JPS60184925A - Intake device for engine - Google Patents

Intake device for engine

Info

Publication number
JPS60184925A
JPS60184925A JP59039988A JP3998884A JPS60184925A JP S60184925 A JPS60184925 A JP S60184925A JP 59039988 A JP59039988 A JP 59039988A JP 3998884 A JP3998884 A JP 3998884A JP S60184925 A JPS60184925 A JP S60184925A
Authority
JP
Japan
Prior art keywords
intake pipe
intake
length
engine
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59039988A
Other languages
Japanese (ja)
Inventor
Takashige Tokushima
徳島 孝成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59039988A priority Critical patent/JPS60184925A/en
Publication of JPS60184925A publication Critical patent/JPS60184925A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0231Movable ducts, walls or the like
    • F02B27/0236Movable ducts, walls or the like with continuously variable adjustment of a length or width
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To enhance the output power of an engine equipped with an intake pipe length control means, by providing a fluctuation factor detection means for detecting a sound speed fluctuation factor, and by performing the compensatory control of the length of an intake pipe depending on the output signal of the fluctuation factor detection means, to heighten the efficiency of inertial supercharging. CONSTITUTION:In a four-cylinder engine 1, an intake passage 3 is provided in such a manner that the upstream ends of branch intake pipes 5 connected to cylinders 2 are coupled to a common surge tank 6, and a throttle valve 8 is furnished in an intake pipe 7 at an introducing portion upstream to the surge tank. An expansible and compressible pipe 11 provided with a rack 11a is fitted movably back and forth in the intake pipe 7 to constitute an intake pipe length control means 10. The upstream end of the expansible and compressible pipe 11 is opened into an air cleaner 9. A pulse motor 12 for rotating a gear 12b engaged with the rack 11a is regulated by a control unit 13 to control the length of the intake pipe depending on the output of a rotational frequency sensor 17. The length of the intake pipe is controlled in a compensatory manner depending on the output of a sound speed fluctuation factor detection means 16 consisting of an intake air temperature sensor 14 and an atmospheric pressure sensor 15.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの吸気装置に関し、特に、吸気管長
を変更して出力の向上を図るようにしたエンジンの吸気
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for an engine, and particularly to an intake system for an engine in which the length of the intake pipe is changed to improve output.

(従来技術) 一般に、エンジンでは吸気が間欠的に行なわれるので、
吸気に気柱振動が発生し、この気柱振動は吸入空気量す
なわちエンジン出力に影響を及ぼしtいる。この気柱振
動は、吸気管長、径、集合部容積などの吸気系諸元によ
り定まる。
(Prior art) In general, engines take in air intermittently, so
Air column vibration occurs in the intake air, and this air column vibration affects the amount of intake air, that is, the engine output. This air column vibration is determined by intake system parameters such as intake pipe length, diameter, and collection volume.

上記吸気系諸元を一定としたエンジンでは、所定の運転
条件において気柱振動が最適の状態となるように設定さ
れており、気柱振動は吸入空気□□□に対し、所定の回
転数では有利に働くが、仙の領域ではむしろ不利に作用
している。
In an engine with the above intake system specifications constant, the air column vibration is set to be optimal under the specified operating conditions, and the air column vibration is It works to my advantage, but in the immortal realm it actually works against me.

そこで、例えば、実開昭57−22629号に見られる
ように、吸気通路の途中に東金部としてサージタンクを
設け、このサージタンクの下流側の吸気管を伸縮構造と
してエンジン回転数に応じてその長さを変更し、慣性効
果による充填効率の向上を図り出力性能を改善する技術
が提案されている。
Therefore, for example, as seen in Utility Model Application No. 57-22629, a surge tank is provided as a metal part in the middle of the intake passage, and the intake pipe on the downstream side of this surge tank is made to have an expandable structure so that it can be adjusted according to the engine speed. Techniques have been proposed to improve output performance by changing the length and improving filling efficiency through inertia effects.

しかして、上記提案技術は、吸気行程初期にシリンダ内
に発生する負圧により、吸気管の気柱が加速され、開口
端に生じる反転圧力波により吸気がシリンダ内に押し込
まれるいわゆる慣性過給効果を利用しているものである
。また、サージタンク上流側の吸気管の長さを可変とし
て、サージタンクおよびその上流の吸気系を考え、各気
筒の吸気圧力波をその加振源とみなずと、加振源と上記
吸気系の気柱振動との間には応答遅れが生じ、気柱振動
周期と加振源周期(エンジン回転数)とが一致するとき
に充填効率が上昇するいわゆる共鳴効果を利用した技術
もある。
Therefore, the above-mentioned proposed technology has a so-called inertial supercharging effect in which the air column in the intake pipe is accelerated by the negative pressure generated in the cylinder at the beginning of the intake stroke, and the intake air is forced into the cylinder by the reverse pressure wave generated at the open end. This is what is being used. In addition, considering the surge tank and the intake system upstream of the surge tank by making the length of the intake pipe on the upstream side of the surge tank variable, we considered the intake pressure waves of each cylinder as the vibration source, and compared the vibration source and the above intake system. There is also a technique that utilizes the so-called resonance effect, in which a response delay occurs between the air column vibration and the filling efficiency increases when the air column vibration period and the excitation source period (engine rotation speed) match.

しかし、いずれの場合においても、吸気系の気柱の固有
振動数は気柱の長さの関数であるとともに、音速の関数
でもある。よって、例えば、温度もしくは大気圧等が変
化した時には音速が変化することによって気柱の固有振
動数も変化し、エンジン回転数と同調する吸気管長も変
化するものであり、単にエンジン回転数にのみ対応して
吸気管長を変更するようにしたものでは、常に最大の慣
性効果もしくは共鳴効果が得られる最適な吸気管長に制
御できずに出方向上効果が不十分となる問題を有する。
However, in any case, the natural frequency of the air column of the intake system is a function of the length of the air column as well as the speed of sound. Therefore, for example, when the temperature or atmospheric pressure changes, the speed of sound changes, which causes the natural frequency of the air column to change, and the length of the intake pipe, which is synchronized with the engine speed, also changes. In the case where the intake pipe length is changed accordingly, there is a problem that the intake pipe length cannot always be controlled to be the optimum length to obtain the maximum inertial effect or resonance effect, and the effect in the exit direction is insufficient.

(発明の目的) そこで本発明は上記事情に鑑み、温度、大気圧等の音速
が変動する要素が変化した場合においても共鳴もしくは
慣性過給効果が最大限に得られるようにしたエンジンの
吸気装置を提供することを目的とするものである。
(Object of the Invention) In view of the above circumstances, the present invention provides an engine intake system that maximizes the resonance or inertial supercharging effect even when factors that change the speed of sound such as temperature and atmospheric pressure change. The purpose is to provide the following.

(発明の構成) 本発明のエンジンの吸気装置は、エンジン回転数に応じ
て吸気管の長さを制御する吸気管長制御手段を備えたも
のにおいて、音速が変動する要素を検出する変動要素検
出手段と、この変動要素検出手段の信号により上記吸気
管長制御手段を作動させて吸気管長を補正制御する補正
手段とを備えたことを特徴とするものである。
(Structure of the Invention) An intake system for an engine according to the present invention is provided with an intake pipe length control means for controlling the length of the intake pipe according to the engine speed, and a variable element detection means for detecting an element in which the speed of sound varies. and a correction means for correcting and controlling the intake pipe length by operating the intake pipe length control means based on the signal from the variable element detection means.

〈発明の効果) 本発明によれば、変動要素検出手段によって検出した温
度、大気圧等の音速変動要素の変動に基づき、吸気系の
気柱振動の周期がエンジンの吸気の周期に同期するよう
に吸気管の長さを変えるようにしたことにより、音速の
変動要素が変化した場合においても最適の同調条件を得
ることができ、共鳴もしくは慣性過給効果を最大限に発
揮して所期の出方向上を図ることができるものである。
<Effects of the Invention> According to the present invention, the period of air column vibration in the intake system is synchronized with the period of intake air of the engine based on the fluctuation of sound speed fluctuation factors such as temperature and atmospheric pressure detected by the fluctuation element detection means. By changing the length of the intake pipe, it is possible to obtain the optimum tuning conditions even when the fluctuation factors of sound speed change, and to maximize the resonance or inertial supercharging effect to achieve the desired result. It is possible to plan the direction of output.

〈実施例) 以下、図面により本発明の各実施態様を詳細に説明する
<Example> Hereinafter, each embodiment of the present invention will be described in detail with reference to the drawings.

実施例1 第1図は全体の概略構成を示し、4気筒エンジン1の各
気筒2には吸気を供給する吸気通路3および燃焼ガスを
排出する排気通路4が接続されている。上記吸気通路3
は、各気筒2にそれぞれ接続間口した分岐吸気管5の上
流側が共通のサージタンク6に接続され、このサージタ
ンク6より上流側の導入部の吸気管7にはスロットル弁
8が介装されるとともに、該導入部の吸気管7はクリー
ナエレメント9aを備えたエアクリーナ9に連接されて
いる。
Embodiment 1 FIG. 1 schematically shows the overall configuration. Each cylinder 2 of a four-cylinder engine 1 is connected to an intake passage 3 for supplying intake air and an exhaust passage 4 for discharging combustion gas. Above intake passage 3
The upstream sides of the branch intake pipes 5 connected to each cylinder 2 are connected to a common surge tank 6, and a throttle valve 8 is interposed in the intake pipe 7 at the introduction part upstream of the surge tank 6. At the same time, the intake pipe 7 of the introduction section is connected to an air cleaner 9 provided with a cleaner element 9a.

また、上記サージタンク6上流の吸気管7には、その吸
気管長をエンジン回転数に応じて変更する吸気管長制御
手段10が設けられている。該吸気管長制御手段10は
吸気管7に進退移動可能に内設された伸縮管11を備え
、この伸縮管11の上流端が上記エアクリーナ9に開口
し、この開口端から吸気管7がサージタンク6に接続す
る部分までの吸気管長しが変更可能に構成されている。
Further, the intake pipe 7 upstream of the surge tank 6 is provided with an intake pipe length control means 10 that changes the intake pipe length in accordance with the engine speed. The intake pipe length control means 10 includes a telescoping pipe 11 disposed within the intake pipe 7 so as to be movable forward and backward.The upstream end of the telescoping pipe 11 opens into the air cleaner 9, and from this open end the intake pipe 7 connects to the surge tank. The length of the intake pipe up to the part where it connects to 6 can be changed.

上記伸縮管11の移動は伸縮管11に形成されたラック
llaにパルスモータ12の駆動軸12aに固着したギ
ヤ12bを噛合して、このパルスモータ12の作、動に
よって行なわれ、このパルスモータ12にはコントロー
ルユニット13がらの制御信号が出力されてその作動が
制御され、吸気管長りが調整制御される。
The movement of the telescopic tube 11 is carried out by the operation of the pulse motor 12 by meshing a gear 12b fixed to the drive shaft 12a of the pulse motor 12 with a rack lla formed in the telescopic tube 11. A control signal from the control unit 13 is outputted to control its operation, and the length of the intake pipe is adjusted and controlled.

また、上記サージタンク6には吸気温度を検出する吸気
温センサー14が配設され、また、大気圧を検出する大
気圧センサー15が設けられ、両センサー14.15に
よって音速の変動要素を検出する変動要素検出手段16
が構成されている。
Further, the surge tank 6 is provided with an intake air temperature sensor 14 that detects the intake air temperature, and an atmospheric pressure sensor 15 that detects the atmospheric pressure, and both sensors 14 and 15 detect variations in the speed of sound. Variable element detection means 16
is configured.

前記コントロールユニット13はこの変動要素検出手段
16の信号すなわち吸気温センサー14と大気圧センサ
ー15の検出信号およびエンジン回転数センサー17か
らのエンジン回転数信号を受番プ、エンジン回転数に対
応して吸気管長を基本的に制御するとともに、音速の変
動に対応して吸気管長を補正制御するものである。さら
に、上記コン)〜ロールユニット13はパルスモータ1
2からの吸気管長信号を受り、この吸気管長をフィード
バック制御するものである。
The control unit 13 receives the signals from the variable element detection means 16, that is, the detection signals from the intake air temperature sensor 14 and the atmospheric pressure sensor 15, and the engine speed signal from the engine speed sensor 17, and processes them in response to the engine speed. This basically controls the length of the intake pipe, and also corrects and controls the length of the intake pipe in response to variations in the speed of sound. Furthermore, the above-mentioned controller) to roll unit 13 are connected to the pulse motor 1.
It receives the intake pipe length signal from 2 and performs feedback control of the intake pipe length.

上記コントロールユニット13は、エンジン回転数セン
サー17の信号を受けてエンジン回転数に対応した基本
的な吸気管長を演算し、パルスモータ12からの吸気管
長信号との差に基づき伸縮管11を所定の位置に移動す
るための基本制御信号を出力する基本制御回路18と、
前記吸気温センサー14および大気圧センサー15から
の信号とを受け、音速変動に対応する補正係数を演算す
る演算回路19と、この演算回路19の信号を受(プ前
記基本制御回路18からの出力信号を補正する補正回路
20とを備えている。
The control unit 13 receives the signal from the engine speed sensor 17, calculates the basic intake pipe length corresponding to the engine speed, and adjusts the telescopic pipe 11 to a predetermined value based on the difference between the signal and the intake pipe length signal from the pulse motor 12. a basic control circuit 18 that outputs a basic control signal for moving to a position;
An arithmetic circuit 19 receives the signals from the intake air temperature sensor 14 and the atmospheric pressure sensor 15 and calculates a correction coefficient corresponding to the sound velocity fluctuation; A correction circuit 20 for correcting the signal is provided.

上記フン1〜ロールユニツト13の作動を第2図のフロ
ーチャートに基づいて説明する。スタート後、ステップ
S1でエンジン回転数センサー17の信号に基づきエン
ジン回転数Nを読込み、このエンジン回転数Nが制御範
囲内(吸気管長の変更範囲に対応する調整可能領域)に
あるかどうかを判断しくS2)、この判断がYESで制
御範囲内の時にのみ次のステップS3に移って吸気管長
制御を行う。
The operations of the fan 1 to the roll unit 13 will be explained based on the flowchart shown in FIG. After starting, in step S1, the engine speed N is read based on the signal from the engine speed sensor 17, and it is determined whether this engine speed N is within the control range (adjustable range corresponding to the change range of the intake pipe length). Only when this determination is YES and within the control range does the process move to the next step S3 to perform intake pipe length control.

ステップS3ではエンジン回転数Nに対応する基本吸気
管長Loを演算し、続いて吸気温センサー14および大
気圧センサー15からそれぞれ吸気温度Tおよび大気圧
Pを読込み(S4)、ステップS5で吸気温度Tが基準
温度Toに対し許容範囲α内にあるかどうか、ダ−なわ
ち温度補正が必要かどうかを判断し、許容範囲αを越え
ている時(No)には、ステップS6で上記基本吸気管
長Loの温度補正を行う。この温度補正後、ステツー 
プS7で大気圧p h<基準圧Paに対し許容範囲β内
にあるかどうか、づ−なわち大気圧補正が必要かどうか
を判断し、この許容範囲βを越えている時(No)には
、ステップS8で上記基本吸気管長ト。の大気圧補正を
行う。上記温度補正および大気圧補正は第3図に示すよ
うな特性に基づぎ、吸気温度Tおよび大気圧Pに対応し
た補正係数a。
In step S3, the basic intake pipe length Lo corresponding to the engine speed N is calculated, and then the intake air temperature T and atmospheric pressure P are read from the intake air temperature sensor 14 and the atmospheric pressure sensor 15, respectively (S4), and in step S5, the intake air temperature T It is determined whether the temperature is within the allowable range α with respect to the reference temperature To, that is, whether temperature correction is necessary, and if it exceeds the allowable range α (No), the basic intake pipe length is Perform Lo temperature correction. After this temperature correction, the STETSU
At step S7, it is determined whether atmospheric pressure ph < reference pressure Pa is within the allowable range β, that is, whether atmospheric pressure correction is necessary. In step S8, the basic intake pipe length is determined. Perform atmospheric pressure correction. The above-mentioned temperature correction and atmospheric pressure correction are based on the characteristics shown in FIG. 3, and a correction coefficient a corresponding to the intake air temperature T and atmospheric pressure P is used.

bをそれぞれめ、吸気温度下が高くもしくは大気圧Pが
低い時には吸気管長Loが長くなる方向に補正するもの
である。
When the intake air temperature is high or the atmospheric pressure P is low, the intake pipe length Lo is corrected to become longer.

上記補正された基本吸気管長Loの値に対し現在の吸気
管長1を読込み(S9)、ステップS10で両者の差L
 Loの絶対値が許容値γ以下かどうかを判断し、許容
値γを越えている時(No>には、ステップ811で差
L Loの値から伸縮管11の移動量を予め設定しであ
るマツプによって演算設定し、これに基づいてパルスモ
ータ12に駆動信号を出力しく512)、吸気管長を変
更した後、ステップS1に戻る。
The current intake pipe length 1 is read against the value of the basic intake pipe length Lo corrected above (S9), and the difference L between the two is read in step S10.
It is determined whether the absolute value of Lo is less than or equal to the allowable value γ, and if it exceeds the allowable value γ (No>, the amount of movement of the telescopic tube 11 is preset from the value of the difference L Lo in step 811. After calculating and setting based on the map and outputting a drive signal to the pulse motor 12 based on the map (512) and changing the intake pipe length, the process returns to step S1.

よって上記実施例によれば、吸気管長制御手段10の伸
縮管11の移動によってサージタンク6上流の吸気管長
は、基本的にはエンジン回転数が低いときには長く、高
回転数のときには短くなるように制御され、これに加え
て該吸気管長は音速の変動に対応して補正制御され、こ
れにより共鳴過給効果を最大限に得て出方向上を図る。
Therefore, according to the above embodiment, by moving the telescopic pipe 11 of the intake pipe length control means 10, the length of the intake pipe upstream of the surge tank 6 is basically made longer when the engine speed is low and shortened when the engine speed is high. In addition to this, the length of the intake pipe is corrected and controlled in response to variations in the speed of sound, thereby maximizing the resonance supercharging effect and aiming for an upward exit direction.

実施例2 この実施例は慣性過給効果を得るようにした吸気装置に
関し、第4図は全体の概略構成を示し、第1図のもので
は+f−ラージク6の上流側の吸気管7に吸気管長を変
更する吸気管長制御手段10を設置したのに対し、この
例ではサージタンク6下流の分岐吸気管5の長さを変更
するようにしたものである。
Embodiment 2 This embodiment relates to an intake system designed to obtain an inertial supercharging effect. FIG. 4 shows the overall configuration, and in the one shown in FIG. While an intake pipe length control means 10 for changing the pipe length is installed, in this example, the length of the branched intake pipe 5 downstream of the surge tank 6 is changed.

すなわち、各気筒2に接続される各分岐吸気管5.5・
・・には、上流端がサージタンク6内に開口する伸縮管
23.23・・・がそれぞれ進退移動可能に内股され、
この伸縮管23.23・・・の移動を各伸縮管23に形
成したラック23a、23a・・・にパルスモータ24
の駆動軸24 aに固設したギヤ24b、24b・・・
をそれぞれ噛合して、このパルスモータ24の作動によ
って全気筒同時に行うようにした吸気管長制御手段25
が設置され、パルスモータ27Iの作動をコントロール
ユニット26からの制御信号によって行い、吸気管長を
調整制御するものである。
That is, each branch intake pipe 5.5 connected to each cylinder 2
..., the telescopic tubes 23, 23, whose upstream ends open into the surge tank 6, are each arranged inwardly so as to be movable forward and backward.
The movement of the telescopic tubes 23, 23, . . . is controlled by a pulse motor 24,
Gears 24b, 24b... fixed to the drive shaft 24a of
The intake pipe length control means 25 is configured to mesh with each other so that all cylinders are operated simultaneously by the operation of the pulse motor 24.
is installed, and the pulse motor 27I is operated by a control signal from the control unit 26 to adjust and control the intake pipe length.

上記コントロールユニット26は前例と同様に変動要素
検出手段16の吸気温センサー14、大気圧レンサー1
5およびエンジン回転数センサー]7の信号を受け、吸
気管長をエンジン回転数に対応して制御する一方、温度
補正および大気圧補正を行って音速の変動に対応するよ
うに補正制御するものである。
The control unit 26 includes the intake air temperature sensor 14 of the variable element detection means 16 and the atmospheric pressure sensor 1 as in the previous example.
5 and engine rotational speed sensor] 7, and controls the intake pipe length in accordance with the engine rotational speed, while also performing temperature correction and atmospheric pressure correction to compensate for changes in the speed of sound. .

その他は、前例と同様に設けられ、第1図と同一構造に
は同一符号を付して、説明を省略している。
The rest is provided in the same manner as in the previous example, and the same structures as those in FIG.

この実施例においても、吸気管長制御手段25の伸縮管
23の移動によってサージタンク6下流の吸気管長は、
基本的にはエンジン回転数が低いときには長く、高回転
数のとぎには短くなるように制御され、これに加えて該
吸気管長は音速の変動に対応して補正制御され、これに
より慣性過給効果を最大限に得て出方向上を図るように
している。
In this embodiment as well, the length of the intake pipe downstream of the surge tank 6 is changed by moving the telescopic pipe 23 of the intake pipe length control means 25.
Basically, the length of the intake pipe is controlled to be long when the engine speed is low, and shortened when the engine speed is high.In addition, the length of the intake pipe is corrected in response to fluctuations in the speed of sound, which results in inertial supercharging. I'm trying to get the most out of it and get the most out of it.

なd−)、サージタンクの上流もしくは下流の吸気管の
吸気管長の変更機構は、上記実施例の如き伸縮管を利用
したもののばか公知の吸気管長変更構造が採用可能であ
る。
(d-) As the mechanism for changing the length of the intake pipe upstream or downstream of the surge tank, a well-known structure for changing the length of the intake pipe that utilizes a telescopic pipe as in the above embodiment can be adopted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における吸気装置を備え
たエンジンの全体概略構成図、第2図は第1図のコント
ロールユニットの作動を示すためのフローチャート図、 第3図は吸気温度もしくは大気圧と吸気管長の補f係数
との関係を示す特性図、 第4図は本発明の第2の実施例における吸気装置を備え
たエンジンの全体概略構成図である。 1・・・・・・エンジン 3・・・・・・吸気通路5・
・・・・・分岐吸気管 6・・・・・・サージタンク7
・・・・・・吸気管 10.25・・・・・・吸気管長制御手段11.23・
・・・・・伸縮管 12.24・・・・・・パルスモータ 13.26・・・・・・コントロールユニット14・・
・・・・吸気温センサー 15・・・・・・大気圧レン丈− 16・・・・・・変動要素検出手段 17・・・・・・エンジン回転数センサー第 1 図 箪 4 図 笛3図
Fig. 1 is a general schematic diagram of an engine equipped with an intake system according to a first embodiment of the present invention, Fig. 2 is a flowchart showing the operation of the control unit shown in Fig. 1, and Fig. 3 is an intake air temperature. Or a characteristic diagram showing the relationship between atmospheric pressure and the supplementary f coefficient of the intake pipe length. FIG. 4 is an overall schematic configuration diagram of an engine equipped with an intake device according to a second embodiment of the present invention. 1...Engine 3...Intake passage 5.
...Branch intake pipe 6 ...Surge tank 7
...Intake pipe 10.25...Intake pipe length control means 11.23.
...Extensible tube 12.24...Pulse motor 13.26...Control unit 14...
... Intake temperature sensor 15 ... Atmospheric pressure range - 16 ... Fluctuation element detection means 17 ... Engine rotation speed sensor No. 1 Fig. 4 Fig. 3 Fig.

Claims (1)

【特許請求の範囲】[Claims] (1) エンジンの回転数に応じて吸気管の長さを制御
する吸気管長制御手段を備えたエンジンにおいて、音速
が変動する要素を検出する変動要素検出手段と、この変
動要素検出手段の信号により上記吸気管長制御手段を作
動ざ「て吸気管長を補正制御する補正手段とを備えたこ
とを特徴とするエンジンの吸気装置。
(1) In an engine equipped with an intake pipe length control means that controls the length of the intake pipe according to the engine speed, a variable element detection means detects an element that changes the speed of sound, and a signal from this variable element detection means is used. An intake system for an engine, comprising: correction means for correcting and controlling the intake pipe length by activating the intake pipe length control means.
JP59039988A 1984-03-02 1984-03-02 Intake device for engine Pending JPS60184925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59039988A JPS60184925A (en) 1984-03-02 1984-03-02 Intake device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59039988A JPS60184925A (en) 1984-03-02 1984-03-02 Intake device for engine

Publications (1)

Publication Number Publication Date
JPS60184925A true JPS60184925A (en) 1985-09-20

Family

ID=12568319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59039988A Pending JPS60184925A (en) 1984-03-02 1984-03-02 Intake device for engine

Country Status (1)

Country Link
JP (1) JPS60184925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030027594A (en) * 2001-09-29 2003-04-07 현대자동차주식회사 Variable type intake noise decreasing system in vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043130B2 (en) * 1979-06-21 1985-09-26 松下電器産業株式会社 Cooking device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043130B2 (en) * 1979-06-21 1985-09-26 松下電器産業株式会社 Cooking device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030027594A (en) * 2001-09-29 2003-04-07 현대자동차주식회사 Variable type intake noise decreasing system in vehicle

Similar Documents

Publication Publication Date Title
JP2517909B2 (en) Internal combustion engine control system and control method thereof
JPS59192838A (en) Air-fuel ratio controlling method
JPH0517374B2 (en)
JPH01125537A (en) Fuel injection controller for internal combustion engine
JPH01125533A (en) Fuel injection controller for internal combustion engine
JPS60184925A (en) Intake device for engine
JPH01216053A (en) Controller for fuel injection of engine
JPH0550575B2 (en)
JPH0559927A (en) Noise reduction device
JP3168355B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0240056A (en) Ignition timing control device for variable compression ratio type engine
JP2856986B2 (en) Air-fuel ratio control device for internal combustion engine
JPS61167134A (en) Controller for air-fuel ratio of engine
JPS6056127A (en) Control device for variable displacement type turbo-charger
JPS6079118A (en) Intake-air device of engine
JPH03185248A (en) Control device of engine for vehicle
JPS648336A (en) Idle rotational frequency controller for internal combustion engine
JPH0739822B2 (en) Engine fuel pump controller
JP3028851B2 (en) Fuel injection control device
JPH04183952A (en) Engine control device
JPH0385345A (en) Transitional fuel compensation
JPH05180050A (en) Fuel control device for internal combustion engine
JPH02215939A (en) Internal combustion engine controller
JPH068740U (en) Fuel control device for internal combustion engine
JPH08158920A (en) Correcting control device during transition period of electronic fuel injection