JPS60185075A - Controller for flow rate of refrigerant - Google Patents

Controller for flow rate of refrigerant

Info

Publication number
JPS60185075A
JPS60185075A JP3853184A JP3853184A JPS60185075A JP S60185075 A JPS60185075 A JP S60185075A JP 3853184 A JP3853184 A JP 3853184A JP 3853184 A JP3853184 A JP 3853184A JP S60185075 A JPS60185075 A JP S60185075A
Authority
JP
Japan
Prior art keywords
degree
set value
refrigerant
superheat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3853184A
Other languages
Japanese (ja)
Other versions
JPH0573981B2 (en
Inventor
敏彦 福島
宮本 誠吾
雅彦 藤田
當範 武曽
佐用 耕作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3853184A priority Critical patent/JPS60185075A/en
Publication of JPS60185075A publication Critical patent/JPS60185075A/en
Publication of JPH0573981B2 publication Critical patent/JPH0573981B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は冷媒流量制御装置に係り、特に広範囲にわたっ
て熱負荷が変化する空気調和装置に好適な冷媒流量制御
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a refrigerant flow rate control device, and particularly to a refrigerant flow rate control device suitable for an air conditioner in which the heat load changes over a wide range.

〔発明の背景〕[Background of the invention]

まず、従来の電気信号によりその弁開度が調整可能な膨
張弁を用いた冷媒流量制御装置を第1図を参照して説明
する。
First, a conventional refrigerant flow rate control device using an expansion valve whose valve opening degree can be adjusted by an electric signal will be described with reference to FIG.

第1図において、1は圧縮機、2は凝縮器、3は電気信
号により弁開度を調整しつる膨張弁、4は蒸発器で、こ
れらを冷媒配管で接続して冷凍サイクルが構成されてい
る。
In Figure 1, 1 is a compressor, 2 is a condenser, 3 is an expansion valve whose valve opening is adjusted by an electric signal, and 4 is an evaporator.These are connected by refrigerant piping to form a refrigeration cycle. There is.

圧縮filで圧縮され高温、高圧の過熱ガスとなって冷
媒は、凝縮器2で冷却さ」も、凝縮して高圧液冷媒とな
って流下し、冷媒流量制御弁3で流量制御されるととも
に断熱膨張して低圧冷媒となり蒸発器4で外部から熱を
奪いながら蒸発し再び圧縮機1に吸入される。このよう
な冷凍サイクルでは、蒸発器4において外部の熱負荷に
応じて冷媒を過不足なく蒸発させるために、一般に蒸発
器4の出口に温度センサ5と圧力センサ6を設置して、
これらの信号を基に冷媒流量制御装置7内の過熱度演算
回路8で蒸l@器4の出口における冷媒の過熱度S H
をめる。そして、この値とあらかじめ過熱度設定回路9
で定められた値SH”との偏差を差動増幅器10でめ、
この偏差に応じてPID演算回路11で膨張弁3の開度
を決定し。
The refrigerant is compressed by the compression filter to become a high-temperature, high-pressure superheated gas, which is then cooled by the condenser 2.The refrigerant is then condensed to become a high-pressure liquid refrigerant and flows down, where the flow rate is controlled by the refrigerant flow control valve 3 and the adiabatic It expands and becomes a low-pressure refrigerant, which evaporates while taking heat from the outside in the evaporator 4 and is sucked into the compressor 1 again. In such a refrigeration cycle, a temperature sensor 5 and a pressure sensor 6 are generally installed at the outlet of the evaporator 4 in order to evaporate just the right amount of refrigerant depending on the external heat load in the evaporator 4.
Based on these signals, the degree of superheat calculation circuit 8 in the refrigerant flow rate control device 7 calculates the degree of superheat S H of the refrigerant at the outlet of the steamer 4.
I put it on. Then, use this value and the superheat degree setting circuit 9 in advance.
A differential amplifier 10 measures the deviation from the value SH” determined by
The opening degree of the expansion valve 3 is determined by the PID calculation circuit 11 according to this deviation.

弁駆動回路12から膨張弁3のアクチュエータ(図示せ
ず)に信号を送りSHとS Hの偏差が零となるように
膨張弁3の開度を調整し冷媒流量を制御する。
A signal is sent from the valve drive circuit 12 to an actuator (not shown) of the expansion valve 3 to adjust the opening degree of the expansion valve 3 and control the refrigerant flow rate so that the deviation between SH and SH becomes zero.

なお、ここで冷媒の過熱度とは、ある点の冷媒圧力に対
応した飽和温度以上に過熱されたガスの温度と、その飽
和温度の差をいう。そこで、過熱度演算回路8には、蒸
発器出口の圧力に対応した飽和温度をめるために、圧力
センサ6の圧力信号を電気信号に変換する歪ゲージ増幅
器8bと、この電気信号を飽和温度に相当する電気信号
に変更するための温度演算回路8Cを有し、温度センサ
5の温度信号を電気信号に変換し、飽和温度との差をめ
るための直流増幅器8aと差動増幅器8dを有するのが
普通である。
Note that the degree of superheating of a refrigerant here refers to the difference between the temperature of a gas that has been superheated to a saturation temperature or higher corresponding to the refrigerant pressure at a certain point, and the saturation temperature. Therefore, in order to calculate the saturation temperature corresponding to the pressure at the outlet of the evaporator, the superheat degree calculation circuit 8 includes a strain gauge amplifier 8b that converts the pressure signal of the pressure sensor 6 into an electrical signal, and a strain gauge amplifier 8b that converts this electrical signal to the saturation temperature. It has a temperature calculation circuit 8C for converting the temperature signal of the temperature sensor 5 into an electric signal corresponding to the electric signal, and a DC amplifier 8a and a differential amplifier 8d for converting the temperature signal of the temperature sensor 5 into an electric signal and calculating the difference from the saturation temperature. It is normal to have one.

一般に、蒸発器4を有効に利用し、外部の熱負荷に応じ
て冷媒を過不足なく蒸発させるためには、蒸発器4の出
口で冷媒が過熱ガスとならず、過熱度が丁度零となるこ
とが望ましい。しかし、熱負荷が小さく蒸発器4で冷媒
が完全に蒸発を完了せず液戻りを生じた場合でも、蒸発
器4出口の冷媒過熱度は零であるから、過熱度を零に制
御しようとすると熱負荷が小さい場合の液戻りを防止で
きず、圧縮機1の耐久上不都合な問題を惹起することに
なる。そこでこれを避けるため通常、蒸発器4出口にお
ける冷媒の過熱度は5℃前後の値となるように過熱度の
設定値SH”を設定しである。
Generally, in order to effectively utilize the evaporator 4 and evaporate just the right amount of refrigerant depending on the external heat load, the refrigerant does not turn into superheated gas at the exit of the evaporator 4, and the degree of superheating reaches exactly zero. This is desirable. However, even if the heat load is small and the refrigerant does not completely evaporate in the evaporator 4 and liquid returns, the degree of superheat of the refrigerant at the outlet of the evaporator 4 is zero, so if you try to control the degree of superheat to zero, Liquid return cannot be prevented when the heat load is small, leading to disadvantageous problems in terms of durability of the compressor 1. In order to avoid this, the set value SH'' of the degree of superheat is usually set so that the degree of superheat of the refrigerant at the outlet of the evaporator 4 is around 5°C.

従来、この過熱度の設定値SHはある標準の運転状態に
対して設定し、空気調和装置の熱負荷にかかわらず一定
値一に保たれていた。そこで、熱負荷が小さいときには
、過熱度SHを設定値SHに近づけるために冷媒流量を
減少させる必要があり、冷媒流量制御装置7は膨張弁3
を閉じる信号を発生する。その結果、膨張弁3は絞られ
蒸発器4における蒸発圧力が低下し、蒸発温度が低下す
るため蒸l@器4のフィン表面に着霜して蒸−発器4の
性能が低下する。そこで、冷媒流量制御装置7は過熱度
SHを設定値SH”に近づけるため更に膨張弁3を閉じ
る信号を発生し増々蒸発圧力は低下し着霜が進行して、
ついには制御不可能となっていた。一方、熱負荷が大き
いときや、空気調和装置の起動時等、冷媒流量の増加が
必要なときも、過熱度SHが一定値SH”となるよう制
御されるため、十分な冷房能力を得られないという欠点
があった。更に過負荷時、冷媒流量が十分でないため、
圧縮機1の冷却が不十分となり吐出ガス温度が異常に上
昇し圧縮機1の耐久上問題を生じていた。
Conventionally, the set value SH of the degree of superheating has been set for a certain standard operating condition and kept at a constant value regardless of the heat load of the air conditioner. Therefore, when the heat load is small, it is necessary to reduce the refrigerant flow rate in order to bring the superheat degree SH closer to the set value SH, and the refrigerant flow control device 7 controls the expansion valve 3
Generates a signal to close. As a result, the expansion valve 3 is throttled and the evaporation pressure in the evaporator 4 is lowered, and the evaporation temperature is lowered, so that frost forms on the fin surface of the evaporator 4 and the performance of the evaporator 4 is reduced. Therefore, the refrigerant flow rate control device 7 further generates a signal to close the expansion valve 3 in order to bring the superheat degree SH closer to the set value SH'', and the evaporation pressure decreases more and more, and frost formation progresses.
Eventually it became uncontrollable. On the other hand, even when the heat load is large or when an increase in refrigerant flow rate is required, such as when starting up an air conditioner, the degree of superheating SH is controlled to a constant value SH, so sufficient cooling capacity can be obtained. Furthermore, when there is an overload, the flow rate of refrigerant is insufficient.
The cooling of the compressor 1 was insufficient and the temperature of the discharged gas rose abnormally, causing problems in terms of the durability of the compressor 1.

〔発明の目的〕 本発明は、前述の問題点を解決するためになされたもの
で、冷凍サイクルの冷媒流量制御に当り、広い熱負荷範
囲で冷房能力の不足を生じることなく、制御系の不安定
性や制御不能を回避できる冷媒流星制御装置を提供する
ことを目的としている。
[Object of the Invention] The present invention has been made to solve the above-mentioned problems, and is capable of controlling the flow rate of refrigerant in a refrigeration cycle, without causing a shortage of cooling capacity over a wide heat load range, and without causing instability in the control system. The purpose of this project is to provide a refrigerant meteor control device that can avoid inconsistency and loss of control.

〔発明の概要〕[Summary of the invention]

1′+ 本発明の係る冷媒流量制御装置は、熱負荷を検出する手
段と、この熱負荷に応じて蒸発器出口における冷媒の過
熱度の設定値を変化しうる手段を設け、熱負荷に応じて
過熱度の設定値を変化させ。
1'+ The refrigerant flow rate control device according to the present invention is provided with a means for detecting a heat load and a means for changing the set value of the degree of superheating of the refrigerant at the outlet of the evaporator according to the heat load. to change the set value of superheat degree.

蒸発器出口の過熱度がこの設定値となるように制御回路
から膨張弁へ電気信号を発し冷媒流量を制御するもので
ある。
The control circuit issues an electric signal to the expansion valve to control the refrigerant flow rate so that the degree of superheat at the evaporator outlet reaches this set value.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第2図は、本発明の一実施例に係る冷媒流量制御装置で
あり、図中、第1図と同一符号のものは従来技術と同等
部分であるから、その説明を簡略にする。
FIG. 2 shows a refrigerant flow rate control device according to an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 are the same parts as in the prior art, so the explanation thereof will be simplified.

第2図において、5は蒸発器4の出口における冷媒温度
を検知する温度センサ、6は蒸発器4出口の圧力を検知
する圧力センサ、8はこれらのセンサの信号を基に冷媒
の過熱度を演算する過熱度演算回路、9は過熱度の設定
値を指令する過熱度設定回路、1Φは測定した過熱度と
その設定値との偏差をめる差動増幅器、11はこの偏差
を基に膨張弁3の開度を決定する制御<g号を発するP
ID演算回路、12はこの制御信号に従い、膨張弁3の
アクチュエータに駆動41号を発する弁駆動回路である
In Fig. 2, 5 is a temperature sensor that detects the temperature of the refrigerant at the outlet of the evaporator 4, 6 is a pressure sensor that detects the pressure at the outlet of the evaporator 4, and 8 is a sensor that measures the degree of superheating of the refrigerant based on the signals of these sensors. 9 is a superheat degree setting circuit that commands the superheat degree set value, 1Φ is a differential amplifier that calculates the deviation between the measured superheat degree and its set value, and 11 is an expansion circuit based on this deviation. Control that determines the opening degree of valve 3 < P that emits g
The ID calculation circuit 12 is a valve drive circuit that issues a drive signal 41 to the actuator of the expansion valve 3 in accordance with this control signal.

第2図では更に、熱負3ifを検出するための温度セン
サ、このセンサの信号を基に過熱度の設定値を決定する
設定値演算回路13を設け、この設定値演算回路13の
出力信号に応じて、過熱度設定回路9で過熱度の設定を
行うように椅成しである。
In FIG. 2, there is further provided a temperature sensor for detecting negative heat 3if, and a set value calculation circuit 13 that determines the set value of the degree of superheating based on the signal of this sensor, and the output signal of this set value calculation circuit 13 is Accordingly, the superheat degree setting circuit 9 sets the superheat degree.

次に、このように構成した冷媒流量制御装置7の動作を
第3図、第4図により説明する。第3図は過熱度の設定
値S H”を室温の関数として変化させる一実施例を示
している。室温Trが設定値Tr、より小さいときはS
H’はTrの減少に比例して減少し、Trが設定値T 
r + より大きくTr、より小さいときは、SH”は
一定値Sl+ 。
Next, the operation of the refrigerant flow rate control device 7 configured as described above will be explained with reference to FIGS. 3 and 4. Figure 3 shows an example in which the superheat setpoint S H'' is varied as a function of room temperature.
H' decreases in proportion to the decrease in Tr, and when Tr reaches the set value T
When r + is larger than Tr, and when it is smaller, SH" is a constant value Sl+.

となり、TrがTr、より大きいときはTrの増加に比
例してSHが減少する。このようなSll”の変化パタ
ーンを発生させるには、第4図に示す演算フローに従っ
て演算回路を構成すればよい。
When Tr is larger than Tr, SH decreases in proportion to the increase in Tr. In order to generate such a change pattern of Sll'', an arithmetic circuit may be configured according to the arithmetic flow shown in FIG.

すなわち、室温センサ14の信号Trと設定値Tr、を
比較器で(図示せず)比較し、T r <Tr、のどき
は、SH” =SH” 、−に1(Trt−Tr)なる
演算回路でSHゝをめる。ゴr。
That is, the signal Tr of the room temperature sensor 14 and the set value Tr are compared with a comparator (not shown), and if Tr < Tr, then SH" = SH", - is calculated as 1 (Trt - Tr). Turn on SH with the circuit. Go r.

< T r < T r2のときは、SH”=SH”、
一定とおき、Tr、<TrのときはSH=SH。
When < T r < T r2, SH"=SH",
When constant, Tr, and when <Tr, SH=SH.

−に、(Tr−Tr、)でS H”をめる。ここでに、
 、 KI2は比例定数であり、SH,。
-, add S H" with (Tr-Tr,). Here,
, KI2 is a proportionality constant, SH,.

Tr、、Tr、と同様にポテンション等で自由に設定可
能である。これらの値は、空調システムに応じて設定で
きる。
Like Tr, , Tr, it can be freely set using a potentiometer or the like. These values can be set depending on the air conditioning system.

このように設定値演算回路13を構成し、この回路の演
算結果に応じて、過熱度設定回路9で過熱度の設定を行
うように構成すれば、過負荷が減少して室温Trが低下
しTr、以下になったときは、過熱度の設定値SHが低
下して膨張弁3の絞りすぎを防止するので、低熱負荷時
でも安定して制御が可能であり、一方、熱負荷が増加し
By configuring the set value calculation circuit 13 in this way and configuring the superheat degree setting circuit 9 to set the degree of superheat according to the calculation result of this circuit, the overload can be reduced and the room temperature Tr can be lowered. When the temperature drops below Tr, the set value SH of the degree of superheating decreases to prevent the expansion valve 3 from throttling too much, so stable control is possible even at low heat loads, but on the other hand, when the heat load increases, .

TrがTr、より大きくなると、SH”が低下し膨張弁
3の開度が増大するので、冷媒流がも増加して冷房能力
の不足、圧縮機1の吐出ガス温度の異常Jユ昇等を防止
できる効果がある。なお、室温がT r 、より大きく
ゴ゛r2より小さいときは、従来通りの設定値で制御を
行っても問題はない。
When Tr becomes larger than Tr, SH" decreases and the opening degree of the expansion valve 3 increases, so the refrigerant flow also increases, resulting in insufficient cooling capacity, abnormal rise in the discharge gas temperature of the compressor 1, etc. Note that when the room temperature is larger than T r and smaller than G r2, there is no problem even if the control is performed using the conventional set value.

第5図は本発明の他の実施例で、第2図に示した実施例
にお(づる、過熱度演算回路8.過熱度設定回路9、差
動増幅器10、PID演算回路11在マイクロコンピュ
ータで置き換えた点が第2図の実施例と異なる。マイク
ロコンピュータは、CPUI 5、メモリユニット16
、AD変換器17から構成されている。温度センサ14
で検知された室温信号は、熱負荷信号入力ボート18か
ら、温度センサ5で検知さ右た蒸発器4出口冷媒の温度
信号と、圧力センサ6で検知された一蒸発器4出口冷媒
の圧力信号は、それぞれ過熱度イa号入カボート19a
および1.9 bから取り入れられ、AD変換器17で
デジタル信号に¥1:、換された後、CPUで処理され
る。CPUでは、これらのiFf号を基に、過熱度を演
算し、設定値との偏差をめ、P I I:)演算を行っ
て弁開度を決定し弁駆動回路12に信号を出す。弁駆動
回路12の出力信号は出力ボート20から膨張弁3のア
クチュエータに送られ流量が制御される。このように構
成すると、第4図に示した演算は演算回路を構成するこ
となく、プログラム上で処理できるので演算式の変更も
容易にできる。また、第5図に示すような従来の演算回
路で構成困難なパターンも、図中0印で示した点のSH
”の値をTrの値に対応させて、メモリユニット16上
にメモリマツプを作成し、任意のTrの値に対し、SH
”の値をCPU上で補間して使用できる゛ので、より精
度の高い流星制御が可能となる。なお、第6図は第4図
の他の実施例で、空調機設計点室温1゛トより室温が低
いどきは過熱度の設計値Sl(”を室温Trの低下に対
応して低下させ、Trlより室温Trが高いときは、室
温Trの増加に応じてSHを低下させることにより、設
計点以外の熱負荷に対しても直ちに適応して流量制御で
きるようにした点が第4図の実施例と異なる。
FIG. 5 shows another embodiment of the present invention, which is different from the embodiment shown in FIG. This is different from the embodiment shown in Fig. 2 in that the microcomputer has a CPU 5 and a memory unit 16.
, and an AD converter 17. Temperature sensor 14
The room temperature signal detected at are respectively 19a with superheat level A.
and 1.9b, is converted into a digital signal by the AD converter 17, and then processed by the CPU. The CPU calculates the degree of superheating based on these iFf numbers, calculates the deviation from the set value, performs PII:) calculation, determines the valve opening degree, and outputs a signal to the valve drive circuit 12. The output signal of the valve drive circuit 12 is sent from the output boat 20 to the actuator of the expansion valve 3 to control the flow rate. With this configuration, the calculations shown in FIG. 4 can be processed on a program without configuring an arithmetic circuit, so that the calculation formula can be easily changed. In addition, patterns that are difficult to construct using conventional arithmetic circuits, such as the one shown in Figure 5, can be created using the SH at the point marked 0 in the figure.
” corresponds to the value of Tr, a memory map is created on the memory unit 16, and for any value of Tr, SH
Since the value of `` can be interpolated and used on the CPU, more accurate meteor control is possible. Fig. 6 shows another example of Fig. 4, and the air conditioner design point room temperature is 1. When the room temperature is lower, the design value of the degree of superheating Sl This embodiment differs from the embodiment shown in FIG. 4 in that the flow rate can be controlled immediately in response to heat loads other than the heat load.

第7図は、本発明の他の実施例に係る冷<Is流量制御
装置の図である。圧縮機1のガス吐出部に、温度センサ
ー4を設hlシて、このイa′、′fを熱負荷1a号人
カボート[8から取込4しるようにした点が、第2図お
よび第5図の実施例と異なる。圧縮機1の吐出ガス温度
を検出して;f!1熱1度の設定値を変でヒさせる方法
どしては、第8図に示した演算をCPUで行えばよい。
FIG. 7 is a diagram of a cold<Is flow control device according to another embodiment of the present invention. The temperature sensor 4 is installed at the gas discharge part of the compressor 1, and the temperature sensor 4 is taken in from the heat load 1a, as shown in FIGS. 2 and 4. This is different from the embodiment shown in FIG. Detect the discharge gas temperature of compressor 1; f! As a method of changing the setting value of 1 degree per heat, the calculation shown in FIG. 8 may be performed by the CPU.

すなわち、過熱度の箆α定値S HをSH,に初期設定
し、熱負荷信号入力ポート18から取り入れた吐出ガス
温度信号T elが所定の値Tどより小さいどきは、係
数C=1とおき、]゛dがTd より太きいどきは、C
=1−に、5 (’rcl−Td )ど5r9<。この
係数Cを申 S Hに掛けた値、b H” S HX Cが過熱度の
設定値である。このようにすると、K3は正の定数であ
るから、TdがTd”より大きいどきは、第9図に示し
ように、SHはTdの増加に比例して減少するので、冷
媒循環量が増加し圧縮機1の吐出ガスの異常上昇を防止
できる。ここで、第9図のS H”の変化パターンは、
第5図と同様に、メモリユニット16に、メモリマツプ
として記憶させてもよい。
That is, when the constant value SH of the degree of superheating is initially set to SH, and the discharge gas temperature signal Tel taken in from the thermal load signal input port 18 is smaller than a predetermined value T, the coefficient C is set to 1. ,] When d is thicker than Td, C
=1-, 5 ('rcl-Td) and 5r9<. The value obtained by multiplying this coefficient C by S H, b H'' S H As shown in FIG. 9, since SH decreases in proportion to the increase in Td, the amount of refrigerant circulation increases and an abnormal increase in the gas discharged from the compressor 1 can be prevented. Here, the change pattern of S H” in Fig. 9 is as follows:
Similarly to FIG. 5, it may be stored in the memory unit 16 as a memory map.

第10図は、本発明の他の実施例で、温度センサ14a
で室内温度を、温度センサ14bで圧縮機1の吐出ガス
温度を検出し、これらの信号をそれぞれ熱負荷信号入力
ボート18a、および18bから取り入れるようにした
点が第5図および第7図の実施例と異なる。第11図は
、本実施例の冷媒流量制御装置における過熱度の設定方
法の一実施例を示す。この実施例では、室温Trが設定
値Tr、より小さいときは過熱度の設定値SH”はTr
の減少に比例して減少し、TrがTr、より大きく、T
r2より小さいときは、一定値SH”=SH、に保たれ
、TrがTr、より大きいときは、Trの増加に比例し
てS Hが減少する点は第4図に示した実施例と同様で
ある。
FIG. 10 shows a temperature sensor 14a according to another embodiment of the present invention.
5 and 7, the temperature sensor 14b detects the indoor temperature, the temperature sensor 14b detects the discharge gas temperature of the compressor 1, and these signals are input from the thermal load signal input ports 18a and 18b, respectively. Different from the example. FIG. 11 shows an example of a method for setting the degree of superheat in the refrigerant flow rate control device of this example. In this embodiment, when the room temperature Tr is smaller than the set value Tr, the set value SH of the superheat degree is set to Tr.
decreases in proportion to the decrease in Tr, and T
When Tr is smaller than r2, it is maintained at a constant value SH"=SH, and when Tr is larger than Tr, SH decreases in proportion to the increase in Tr, which is similar to the embodiment shown in FIG. It is.

第11図に示した実施例では更に、室内温度Trで定ま
ったSHに、圧縮機1の吐出ガス温度Tdで定まる係数
Cを乗じるようにした点が第4図の実施例と異なる。こ
のように構成すると、第12図に示すように、室内温度
Trで定まるS H”のパターン(A)に対し、圧縮i
1の吐出ガス温度]”dが、設定値ゴd9より大きいと
きは、係数CがTdの増加に比例して減少するlより小
さい数となるパターン(B)を乗するので、圧縮機]の
吐出ガス温度がゴd*より小さいときは室内温度1゛r
に従って過熱度の設定値SIばか定まり、Tdがコ゛d
 より大きいときは、この信号を優先しC3I−1*が
定まり、圧縮機吐出ガス温度の異常上昇を惹起すること
なく、室内温度T rに従った過熱度の設定がaf能と
なる。
The embodiment shown in FIG. 11 further differs from the embodiment shown in FIG. 4 in that SH, which is determined by the room temperature Tr, is multiplied by a coefficient C, which is determined by the discharge gas temperature Td of the compressor 1. With this configuration, as shown in FIG. 12, the compression i
When the discharge gas temperature of the compressor] is larger than the set value d9, the coefficient C is multiplied by pattern (B), which is a number smaller than l, which decreases in proportion to the increase in Td. When the discharge gas temperature is lower than God*, the indoor temperature is 1゛r.
Accordingly, the set value SI of the superheat degree is determined, and Td becomes
When it is larger, this signal is prioritized and C3I-1* is determined, and the degree of superheating can be set according to the room temperature Tr without causing an abnormal rise in the compressor discharge gas temperature.

第13図は不発明の池の実施例で、温度センサ14を蒸
発器4の空気吹出し部に設置し、蒸発器4で冷却された
空気の温度を測定して、この信号を熱負荷入カポ−1−
」8から取込むようにした点が他の実施例と異なる。こ
のように構成すると、特に自動車圧空′A調和機におい
°C1春、秋などの中間期にヒータ (図示せず)を併
用して室内温度+11!1mを行う場合や、圧縮[1の
回転数が増加した場合に、蒸発器4の蒸発温度の低下を
検知できるので、フィン21の着霜、凍結を防止できる
効果゛がある。
FIG. 13 shows an embodiment of the inventionless pond, in which a temperature sensor 14 is installed at the air outlet of the evaporator 4, measures the temperature of the air cooled by the evaporator 4, and sends this signal to the heat load input point. -1-
This is different from the other embodiments in that the data is imported from ``8''. With this configuration, especially when using an automobile compressed air conditioner to increase the indoor temperature by +11!1 m by using a heater (not shown) during intermediate seasons such as spring and autumn, or when the rotation speed of compression [1] When the temperature increases, a decrease in the evaporation temperature of the evaporator 4 can be detected, which has the effect of preventing frost formation and freezing of the fins 21.

第14図は、本発明の他の実施例で温度センサ14をフ
ィン21の表面に設置した点が第13図の実施例と異な
る。このように構成すると、直接フィン21の温度を検
知するので、更にフィン21の凍結防止に有効である。
FIG. 14 is another embodiment of the present invention, which differs from the embodiment shown in FIG. 13 in that a temperature sensor 14 is installed on the surface of the fin 21. With this configuration, the temperature of the fins 21 is directly detected, which is more effective in preventing the fins 21 from freezing.

第15図は、本発明の他の実施例で、蒸発器4の入口冷
媒温度、すなわち蒸発温度を温度センサ5bで検知して
、熱負荷信号入力ボートから取込むようにした点が第5
図の実施例と異なる。このように構成すると、熱負荷の
状態を直接、蒸発温度として検出するので、実際に蒸発
器に作用する熱負荷が検知可能となり精度の高い流量制
御かで・ きる。
FIG. 15 shows another embodiment of the present invention, in which the inlet refrigerant temperature of the evaporator 4, that is, the evaporation temperature, is detected by a temperature sensor 5b and taken in from a heat load signal input boat.
This is different from the embodiment shown in the figure. With this configuration, the state of the heat load is directly detected as the evaporation temperature, so the heat load actually acting on the evaporator can be detected, allowing highly accurate flow rate control.

第16図は本発明の他の実施例で、蒸発器4の出口に設
置した圧力センサ6の信号を蒸発温度信号の代りに使用
するようにした点が第15図の実施例と異なる。このよ
うに構成しても第15図の実施例と同様の制御が可能で
あり、更にセンサの個数を低減できる利点がある。
FIG. 16 shows another embodiment of the present invention, which differs from the embodiment shown in FIG. 15 in that the signal from the pressure sensor 6 installed at the outlet of the evaporator 4 is used instead of the evaporation temperature signal. Even with this configuration, the same control as the embodiment shown in FIG. 15 is possible, and there is an advantage that the number of sensors can be further reduced.

第17図は、更に本発明の他の実施例で、蒸発器4出口
に設けた温度センサ5aと、蒸発器4人口に設けた温度
センサ5bとを使用して蒸発器4出口における冷媒の過
熱度金求めるとともに、温度センサ5bで検知した蒸発
温度信号全熱負荷信号入力ボート18から取込むように
した点が、第15図および第16図の実施例と異なる。
FIG. 17 shows another embodiment of the present invention, in which a temperature sensor 5a provided at the evaporator 4 outlet and a temperature sensor 5b provided at the evaporator 4 outlet are used to superheat the refrigerant at the evaporator 4 outlet. This embodiment differs from the embodiments shown in FIGS. 15 and 16 in that the temperature is determined and the evaporation temperature signal detected by the temperature sensor 5b is input from the total heat load signal input port 18.

このように構成すると、第15図の実施例と比較してセ
ンサの数を減らすことができるとともに、第16図の実
施例に比らべ、茜価な圧力センサ6および、歪ゲージ増
幅器等の回路を使用することなく流量制御が可能となる
With this configuration, the number of sensors can be reduced compared to the embodiment shown in FIG. 15, and compared to the embodiment shown in FIG. Flow rate control becomes possible without using a circuit.

王」1丹fuか果」 本発明によれば、熱負荷が変化しても、それに対応して
過熱度の設定値を変化できるので、熱負荷が小さいとき
の制御不能、熱負荷が大きいときの冷房能力不足at惹
起することなく、広い熱負荷範囲で冷媒流量の制御を可
能にする効果がある。
According to the present invention, even if the heat load changes, the set value of the degree of superheat can be changed accordingly, so that control cannot be achieved when the heat load is small and when the heat load is large. This has the effect of making it possible to control the refrigerant flow rate over a wide heat load range without causing insufficient cooling capacity.

なお、以上の実施例は窒気調)fD装置の運転状態が急
激に変化しない$足常状態では有効であるが、自動車用
突気調和装置におけるクールダウン初期(空気調40装
置起動直後)のように単室温度が非常に高くなっていて
単室温度を速やかに低下させる必要がある場合には、膨
張弁を少し絞りぎみにして蒸発器における蒸発温度を低
下させた方が効果的である。これは、クールダウン初期
のような過渡状態では、蒸発器内を流れる冷媒が蒸発器
から吸収する熱量と、蒸発器が車室内空気から吸収する
熱量が異なり、まず蒸発器が冷媒によって冷却され、次
に冷却された蒸発器によって空気が冷却されるためであ
る。すなわちクールダウン初期には蒸発器の温度も詞い
ので空気を冷却するには、まず蒸発器を速やかに冷却す
る必要があり、このためには冷媒の蒸発温度を下げ蒸発
器との温反差を大きくする必吠があるためであるう 本発明の実施例で述べた冷媒流量制御装置において、膨
張升全紋りぎみにするには過熱度の設定値を大さくすれ
ばよい。第18図に示すように、過熱度の設定値が大き
いaの方がクールダウン初期における車室内平均温度の
低下は速いが、窒気調オロ磯の起動後、蒸発器も十分冷
却されてくると過熱度の設定値を下げて#張升を開きぎ
みにして冷媒流量を増加させたbの万が車室内はよく冷
える。
The above example is effective in a steady state where the operating condition of the nitrogen air conditioner (nitrogen air conditioning) fD device does not change suddenly, but it is effective in the initial stage of cool-down (immediately after the air conditioner is started) in an automobile sudden air conditioner. When the temperature in a single chamber is extremely high and it is necessary to lower the temperature in the single chamber quickly, it is more effective to reduce the evaporation temperature in the evaporator by slightly restricting the expansion valve. . This is because in a transient state such as the initial stage of cooldown, the amount of heat absorbed by the refrigerant flowing inside the evaporator from the evaporator is different from the amount of heat absorbed by the evaporator from the air inside the vehicle, and the evaporator is first cooled by the refrigerant. This is because the air is then cooled by the cooled evaporator. In other words, at the beginning of cool-down, the temperature of the evaporator is also a factor, so in order to cool the air, it is first necessary to quickly cool the evaporator.To do this, it is necessary to lower the evaporation temperature of the refrigerant and reduce the temperature difference with the evaporator. This is because there is a need to increase the degree of superheat.In the refrigerant flow rate control device described in the embodiment of the present invention, in order to reach the limit of full expansion, it is sufficient to increase the set value of the degree of superheat. As shown in Fig. 18, the average temperature inside the vehicle decreases faster in the early stage of cool-down in case a, which has a higher superheating degree set value, but the evaporator also cools down sufficiently after the nitrous air control Oroiso is activated. If you lower the superheat setting and increase the refrigerant flow rate by opening the #b, the interior of the vehicle will cool down well.

そこで、クールダウン初期には過熱度の設定値を大きく
し、単室内の温度が低ドしたら既述の制御方法に切換え
るとより効果的な冷媒流電制御が可能となる。第19図
は、クールダウン初期に過熱度の設定値を大きくする制
御と、第4図に示した実施例を組合せた制御の実施例で
あるっここで、Trx <Tr2(Tr31 SHo’
<sH1’であり、クールダウン初期に車室内平均温度
TrがTr3より大きいときは過熱度設定値SHKをS
HI’と置き、TrがTr3よシ小さくなった時点で第
4図に示した制御に切換えるようにしである。この、ク
ールダウン初期の過熱度設定値ケ大きくする制御と既述
の制御方法とを切換える信号としては、車室内温度のほ
かに、車室内温度と設定値の差(Tr−Tr2又はTr
−Tra)、蒸発温度、蒸発器の温度または蒸発圧力を
使用しても同様の効果が得られる。第20図は蒸発温度
全切換1g号として使用した実施例である。このほか、
第21図に示すように、空気調和機の起動後一定時間内
は過熱度の設定値を大きくしてもよい。
Therefore, more effective refrigerant current control can be achieved by increasing the set value of the degree of superheat at the initial stage of cool-down, and switching to the control method described above when the temperature inside the single chamber becomes low. FIG. 19 shows an example of control in which the set value of the degree of superheat is increased in the early stage of cool-down, and the control shown in FIG. 4 is combined. Here, Trx < Tr2 (Tr31 SHo'
<sH1', and when the average vehicle interior temperature Tr is higher than Tr3 at the beginning of cool-down, the superheat degree setting value SHK is set to SHK.
HI', and when Tr becomes smaller than Tr3, the control is switched to the one shown in FIG. As a signal for switching between control to increase the superheat degree set value at the initial stage of cool-down and the control method described above, in addition to the vehicle interior temperature, the difference between the vehicle interior temperature and the set value (Tr - Tr2 or Tr
-Tra), evaporation temperature, evaporator temperature or evaporation pressure can be used to similar effect. FIG. 20 shows an example in which the evaporation temperature is fully switched No. 1g. other than this,
As shown in FIG. 21, the set value of the degree of superheat may be increased within a certain period of time after the air conditioner is started.

〔発明の効果〕〔Effect of the invention〕

不発明によれば、熱負荷が変化してもそれに対応して過
熱度の設定値を変化できるので、熱負荷が小さいときの
制御不能、熱負荷が大きいときの?!?r房能力不能力
不足起することなく、広い熱負荷範囲で冷媒流量の制#
金可能にする効果がある。
According to the invention, even if the heat load changes, the set value of the degree of superheat can be changed accordingly, so there is no control when the heat load is small, and when the heat load is large. ! ? Control of refrigerant flow rate over a wide heat load range without causing insufficient room capacity
It has the effect of making money possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷媒流量制御装置の構成図、第2図は本
発明の一実施例に係る冷媒流量制御装置の構成図、第3
図は第2図の実施例に係る制御パターンを示す図、第4
図はその演算のフロー、第5図は、本発明のさらに他の
実施例に係る構成は第6図は、他の制御パターンを示す
図、第7図は他の実施例の構成図、第8図、第9図は第
7図の実施例に係る、演算フローと制御パターン、第1
θ回は本発明の他の実施例に係る構成図、第11図。 第・12図は、第10図の実施例に係る、演算フロート
制御パターンを示す図、第13図、第14図。 第15図、第16図、第17図は、いずれも本発明のさ
らに他の実施例に係る冷媒流量制御装置の構成図である
。第18図は過熱度設定値がクールダウン初期の車室温
度変化に及ぼす影響を説明する図、第19図はクールダ
ウン初期に過熱度の設定値を大きくする制御の一実施例
、第20図、第21図は本発明の他の実施例を説明する
図である。 1・・・圧m機、3・・・膨張升、4・・・蒸発器、5
°°゛温度センサ、6・・・圧力センサ、7・・・冷媒
流量制御装置、8・・・過熱度演算回路、9・・・過熱
度設定回路、13゛°°設定値演算回路、14・・・温
度センサ、15・・・CPU、16・・・メモリユニッ
ト、17・・・AD変換器、18・・・熱負荷信号人力
ボート、19・・・過熱度信号入力ボート、20・・・
出力ボート、21・・・フィン。 T 1 図 1ρ 第 2 図 L−−一−−−−−−−−−− /4 昭3図 第 4 図 Z5図 L−一−−−−−−−−−−−−ゴ 4 ¥16 図 昭7図 第6図 ■ 9 図 ¥l lo 図 ■ 11 図 第 1z 区 Tn Trz Tr び Ta 囁13図 冨 /4 図 115図 第 17 図 lど rqb 矛180 Oto 2θ 304D 蒔 間 Cオ・ン 才 1(1圓
FIG. 1 is a configuration diagram of a conventional refrigerant flow rate control device, FIG. 2 is a configuration diagram of a refrigerant flow rate control device according to an embodiment of the present invention, and FIG.
The figures are diagrams showing control patterns according to the embodiment of Fig. 2, and Fig. 4.
The figure shows the flow of the calculation, FIG. 5 shows the configuration according to another embodiment of the present invention, FIG. 6 shows another control pattern, FIG. 7 shows the configuration of another embodiment, and FIG. Figures 8 and 9 show the calculation flow and control pattern of the embodiment shown in Figure 7.
FIG. 11 is a block diagram of another embodiment of the present invention. 12 is a diagram showing calculation float control patterns according to the embodiment of FIG. 10, FIG. 13, and FIG. 14. FIG. 15, FIG. 16, and FIG. 17 are all configuration diagrams of a refrigerant flow rate control device according to still another embodiment of the present invention. Fig. 18 is a diagram illustrating the influence of the superheat degree setting value on the change in cabin temperature at the beginning of cool-down, Fig. 19 is an example of control for increasing the superheat degree setting value at the early stage of cool-down, and Fig. 20 , FIG. 21 is a diagram illustrating another embodiment of the present invention. 1... Pressure m machine, 3... Expansion box, 4... Evaporator, 5
°°゛Temperature sensor, 6... Pressure sensor, 7... Refrigerant flow rate control device, 8... Superheat degree calculation circuit, 9... Superheat degree setting circuit, 13゛°° Set value calculation circuit, 14 ...Temperature sensor, 15...CPU, 16...Memory unit, 17...AD converter, 18...Heat load signal manual boat, 19...Superheat degree signal input boat, 20...・
Output boat, 21...fin. T 1 Figure 1ρ 2nd Figure L--1----------/4 Figure 3 of Showa 4 Figure Z5 Figure L-1------------Go 4 ¥16 Fig. 7 Fig. 6 ■ 9 Fig.¥l lo Fig. ■ 11 Fig. 1z Ward Tn Trz Tr and Ta whisper 13 Fig. Tomi /4 Fig. 115 Fig. 17 1 (1 circle)

Claims (1)

【特許請求の範囲】 1、圧縮機と、冷媒を凝縮する凝縮器と、電気信号によ
りその弁開度が調整可能な膨張弁と、冷媒を蒸発させる
蒸発器より成る空気調和装置における蒸発器の出口の冷
媒の過熱度を検出する手段と、この過熱度を設定値に保
つように前記膨張弁と電気信号を発する制御回路とから
構成され、前記過熱度の設定値を空気調和装置の運転状
態に応じて変化させるようにした冷媒流する冷媒流量制
御装置。 ゛ 2、熱負荷が設定値より大きいときは、熱負荷の増加に
伴って過熱度の設定値を低下させ、熱負荷が設定値より
小さいときは、熱負荷の低下に伴なって過熱度の設定値
を減少させるようにしたことを特徴とする特許請求の範
囲第1項記載の冷媒流量制御装置。 3、空気調和装置の熱負荷を検出する手段として室内空
気温度を検知することを特徴とする特許請求の範囲第2
項記載の冷媒流量制御装置。 4、室内空気温度が、一定範囲内にあるときは、過熱度
の設定値を一定に保ち、室内空気温度がこの範囲より高
いときは、室内温度の増加に伴って過熱度の設定値を減
少させ、室内空気温度が前記範囲より低いときは、室内
空気温度の低下に伴って過熱度の設定値を低下させるよ
うにしたことを特徴とする特許請求の範囲第1項記載の
冷媒流量制御装置。 5、圧縮機吐出ガス温度が一定値以下のときは、蒸発器
出口冷媒の過熱度の設定値を一定に保ち、前記圧縮機吐
出ガス温度が一定値より大きい場合には、この圧縮機吐
出ガス温度の増加に従って前記過熱度の設定値を減少さ
せるようにしたことを特徴とする特許請求の範囲第1項
記載の冷媒流量制御装置。
[Claims] 1. An evaporator in an air conditioner comprising a compressor, a condenser that condenses refrigerant, an expansion valve whose valve opening degree can be adjusted by an electric signal, and an evaporator that evaporates refrigerant. It consists of a means for detecting the degree of superheat of the refrigerant at the outlet, and a control circuit that issues the expansion valve and an electric signal to maintain the degree of superheat at a set value, and the set value of the degree of superheat is controlled by the operating state of the air conditioner. A refrigerant flow rate control device that changes the flow of refrigerant according to the flow of refrigerant.゛2.When the heat load is larger than the set value, the set value of the degree of superheat is decreased as the heat load increases, and when the heat load is smaller than the set value, the degree of superheat is decreased as the heat load decreases. The refrigerant flow rate control device according to claim 1, characterized in that the set value is decreased. 3. Claim 2, characterized in that the indoor air temperature is detected as means for detecting the heat load of the air conditioner.
The refrigerant flow rate control device described in Section 1. 4. When the indoor air temperature is within a certain range, the set value of the degree of superheat is kept constant, and when the indoor air temperature is higher than this range, the set value of the degree of superheat is decreased as the indoor temperature increases. and when the indoor air temperature is lower than the range, the set value of the degree of superheating is lowered as the indoor air temperature decreases. . 5. When the compressor discharge gas temperature is below a certain value, the set value of the degree of superheating of the evaporator outlet refrigerant is kept constant, and when the compressor discharge gas temperature is higher than the constant value, this compressor discharge gas The refrigerant flow rate control device according to claim 1, wherein the set value of the degree of superheat is decreased as the temperature increases.
JP3853184A 1984-03-02 1984-03-02 Controller for flow rate of refrigerant Granted JPS60185075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3853184A JPS60185075A (en) 1984-03-02 1984-03-02 Controller for flow rate of refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3853184A JPS60185075A (en) 1984-03-02 1984-03-02 Controller for flow rate of refrigerant

Publications (2)

Publication Number Publication Date
JPS60185075A true JPS60185075A (en) 1985-09-20
JPH0573981B2 JPH0573981B2 (en) 1993-10-15

Family

ID=12527861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3853184A Granted JPS60185075A (en) 1984-03-02 1984-03-02 Controller for flow rate of refrigerant

Country Status (1)

Country Link
JP (1) JPS60185075A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259353A (en) * 1987-04-13 1988-10-26 三菱重工業株式会社 Refrigerator
WO2008080436A1 (en) * 2007-01-04 2008-07-10 Carrier Corporation Superheat control for refrigeration circuit
JP2015068614A (en) * 2013-09-30 2015-04-13 ダイキン工業株式会社 Refrigeration unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565871A (en) * 1978-11-13 1980-05-17 Saginomiya Seisakusho Inc Refrigeration cycle
JPS5829827U (en) * 1981-08-20 1983-02-26 株式会社富士通ゼネラル Board mounting device for cylinder type trimmer capacitor
JPS58142163A (en) * 1982-02-19 1983-08-23 株式会社日立製作所 Refrigerant controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565871A (en) * 1978-11-13 1980-05-17 Saginomiya Seisakusho Inc Refrigeration cycle
JPS5829827U (en) * 1981-08-20 1983-02-26 株式会社富士通ゼネラル Board mounting device for cylinder type trimmer capacitor
JPS58142163A (en) * 1982-02-19 1983-08-23 株式会社日立製作所 Refrigerant controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259353A (en) * 1987-04-13 1988-10-26 三菱重工業株式会社 Refrigerator
WO2008080436A1 (en) * 2007-01-04 2008-07-10 Carrier Corporation Superheat control for refrigeration circuit
JP2015068614A (en) * 2013-09-30 2015-04-13 ダイキン工業株式会社 Refrigeration unit

Also Published As

Publication number Publication date
JPH0573981B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US6711911B1 (en) Expansion valve control
EP2588818B1 (en) A method for operating a vapour compression system using a subcooling value
JP3851512B2 (en) Method and apparatus for controlling electronic expansion valve
US9341398B2 (en) Air conditioning system provided with an electronic expansion valve
EP1856458B1 (en) Control of a refrigeration circuit with an internal heat exchanger
WO2009122706A1 (en) Refrigerating device
WO2008047901A1 (en) Heat source device, heat source system, and method of controlling heat source device
WO1991003691A1 (en) Vapor cycle system with multiple evaporator load control and superheat control
US7290402B1 (en) Expansion valve control system and method and refrigeration unit employing the same
CN110726225B (en) Multi-split system and control method thereof
KR101336720B1 (en) Air conditioning system
EP3686519B1 (en) A system having an optimised subcooler and a method of operating the system
JPS60185075A (en) Controller for flow rate of refrigerant
CN116576600A (en) Rapid and stable control method for room temperature between refrigeration systems
JP2002071192A (en) Air conditioning apparatus
JP2646917B2 (en) Refrigeration equipment
JPH06185814A (en) Expansion valve controller for refrigerant circulating cycle
JPH0723794B2 (en) Air conditioner
JPH04283361A (en) Multichamber type air conditioner
JP2769423B2 (en) Refrigeration device temperature control method and device
JPH0550666B2 (en)
JPH0833249B2 (en) Heat pump controller
JPH04244557A (en) Expansion valve controlling method for air conditioner
JPS60202276A (en) Air conditioner
JPS61250452A (en) Flow controller for refrigerant