのR値が高く良質なものと
なる。叙上の如く、本発明の方法によれば炭素数の多い
軽質炭化水素を原料とした場合においても効率*よく所
望の高温還元ガスを製造することができる。
That is, n-hexane is used as the raw material hydrocarbon, and the conditions for the first stage steam reforming are inlet temperature 450 qo, outlet temperature 50,000, and pressure 5k9/lump G, while the conditions for the second stage steam reforming are outlet temperature 95,000. , and the pressure was set at 2k9/g, and under these conditions, the mixing ratio of the steam and raw material hydrocarbon in the first and second stages, that is, the oxygen to carbon ratio (atomic ratio), was varied variously. The R value of the high temperature reducing gas obtained by this operation is (hydrogen gas carbon 11 oxide)/
(carbon dioxide gas and water vapor) (molar ratio) is shown in Figure 3. The conditions and results are shown in Tables 1 and 2. In the figure, A is the oxygen to carbon ratio (atomic ratio) of the second stage steam reforming.
is 1.1, B is 1.2. In addition, C was obtained by the conventional one-stage steam reforming method conducted under the same conditions as the second stage steam reforming method except for the oxygen to carbon ratio (atomic ratio). The conditions were set as shown in the numerical values on the horizontal axis of the graph in FIG. As can be seen from FIG. 3, according to the method of the present invention, the R value of the reducing gas obtained is higher and of better quality than when using the conventional method. As described above, according to the method of the present invention, a desired high-temperature reducing gas can be produced efficiently* even when light hydrocarbons with a large number of carbon atoms are used as raw materials.

第1表(外熱型の場合) 注)カッコ内の数値は全流量に対する百分率(モル多)
を示す。
Table 1 (For external heating type) Note) The numbers in parentheses are percentages (molarity) of the total flow rate.
shows.

第2表(断熱型の場合)注)カッコ内の数値は全流量に
対する百分率(モル鰍)を示す。
Table 2 (Insulated type) Note) The numbers in parentheses indicate the percentage (mole) of the total flow rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来から行なわれている高温還元ガス生成プロ
セスの流れ図であり、第2図は本発明の方法の一態様を
示す流れ図である。 第3図は酸素対炭素比(原子比)と得られるR値との関
係を示すグラフである。図中1は水蒸気改質装置、2は
廃熱ボイラー、3は一酸化炭素変成反応器、4は冷却器
、5は気液分離器、6は炭酸ガス除去装置、7は加熱器
、8は第一段の水蒸気改質装置、9は廃熱ボイラー、1
0は気液分離器、11は炭酸ガス除去装置、12は第二
段の水蒸気改質装置を示す。 また第3図におけるA,Bは本発明の方法を用いた場合
に得られる還元ガスのR値と酸素対炭素比(原子比)の
関係を示し、Cは従来法による場合に得られる還元ガス
のR値と酸素対炭素比(原子比)の関係を示す。第ー図 第2図 第3図
FIG. 1 is a flowchart of a conventional high-temperature reducing gas generation process, and FIG. 2 is a flowchart showing one embodiment of the method of the present invention. FIG. 3 is a graph showing the relationship between the oxygen to carbon ratio (atomic ratio) and the resulting R value. In the figure, 1 is a steam reformer, 2 is a waste heat boiler, 3 is a carbon monoxide shift reactor, 4 is a cooler, 5 is a gas-liquid separator, 6 is a carbon dioxide removal device, 7 is a heater, and 8 is a The first stage steam reformer, 9 is a waste heat boiler, 1
0 is a gas-liquid separator, 11 is a carbon dioxide removal device, and 12 is a second stage steam reformer. In addition, A and B in FIG. 3 show the relationship between the R value and the oxygen to carbon ratio (atomic ratio) of the reducing gas obtained when using the method of the present invention, and C shows the relationship between the reducing gas obtained when using the conventional method. The relationship between the R value and the oxygen to carbon ratio (atomic ratio) is shown. Figure - Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 軽質炭火水素を原料として高温還元ガスを製造する
方法において、第一段の水蒸気改質を450〜550℃
、常圧〜50kg/cm^2G、酸素対炭素比(原子比
)が2〜5の条件下にて行ない、次いで前記第一段の水
蒸気改質で得られる改質ガスの脱水蒸気および脱炭酸ガ
ス処理を行なつた後、第二段の水蒸気改質を800〜9
50℃、常圧〜10kg/cm^2G、酸素対炭素比(
原子比)が1.1〜1.5の条件下にて行なうことを特
徴とする高温還元ガスの製造方法。
1 In a method for producing high-temperature reducing gas using light hydrocarbon as a raw material, the first stage steam reforming is carried out at 450 to 550°C.
, normal pressure to 50 kg/cm^2G, and an oxygen to carbon ratio (atomic ratio) of 2 to 5. Then, the reformed gas obtained in the first stage steam reforming is dehydrated and decarboxylated. After gas treatment, the second stage steam reforming is carried out at 800~9
50℃, normal pressure ~ 10kg/cm^2G, oxygen to carbon ratio (
1. A method for producing a high-temperature reducing gas, characterized in that the method is carried out under conditions in which the atomic ratio (atomic ratio) is 1.1 to 1.5.
JP7100077A 1977-06-17 1977-06-17 Method for producing high temperature reducing gas from light hydrocarbons Expired JPS6018602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7100077A JPS6018602B2 (en) 1977-06-17 1977-06-17 Method for producing high temperature reducing gas from light hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7100077A JPS6018602B2 (en) 1977-06-17 1977-06-17 Method for producing high temperature reducing gas from light hydrocarbons

Publications (2)

Publication Number Publication Date
JPS545896A JPS545896A (en) 1979-01-17
JPS6018602B2 true JPS6018602B2 (en) 1985-05-11

Family

ID=13447787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7100077A Expired JPS6018602B2 (en) 1977-06-17 1977-06-17 Method for producing high temperature reducing gas from light hydrocarbons

Country Status (1)

Country Link
JP (1) JPS6018602B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663098B2 (en) * 2000-11-08 2011-03-30 石油資源開発株式会社 Production method of hydrogen
JP4663103B2 (en) * 2000-12-06 2011-03-30 独立行政法人石油天然ガス・金属鉱物資源機構 Syngas production
JP4663104B2 (en) * 2000-12-06 2011-03-30 石油資源開発株式会社 Syngas production by autothermal reforming

Also Published As

Publication number Publication date
JPS545896A (en) 1979-01-17

Similar Documents

Publication Publication Date Title
KR100201886B1 (en) Autothermal steam reforming process
KR900007863B1 (en) Preparation of ammonia synthesis gas
US5011625A (en) Autothermal steam reforming process
EP0522744A2 (en) Synthesis gas production
JP4033988B2 (en) Method for producing methanol
US4888130A (en) Process for the production of synthesis gas
US6525104B2 (en) Steam reforming
DK2142467T4 (en) PROCEDURE FOR COMBINED reforming FOR METHANOL PRODUCTION
EP2464598B1 (en) Combined reforming process for methanol production
JPH04214001A (en) Manufacture of hydrogen-containing gas stream
JP2003525832A (en) Method for producing carbon monoxide by reverse conversion using a catalyst
WO2014180763A1 (en) A process for producing ammonia synthesis gas with high temperature shift and low steam-to-carbon ratio
JPS5827202B2 (en) Kangengas no Seihou
JPS62228035A (en) Production of organic compound from hydrocarbon-containing supply raw material
WO2005000736A1 (en) Reforming process
JPS6018602B2 (en) Method for producing high temperature reducing gas from light hydrocarbons
CN105829240B (en) The method for producing ammonia synthesis gas
US1921856A (en) Production of gaseous mixtures containing hydrogen and nitrogen from methane
JPS6148810B2 (en)
CN1286214A (en) Process for regulating ratio of hydrogen to carbon in synthetic gas in synthesizing using synthetic gas, from steam conversion of natural gas, as feedstock
JPH0524802A (en) Production of reducing gas and apparatus for production
JPH0459249B2 (en)
JPS60161302A (en) Reforming method of hydrocarbon
KR960003232B1 (en) Auto thermal steam reforming process
JPS63252904A (en) Production of atmospheric gas