JPS60184559A - Light-diffusing plastic - Google Patents

Light-diffusing plastic

Info

Publication number
JPS60184559A
JPS60184559A JP4007884A JP4007884A JPS60184559A JP S60184559 A JPS60184559 A JP S60184559A JP 4007884 A JP4007884 A JP 4007884A JP 4007884 A JP4007884 A JP 4007884A JP S60184559 A JPS60184559 A JP S60184559A
Authority
JP
Japan
Prior art keywords
light
plastic
refractive index
particle size
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4007884A
Other languages
Japanese (ja)
Other versions
JPH072910B2 (en
Inventor
Kozo Ida
浩三 井田
Kiyotaka Azegami
畔上 清孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP4007884A priority Critical patent/JPH072910B2/en
Publication of JPS60184559A publication Critical patent/JPS60184559A/en
Publication of JPH072910B2 publication Critical patent/JPH072910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled plastic through which light source can not be seen and which can be used for brighter lighting fixture, by dispersing transparent fine particles having a specified particle size and refractive index in a transparent plastic having a specified refractive index at a specified concn. CONSTITUTION:A light-diffusing plastic is obtd. by dispersing transparent fine particles (e.g. silica, glass, LiF or CaCO3) which have a refractive index Np satisfying the formula I and an average particle size dmu satisfying the formula IIand contain not more than 5wt% particles having a particle size of 5mu or below, in a transparent plastic having a refractive index Ns [e.g. (meth)acrylic resin, styrene resin, polycarbonate resin or PVC] in such a concentration as to give the max. bending angle (beta value) of 4-10 deg.. Though the plastic is lowly light-diffusible, light source can not be seen therethrough and the plastic is suitable for use as a light-diffusing member for brighter lighting fixture, display or transparent screen, etc.

Description

【発明の詳細な説明】 (技術分野) 本発明は、照明カバー、照明看板、グレージング、各種
ディスプレイあるいは透過型スクリーン春光の拡散全目
的とした部材に好適な光拡散aプラスチックに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a light-diffusing plastic suitable for use in lighting covers, lighting signboards, glazing, various displays, or transmission screens for all purposes of diffusing spring light.

(従来技術) 近来、省エネルギーという社会的要請から照明器具ある
いは発覚ディスプレイ等に関して、いかに元t″M効的
に利用するかが注目されている。光源から出る元は一定
であるので、できるだけ元金吸収せずに、必豪な方向へ
光を拡散させる即ち指向性のめる拡散を行なうことが、
光拡散性材料の望1れる性質の一つである。−万このよ
うな観点から、指向性のめる拡散性材料を、照明カバー
’1fcr;cディスプレイ等の器具として組み込む場
合には、それらに合った形状が患求される。この形状と
は、光源を取り囲む球状であったり、また平板状で異面
に微細な凹凸や、レンチキュラーレンズのような規則的
な形状を付与したものである。したがって、これらの形
状を容易に付与できる材料であることも望1れる性質で
ある。
(Prior art) In recent years, due to the social demand for energy conservation, attention has been paid to how to effectively utilize energy in lighting equipment, detection displays, etc. Since the energy emitted from the light source is constant, the energy consumption is reduced as much as possible. It is possible to diffuse light in a specific direction without absorbing it, that is, to perform directional diffusion.
This is one of the desirable properties of light-diffusing materials. - From this point of view, when a diffusive material with directional properties is incorporated into a device such as a lighting cover'1fcr;c display, a shape suitable for the material is required. This shape may be a sphere surrounding the light source, or a flat plate with fine irregularities on its surface, or a regular shape such as a lenticular lens. Therefore, it is also desirable that the material be a material that can be easily given these shapes.

ところで従来から、照明カバー、ディスプレイ用スクリ
ーン等の拡散性材料としては、無機透明微粒子全透明プ
ラスチックに分散させて得る方法が一般に用いられてい
る。この場合の透明プラスチックとしては、(メタコア
クリル樹脂1にはスチレン樹脂が用いられ、拡散性を得
るためには基材の透明プラスチックと異なる屈折率から
なる、例えに硫酸バリウム、災酸カルシウム、石英など
の平均粒径1oμ以下の無機透明微粒子等全混入あるい
は塗布している。(特開昭547155241号公報、
特公昭46−43189号公報および実公昭29−74
40号公報参照。) セしてこnら実用化さnている光拡散性グラスチックの
拡散性は゛大変に良好で、その程度に最大曲げ角(β値
)60°以上である。なお最大曲は角(β値)とは、サ
ンプル面に垂直に入射した平行光線全透過itt++か
らサンプルを見て、元軸上における最大輝度(利得)’
iG。
Conventionally, diffusive materials for lighting covers, display screens and the like have generally been obtained by dispersing inorganic transparent fine particles in completely transparent plastic. In this case, the transparent plastic used is (styrene resin is used for the metacoacrylic resin 1, and in order to obtain diffusivity, a material with a refractive index different from that of the transparent plastic of the base material, such as barium sulfate, calcium chloride, quartz, etc.) is used. Inorganic transparent fine particles with an average particle size of 1 μm or less, etc., are completely mixed in or coated.
Special Publication No. 46-43189 and Utility Model Publication No. 29-74
See Publication No. 40. ) The light-diffusing glass that has been put into practical use for some time now has very good diffusivity, with a maximum bending angle (β value) of 60° or more. The maximum curve angle (β value) is the maximum brightness (gain) on the original axis when the sample is viewed from the total transmission of parallel rays incident perpendicularly to the sample surface.
iG.

とした場合、輝度(利得)が173Goiで低下するに
要する元軸とのなす角度でめり、一般に用いられている
In this case, the angle with the original axis required for the luminance (gain) to decrease by 173 Goi is used and is generally used.

本発明者等は、指向性を与えることのできる光拡散材料
について検討音別えたところ次の事実が判明した。即ち
0元源などが透けて見えない限り、最大曲げ角(β値)
t−小さくする万が指向性を与え易くかつ最大輝度(利
得)を大きくすることができる、■従来品の光拡散材料
は一般に最大曲げ角(β値〕が20°以上でめる。
The present inventors investigated various light diffusing materials that can provide directivity and found the following fact. In other words, as long as the zero-source source etc. cannot be seen through, the maximum bending angle (β value)
If t- is made smaller, directivity can be easily imparted and the maximum brightness (gain) can be increased. (2) Conventional light diffusing materials generally have a maximum bending angle (β value) of 20 degrees or more.

しかしながら、光拡散剤の濃度を下げ(即ち拡散性全低
下させ〕最大曲げ角(β値)全10’以下にすると光源
が透けて見え、光拡散材料として使用することはできな
い。
However, if the concentration of the light diffusing agent is lowered (that is, the total diffusivity is lowered) and the maximum bending angle (β value) is less than 10', the light source becomes transparent and it cannot be used as a light diffusing material.

この点について説明するのが第1図のグラフでおるが、
これは透明プラスチックとしてメタクリル樹脂(N5=
1.492)k用いこnに透明微粒子として市販の無定
形シリカ(Np =1.46 )(この粒度分布は第3
図■に示している)および結晶形シリカ(Np=1.5
4)(この粒度分布は第3図■に示している)を用いて
分散せしめたものである。なお、このグラフにおいて点
線は蛍光灯(30W ) ′に5 m離れた位置でかざ
したときに透けて見える領域である。このように、従来
の粒径5μ以下の粒子全5重量よりも人く含んでいるよ
うな拡散剤では■、■の如く、β値を106 より小さ
い濃度とすると透けてし筐うことが分る。
The graph in Figure 1 explains this point.
This is methacrylic resin (N5=
1.492) Amorphous silica (Np = 1.46), commercially available as transparent fine particles, was used (this particle size distribution was
) and crystalline silica (Np=1.5
4) (this particle size distribution is shown in Figure 3 (■)). In this graph, the dotted line is the area that can be seen through a fluorescent lamp (30W) when held up at a distance of 5 m. In this way, it can be seen that when the concentration of β value is lower than 106, the diffusion agent becomes transparent when the concentration of β value is lower than 106, as shown in (■) and (■), in case of a diffusing agent that contains more than the total weight of particles with a particle size of 5μ or less. Ru.

一般に用いられている照明カバーについて考えると、こ
の種の照明カバーは、板状のツム拡散性プラスチックを
加熱成形加工して、皿状1箱状あるいは球状等の成形品
として得られるものが多い。ところでこのような加熱成
形を施すと、板状のプラスチックは部分あるいは全面に
わたって延伸でれることとなる。この延伸の程度は、シ
ートの厚みの変化として概ね大きいところで174ない
し175程度であるが、延伸後においても光源が透けて
みえない程度の光拡散性を維持することが要求される。
Considering commonly used lighting covers, this type of lighting cover is often obtained as a molded product in the shape of a dish, a box, or a sphere by heat-molding a plate-shaped Tsum diffusive plastic. By the way, when such heat forming is performed, the plate-shaped plastic is partially or completely stretched. The extent of this stretching is approximately 174 to 175 at a large change in sheet thickness, but it is required to maintain light diffusivity to such an extent that the light source cannot be seen through even after stretching.

すなわち、この程度の延伸後においても、最大曲は角(
β値)が10°金割らないよう、はじめから板状プラス
チックに十分な量の光拡散剤全添加させる必要がある。
In other words, even after this degree of stretching, the maximum bend is at the corner (
It is necessary to add a sufficient amount of light diffusing agent to the plastic plate from the beginning so that the β value does not exceed 10 degrees.

このため従来から、この種の光拡散性プラスチック材料
にあっては、高光拡散性でありかつ全光線透過率が低い
という欠点t−Nシていた◎ このことは照明カバーとして用いらnる光拡散性プラス
チックに限られるものてはなく、上述した各種技術分野
においても改善が望1れているところである。このため
本発明者等は、さきに比較的大きな平均粒径の透明@粒
子を、透明プラスチック中に最大曲げ角(β値)が20
〜10° となる濃度で分散させたこと全特徴とする光
拡散性グラスチックについて提案したC%願昭58−2
45788号ノが、るる条件下においてに比較的小さな
平径粒径の粒子であっても、十分実用化しうろことを見
出した。
For this reason, this type of light-diffusing plastic material has traditionally had the disadvantage of high light-diffusing properties and low total light transmittance. Improvements are desired not only in diffusible plastics but also in the various technical fields mentioned above. For this reason, the present inventors first introduced transparent @particles with a relatively large average particle size into a transparent plastic with a maximum bending angle (β value) of 20.
C% Gansho 58-2, which proposed a light-diffusing glasstic characterized by being dispersed at a concentration of ~10°
No. 45788 found that even particles with a relatively small diameter can be put to practical use under smooth conditions.

(発明の目的) すなわち本発明は、最大曲げ角(β値)が10゜以下で
あっても、光源が透けて見えることのない光拡散特性の
優n−rc元拡散性プラスチック全提供しようとするも
のでるる。
(Objective of the Invention) That is, the present invention aims to provide all N-RC original diffusive plastics with excellent light diffusion properties that do not allow the light source to be seen through even if the maximum bending angle (β value) is 10° or less. There's something to do.

(発明の構成) 本発明は上記目的を達成するためにな嘔れたもので、そ
の要旨とするところは、屈折率N8からなる透明プラス
チック中に、下記式(I)。
(Structure of the Invention) The present invention has been made to achieve the above-mentioned object, and its gist is that a transparent plastic having a refractive index of N8 is provided with the following formula (I).

(n) Q、02≦l NB −Np l≦[Ll ・・・・(
1)4μ≦dμ≦10μ ・・・・・・・・(II)を
満足する平均粒径d!1、屈折率NpをMしかっ粒径3
μ以下の粒子の混入が多くとも5重量%でらる透明微粒
子を、最大曲げ角(β値)が4゜〜10° となる濃度
で分散せしめてなることを特徴とする光拡散性プラスチ
ックにある。
(n) Q, 02≦l NB −Np l≦[Ll ・・・・・・(
1) 4μ≦dμ≦10μ Average particle diameter d that satisfies (II)! 1, refractive index Np and grain size 3
A light-diffusing plastic characterized by dispersing transparent fine particles containing at most 5% by weight of particles smaller than μ at a concentration such that the maximum bending angle (β value) is 4° to 10°. be.

以下、木兄羽音さらに詳細に説明する。Below, Kion Hane will be explained in more detail.

本発明の透明プラスチックとしてハ、(メタ)アクリル
樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、塩化
ビニル樹脂等があげられるが、こnらに限定されるもの
ではない。
Transparent plastics of the present invention include (meth)acrylic resin, polystyrene resin, polycarbonate resin, vinyl chloride resin, etc., but are not limited to these.

17′c本発明における透明微粒子としては、結晶形シ
リカ、無定形シリカ、ガラス、濃化リチウム、沸化カル
シウム、炭酸カルシウム、硫酸バリウム、水酸化アルミ
ニウムおよび白雲母等の無機物、めるいはメチルメタク
リレートおよびこ九らと共重合可能な各種(メタ)アク
リレート誘導体のポリマーなどの有機物かめけられるが
、勿論こnらに限定されるものではない。
17'c Transparent fine particles in the present invention include crystalline silica, amorphous silica, glass, concentrated lithium, calcium fluoride, calcium carbonate, barium sulfate, aluminum hydroxide, inorganic substances such as muscovite, and methyl methacrylate. and organic substances such as polymers of various (meth)acrylate derivatives that can be copolymerized with these, but are of course not limited to these.

元払散性全付与するために基材と異なる屈折率をもった
微粒子を分散させるのは常識であり、屈折率の差が小さ
いほど(入射光の拡散剤への衝突回数が同じならばン、
透過拡散量が多いことが知らnている。しかし屈折率の
差から19にも小さすぎると、入射光の拡散剤への衝突
回数が少なくなるため、拡散剤の濃度全人くとらなけれ
ばならなくなり、こf′Lは経済的理由および、光拡散
材料の機械的物性の面から好ましくない。このため本発
明においては、基材の透明プラスチックと透明微粒子の
屈折率の差金α02ないしα1に設定した。 ・ 次に、屈折率と平均粒径とめ関係について説明する。最
大隠蔽力を与える屈折率と粒径との関係は多くの研究省
にエフ、芙験式、計算式としてめら九でいる。このうち
、代表的なものとしてはミトン(Mitton) の式
がめる。この式は基材と微粒子との屈折率’zNs、N
pとすると、最大隠蔽力を与える微粒子の平均粒径d(
μ)は、l5)Npの巻付、次式で示される。
It is common knowledge that fine particles with a refractive index different from that of the base material are dispersed in order to provide total dispersion properties. ,
It is known that the amount of permeation and diffusion is large. However, if it is too small, even 19, due to the difference in refractive index, the number of collisions of incident light with the diffusing agent will be reduced, so the concentration of the diffusing agent will have to be the same. This is unfavorable from the viewpoint of mechanical properties of the light diffusing material. Therefore, in the present invention, the difference in refractive index between the transparent plastic base material and the transparent fine particles is set to α02 to α1. - Next, the relationship between the refractive index and the average grain size will be explained. The relationship between the refractive index and particle size that gives the maximum hiding power is well-known in many research ministries as F, experimental formulas, and calculation formulas. Among these, the Mitton equation is a typical one. This formula is based on the refractive index 'zNs of the base material and fine particles, N
Let p be the average particle diameter d(
μ) is 15) Np winding, which is expressed by the following formula.

いl、基材の透明プラスチックが屈折率1.492から
なるメタクリル樹脂の場曾、λ=LL55μとすると、
透明微粒子の屈折率と最大隠蔽力を与える平均粒径の関
係は、次のようになる。
If the transparent plastic base material is a methacrylic resin with a refractive index of 1.492, and λ=LL55μ,
The relationship between the refractive index of transparent fine particles and the average particle diameter that provides the maximum hiding power is as follows.

Np=1.592(lNp−N5l=0.1 )では+
1=1.9μ、Np=1.512(1Np−Nsl=[
LO2)ではd=9−3μ、この結果からもわかるよう
に、従来の光拡散材料では、透明微粒子の平均粒掻音1
0μ以下とすることが常識となっている。(上記特開昭
54−15524号公報参照) ところで最大曲げ角(β値]が4°ないし10° とい
う拡散性を得るのに、従来から用いられている透明微粒
子の屈折率と平均粒径の関係では、光源が透けてし1う
欠点を有しているが、本発明者等はこれらについてさら
に注意深く研究を進めた結果、屈折率N8 からなる透
明プラスチック中に下記式(1) 、 (II)[L0
2≦IPIs−Npl≦L11・・・−・(1)4μ≦
dμ≦10μ ・・・・・・・(If)を満足する平均
粒径dμ、屈折率Np ’を府しかつ粒径3μ以下の粒
子の混入が多くとも5重量%である透明微粒子を1適量
分散せしめることにより、最大曲げ角(β値〕が10°
以下でも光源が透けないことを見出したのである。なお
、透明微粒子の平均粒径dμが10μを超えると拡散光
のギラツキを生じ易く好1しくない。
+ at Np=1.592 (lNp-N5l=0.1)
1=1.9μ, Np=1.512 (1Np−Nsl=[
LO2), d=9-3μ, and as can be seen from this result, with conventional light diffusing materials, the average particle scratching sound of transparent fine particles is 1
It is common knowledge to keep it below 0μ. (Refer to the above-mentioned Japanese Patent Application Laid-open No. 54-15524.) By the way, in order to obtain diffusivity with a maximum bending angle (β value) of 4° to 10°, the refractive index and average particle size of the transparent fine particles conventionally used are However, as a result of further careful study by the present inventors, we found that the following formulas (1) and (II ) [L0
2≦IPIs-Npl≦L11...-(1)4μ≦
dμ≦10μ ・・・・・・・・・・・・・・・One appropriate amount of transparent fine particles having an average particle diameter dμ and a refractive index Np′ that satisfy (If) and containing at most 5% by weight of particles with a particle size of 3μ or less. By dispersing the material, the maximum bending angle (β value) can be increased to 10°.
They discovered that the light source cannot be seen through even below. It should be noted that if the average particle diameter dμ of the transparent fine particles exceeds 10μ, it is undesirable because it tends to cause glare in the diffused light.

なお、粒径3μ以下の粒子の混入が多くとも5重量部で
あるような粒度分布の透明微粒子は、風選あるいは水中
における沈降速度篩別等により得ることができる。
Incidentally, transparent fine particles having a particle size distribution in which at most 5 parts by weight of particles with a particle size of 3 μm or less are mixed can be obtained by air selection or sedimentation velocity sieving in water.

(実施例) 以下実施例および比較例をもって詳細に説明するが、本
発明はこれらの例に限定されるものでにない。例えは本
発明の光拡散性プラスチック’kN科として、フレネル
レンズおよび/’E7Cはレンチキュラーレンズあるい
にその他のレンズ形状全般けたり、球状2皿状等に成形
して用いることも勿論可能である。なお本実施例中にお
ける最大輝度(利得) Go および最大曲げ角(β値
)ニ、次のようにしてめた。
(Examples) The present invention will be described in detail below using Examples and Comparative Examples, but the present invention is not limited to these Examples. For example, as the light-diffusing plastic of the present invention, the Fresnel lens and /'E7C can of course be used in a lenticular lens or any other lens shape, or in the form of a spherical two-plate shape, etc. . The maximum brightness (gain) Go and maximum bending angle (β value) in this example were determined as follows.

すなわち第2図に示す配置で、光源(1)(コリメータ
ー、日本光学社製〕全サンプル(2)面に垂直に照射す
るように向け、サンプル(2)面上における照度が10
 ft−cdとなるよう明るさを調節する。また光源(
1)とサンプル(2)の延長上でサンプル(2)から1
mの距離に輝度計(3)(ミノルタ社製、オート・スポ
ット)全サンプルに向けて設置−rる。このときのサン
プル(2)面上の輝度音測定し、f t−L/f t−
cd単位の値をGoとした。さらに、この輝度計(3)
全サンプル(2)の中心を軸として回転してゆき、サン
プル(2)上の輝度が1/!IGOとなる最大曲げ角(
β0)全測定した。1fc平均粒径は、コールタ−カウ
ンター(コールタ−カウンター社製、TA−[型〕から
粒径の累積重量倦ヒストグラム全作成し、重量50%に
対応する粒径を平均粒径とした。
That is, with the arrangement shown in Figure 2, the light source (1) (collimator, manufactured by Nippon Kogaku Co., Ltd.) is oriented perpendicularly to the entire sample (2) surface, and the illuminance on the sample (2) surface is 10.
Adjust the brightness so that it becomes ft-cd. Also, the light source (
1) and sample (2), sample (2) to 1
A luminance meter (3) (manufactured by Minolta, Auto Spot) was installed facing all samples at a distance of m. At this time, the brightness sound on the surface of sample (2) was measured, f t-L/f t-
The value in cd was set as Go. Furthermore, this luminance meter (3)
It rotates around the center of all samples (2), and the brightness on sample (2) becomes 1/! The maximum bending angle that results in IGO (
β0) All measurements were taken. The 1fc average particle diameter was obtained by creating a cumulative weight histogram of particle diameters from a Coulter Counter (manufactured by Coulter Counter Co., Ltd., TA-[type]), and taking the particle diameter corresponding to 50% of the weight as the average particle diameter.

実施例1〜4 メチルメタクリレートの部分重合体(重合率20%)1
00部(重量部、以下同じ)に、平均粒径7μの結晶形
シリカ(屈折率1.54 )と、平均粒径7μの無定形
シリカ(屈折率、1.46 )にnらの粒度分布は、第
3図■、■に七れぞれ示さ九ている)を第1衣の割合で
配合し十分に分散させた。この混合物にさらに[101
部のジオクチルスルホサクシネートナトリウム塩(分散
剤、離型剤として)および2.2′−アゾビス÷2.4
−ジメチルバレロニトリル) 104 m (重合触媒
として〕を添加し溶解させたのち、脱気し、予め板厚が
3+a+となるよう設定された無機ガラスの鋳型中に注
入し、この鋳型全65℃の温水に180分浸漬し、次い
で110℃のを気温に120分滞在させ、重合を先締さ
せた。鋳型からシートを取り出したのち、このシートを
30Wの蛍光灯にかざして光源の透は具合をみたところ
いず庇も透けていなかった。また、Go。
Examples 1 to 4 Partial polymer of methyl methacrylate (polymerization rate 20%) 1
00 parts (by weight, same hereinafter) contains crystalline silica with an average particle size of 7 μm (refractive index 1.54), amorphous silica with an average particle size of 7 μm (refractive index, 1.46), and a particle size distribution of n et al. The ingredients shown in Figure 3 (■ and ■) were blended in the proportion of the first batter and sufficiently dispersed. Add [101
part of dioctyl sulfosuccinate sodium salt (as a dispersant, mold release agent) and 2.2'-azobis÷2.4
-Dimethylvaleronitrile) (as a polymerization catalyst) was added and dissolved, then degassed and poured into an inorganic glass mold whose thickness was set in advance to be 3+a+. The sheet was immersed in warm water for 180 minutes, and then kept at a temperature of 110°C for 120 minutes to pre-cure the polymerization.After taking the sheet out of the mold, the sheet was held over a 30W fluorescent lamp to check the condition of the light source. When I looked, Izu's eaves weren't transparent either.Go again.

βの値を第1表に示した。なおこの実施例における4つ
のサンプルの光学特性を示したのが第1図の曲線■、■
でおり、最大曲は角(°β値)が10°以下になっても
、光源が透けないことが分る。
The values of β are shown in Table 1. The optical characteristics of the four samples in this example are shown by curves ■ and ■ in Figure 1.
It can be seen that the light source cannot be seen through the maximum curve even if the angle (°β value) is less than 10°.

またこれらのサンプルを加熱燃焼させ灰分からシリカの
単位面積めたりの重量をめた、こfLt−第1表に示し
た。(以下の実施例および比較例においても同様にして
めた。) 実施例5 メタクリル樹脂(三菱レイヨン:アクリベラ)MD)1
00部に対して平均粒径7μ粒度分布が第3図曲線[F
]で示される無足形シリカ(屈折率1.46)金、1.
6部の割合で配合しタンブラ−で均一に分散させ、これ
を常法に従い押出成形にかけ板厚3簡のシートを作成し
た。
In addition, these samples were heated and burned, and the weight per unit area of silica from the ash was calculated, which is shown in Table 1. (The following examples and comparative examples were also prepared in the same manner.) Example 5 Methacrylic resin (Mitsubishi Rayon: Acrybella MD) 1
The particle size distribution with an average particle diameter of 7μ for 00 parts is shown in Figure 3 by the curve [F
] Anatomical silica (refractive index 1.46) gold, 1.
The mixture was mixed in a proportion of 6 parts, uniformly dispersed in a tumbler, and extruded according to a conventional method to produce a sheet with a thickness of 3 sheets.

このサンプルを光源に透かしてみたとき、蛍光ランプで
は透けt生じな力)った。その他の評価結果を第1衣に
示した。
When this sample was exposed to a light source, it was not visible to a fluorescent lamp. Other evaluation results are shown in the first garment.

実施例6 粒度分布が第3図曲線G)で示される平均粒径8μの結
晶形シリカを実施例5の無定形シリカの代りに用いて(
但しa6部使用)、実施例5と同様にシートを作成した
。なおこのときの結晶形シリカの粒度分布は、5μ以下
が1.5重量部であった。このすングルは蛍光ランプお
よび100W白熱電球のいずれにおいても透けにみられ
なたった。その他の評価結果は第1表に示した。
Example 6 Crystalline silica with an average particle size of 8 μ and whose particle size distribution is shown by curve G in Figure 3 was used in place of the amorphous silica of Example 5 (
A sheet was prepared in the same manner as in Example 5 (however, 6 parts of A were used). The particle size distribution of the crystalline silica at this time was such that 1.5 parts by weight were 5 microns or less. This sungle was not visible in either the fluorescent lamp or the 100W incandescent lamp. Other evaluation results are shown in Table 1.

実施例7 ポリカーボネート樹脂(三菱化成社製、ツバレックス7
030.屈折率1.59 ) I D 0部に対して、
実施例6で用いたと同じ結晶形シリカ(屈折率1.54
 )のa9部會配合しタンブラ−で均一に分散させた。
Example 7 Polycarbonate resin (manufactured by Mitsubishi Kasei Co., Ltd., Tubarex 7
030. Refractive index 1.59) For I D 0 part,
The same crystalline silica used in Example 6 (refractive index 1.54)
) was blended in 9 parts and uniformly dispersed in a tumbler.

これを押出機にρ瓢けでベレット化し、さらにこのベレ
ット全射出成形機に7)−けて、板厚3rmnのシート
全作成した。なお、このときの結晶形シリカの粒度分布
は、3μ以下が1,5重量%であった。評価結果を第1
表に示した。
This was made into a pellet by melting it into an extruder, and was then put into the whole pellet injection molding machine to produce a sheet having a thickness of 3rmn. In addition, the particle size distribution of the crystalline silica at this time was 1.5% by weight of 3μ or less. Evaluation results first
Shown in the table.

実施例8 ポリスチレン樹脂(大日本インキ化学工業株製、CR3
500、屈折率1.59 ) 100部に対して平均粒
径6μの結晶形シリカ(屈折率1、54 )の1.1部
を配合しタンブラ−で均一に分散させた。こ詐ヲ押出機
にかけてベレット化し、嘔らにこのベレット全射出成形
機にかけて板厚3m+のシート全作成した。評価結果全
第1表に示した。なお、用いた結晶形シリカの粒度分布
は6μ以下が4重量%であった。
Example 8 Polystyrene resin (manufactured by Dainippon Ink & Chemicals Co., Ltd., CR3
500, refractive index 1.59) 1.1 parts of crystalline silica (refractive index 1.54) having an average particle size of 6 μm was blended with 100 parts and uniformly dispersed in a tumbler. This material was made into a pellet using an extruder, and then a complete sheet with a thickness of 3 m+ was produced using the entire pellet injection molding machine. All evaluation results are shown in Table 1. Note that the particle size distribution of the crystalline silica used was 4% by weight of 6μ or less.

実施例9 メチルメタクリレートの部分重合体(重合率20%)1
00部に平均粒径6μの炭酸カルシウム(屈折率1.5
8 ) ’iα8部配合した0こnt実施例1と同様に
鋳込み重合の常法に従い板厚5鵬のシートラ得た。評価
結果を第1衣に示し穴。なお用いた炭酸カルシウムの粒
度分布は、3p以下が4重量%であった。
Example 9 Partial polymer of methyl methacrylate (polymerization rate 20%) 1
Calcium carbonate with an average particle size of 6μ (refractive index 1.5) is added to 00 parts.
8) In the same manner as in Example 1, 8 parts of 'iα were added to obtain a sheet laminated sheet with a thickness of 5 mm using the conventional method of cast polymerization. Show the evaluation results in the first hole. The particle size distribution of the calcium carbonate used was 4% by weight of 3p or less.

実施例10 メチルメタクリレートの部分重合体(重合率20%)1
00部に平均粒径8μの水酸化アルミニウム(屈折率1
.57 ) ’li−1,2部配合した。
Example 10 Partial polymer of methyl methacrylate (polymerization rate 20%) 1
00 parts of aluminum hydroxide with an average particle size of 8 μm (refractive index of 1
.. 57) 1.2 parts of 'li- was blended.

これを実施例1と同様に鋳込み重合の常法にのつとり板
厚3II11のシート2得た。評価結果を第1表に示し
た。なお用いた水酸化アルミニウムの粒度分布に、5μ
以下が2重量1%でめった。
This was subjected to the conventional casting polymerization method in the same manner as in Example 1 to obtain a sheet 2 having a thickness of 3II11. The evaluation results are shown in Table 1. In addition, the particle size distribution of the aluminum hydroxide used was 5μ.
The following was found at 2% by weight.

以上の実施例の結果から、本発明を構成する実施例では
、従来、透けてし筐う領域である最大曲げ角が10°以
下においても透けにくく、明るい拡散性樹脂組成物の得
られることがわかる。
From the results of the above examples, it has been found that in the examples constituting the present invention, it is possible to obtain a bright diffusive resin composition that is difficult to see through even when the maximum bending angle, which is the area where the transparent housing is formed, is 10 degrees or less. Recognize.

比較例1〜3 メタクリル樹脂(三菱レイヨン:アクリベラ)MD、屈
折率1.49 ) 100部に対して平均粒径6μの無
足形シリカ(l折率1.46 > (このものの粒度分
布は第6図の■で示されている)を第1表の割合で配合
し七れぞれタンブラ−で均一に分散させ、これ全常法に
従い押出成形にかけ板厚的5rraのシート全作成し瓦
。比較例1゜2について、シートを光源(蛍光灯30W
)にかざして見ても透けていないが比較例3では透けて
光源が観察された。また最大輝度(Go)および最大曲
げ角(β値)を測足し、その結果を第1表に示した。
Comparative Examples 1 to 3 Methacrylic resin (Mitsubishi Rayon: Acrivera MD, refractive index 1.49) Anatomical silica with an average particle size of 6 μ per 100 parts (l refractive index 1.46 > (The particle size distribution of this is 6th (indicated by ■ in the figure) in the proportions shown in Table 1, uniformly dispersed in a tumbler, extruded according to a conventional method, and made into a sheet with a thickness of 5 rra. Comparison For Example 1゜2, use the sheet as a light source (30W fluorescent lamp)
), it was not transparent even when viewed by holding it up, but in Comparative Example 3, the light source was visible through it. The maximum brightness (Go) and maximum bending angle (β value) were also measured, and the results are shown in Table 1.

比較例4〜6 メタクリル樹脂(三菱レイヨン:アクリペラ)MD、屈
折率1.49 ) 100部に対し、平均粒径6μの結
晶形シリカ(屈折率1.54 ) (このものの粒度分
布は第5図■で示さ扛ている)を第1表の割合で配合し
、以下比較例1と同様に板厚約3晒のシート全作成した
。比較例4では、光源が透けないが比較例5では光源が
透けて見えた。
Comparative Examples 4 to 6 Crystalline silica (refractive index 1.54) with an average particle size of 6 μm per 100 parts of methacrylic resin (Mitsubishi Rayon: Acrypera MD, refractive index 1.49) (The particle size distribution of this product is shown in Figure 5. (indicated by (2)) were blended in the proportions shown in Table 1, and a sheet having a thickness of approximately 3 mm was prepared in the same manner as in Comparative Example 1. In Comparative Example 4, the light source was not transparent, but in Comparative Example 5, the light source was visible.

これらのGO1β値およびシリカの単位面積当りの重量
の結果を第1茨に示した。またこれらのサンプルについ
ては、上述した第2図の曲線■、■に相当し、β値が1
0°以下では光源が見えてし1うことがわかる。
The results of these GO1β values and the weight per unit area of silica are shown in the first thorn. In addition, these samples correspond to the curves ■ and ■ in Figure 2 mentioned above, and the β value is 1.
It can be seen that the light source becomes visible below 0°.

(発明の効果〕 本発明ij、以上詳述した如き構成からなるものでおり
、従来の常識金波る構成でろって、低元−拡散性でろD
ながら、光源が透けて見えないという、今1でに得られ
なかった性質を持っており、これは指向性のある光拡散
性プラスチックとして今後より明るい照明器具、ディス
プレイ装置等に利用でき産業上極めてM用である。
(Effects of the Invention) The present invention has a structure as detailed above, and although it has a conventional structure, it has a low element-diffusion property.
However, it has the property that the light source cannot be seen through it, a property that has never been achieved before, and this is an industrially extremely useful directional light-diffusing plastic that can be used in brighter lighting equipment, display devices, etc. It is for M.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光拡散性プラスチックにおける透明微粒子の籾
径の違いによる光拡散性全説明するためのグラフ、第2
図は本発明の実施例において用いた光学特性測定方法の
説明図、第3図は実施例および比較例に用いた透明微粒
子の粒度分布を示すグラフである。 (1)・・・・・元 源 (2)・・・・・サンプル(
32・・・・・照度計
Figure 1 is a graph to explain the light diffusivity due to the difference in grain diameter of transparent fine particles in light-diffusing plastic.
The figure is an explanatory diagram of the method for measuring optical properties used in the examples of the present invention, and FIG. 3 is a graph showing the particle size distribution of transparent fine particles used in the examples and comparative examples. (1) ..... original source (2) ..... sample (
32...Luminance meter

Claims (1)

【特許請求の範囲】 1、 屈折率N8 からなる透明プラスチック中に、下
記式(1) 、 (n) 0.02≦lN5−Np1≦o、1−−− (1)4μ
≦dμ≦10μ・・・・・・°・ (旧を満足する平均
粒径dμ、屈折率Np’に肩しかつ粒径6μ以下の粒子
の混入が多くとも5重量うでおる透明微粒子を、最大曲
げ角(β値)が4°〜10°となる濃度で分散せしめて
なることを特徴とする光拡散性プラスチック。 z 透明プラスチックが(メタ)アクリル樹脂、スチレ
ン樹脂、ポリカーボネ−1” 4i1 脂′!!ニアC
Ltd塩化ビニルビニル樹脂こと全特徴とする特許請求
の範囲第1項記載の光拡散性グラスチック。 工 透明微粒子として、結晶形シリカ、無足形シリカ、
ガラス、沸化リチウム、沸化カルシウム、炭酸カルシウ
ム、硫酸バリウム、水酸化アルミニウムおよび白雲母の
うち少くとも1種からなるものを用いたこと全特徴とす
る特許請求の範囲第1項または第2項記載の光拡散性プ
ラスチック。
[Claims] 1. In a transparent plastic having a refractive index of N8, the following formula (1), (n) 0.02≦lN5-Np1≦o, 1--- (1) 4μ
≦dμ≦10μ・・・・・・°・ (Transparent fine particles with an average particle diameter dμ that satisfies the old condition, a refractive index equal to Np', and a particle size of 6μ or less mixed in by at most 5 weight) A light-diffusing plastic characterized by being dispersed at a concentration such that the maximum bending angle (β value) is 4° to 10°. '!!Nia C
The light-diffusing glasstic according to claim 1, characterized in that it is made of Vinyl Chloride Vinyl Resin. As transparent fine particles, crystalline silica, anatomical silica,
Claims 1 or 2 are characterized in that at least one of glass, lithium fluoride, calcium fluoride, calcium carbonate, barium sulfate, aluminum hydroxide, and muscovite is used. The light-diffusing plastic described.
JP4007884A 1984-03-02 1984-03-02 Light diffusing plastic Expired - Fee Related JPH072910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4007884A JPH072910B2 (en) 1984-03-02 1984-03-02 Light diffusing plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4007884A JPH072910B2 (en) 1984-03-02 1984-03-02 Light diffusing plastic

Publications (2)

Publication Number Publication Date
JPS60184559A true JPS60184559A (en) 1985-09-20
JPH072910B2 JPH072910B2 (en) 1995-01-18

Family

ID=12570881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4007884A Expired - Fee Related JPH072910B2 (en) 1984-03-02 1984-03-02 Light diffusing plastic

Country Status (1)

Country Link
JP (1) JPH072910B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231042A (en) * 1985-04-05 1986-10-15 Bando Chem Ind Ltd Vinyl chloride resin molding
JPS62132751A (en) * 1985-12-06 1987-06-16 株式会社クラレ Semi-transparent inorganic organic composite body
JPS63216723A (en) * 1987-03-05 1988-09-09 Kyowa Gas Chem Ind Co Ltd Manufacture of light-pervious thermoplastic resin plate
EP0604130A2 (en) * 1992-12-24 1994-06-29 Ge Plastics Japan Limited Light-diffusing polycarbonate resin compositions
JP2005171244A (en) * 2003-12-12 2005-06-30 Arkema Methacrylic polymer material excellent in fire resistance
WO2005093469A2 (en) * 2004-02-27 2005-10-06 General Electric Company Diffuser for flat panel display
WO2007141893A1 (en) 2006-06-07 2007-12-13 Sumitomo Dow Limited Flame-retardant and light-diffusing polycarbonate resin composition and light-diffusing plate made of the same
WO2008023445A1 (en) 2006-08-25 2008-02-28 Sumitomo Dow Limited Flame retardant and light diffusing polycarbonate resin composition and light diffusing plate comprising the same
JP2008074970A (en) * 2006-09-21 2008-04-03 Admatechs Co Ltd Resin composition for optical diffusion
JP4517442B2 (en) * 2000-03-28 2010-08-04 東レ株式会社 Method for producing laminated light diffusing film
US8426015B2 (en) 2007-06-12 2013-04-23 Styron Europe Gmbh Clear and flame retardant polycarbonate resin film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231042A (en) * 1985-04-05 1986-10-15 Bando Chem Ind Ltd Vinyl chloride resin molding
JPS62132751A (en) * 1985-12-06 1987-06-16 株式会社クラレ Semi-transparent inorganic organic composite body
JPS63216723A (en) * 1987-03-05 1988-09-09 Kyowa Gas Chem Ind Co Ltd Manufacture of light-pervious thermoplastic resin plate
EP0604130A2 (en) * 1992-12-24 1994-06-29 Ge Plastics Japan Limited Light-diffusing polycarbonate resin compositions
EP0604130A3 (en) * 1992-12-24 1994-07-27 Ge Plastics Japan Limited Light-diffusing polycarbonate resin compositions
JP4517442B2 (en) * 2000-03-28 2010-08-04 東レ株式会社 Method for producing laminated light diffusing film
US7314652B2 (en) 2003-02-28 2008-01-01 General Electric Company Diffuser for flat panel display
US7824747B2 (en) 2003-02-28 2010-11-02 Sabic Innovative Plastics Ip B.V. Diffuser for flat panel display
JP2005171244A (en) * 2003-12-12 2005-06-30 Arkema Methacrylic polymer material excellent in fire resistance
WO2005093469A2 (en) * 2004-02-27 2005-10-06 General Electric Company Diffuser for flat panel display
WO2005093469A3 (en) * 2004-02-27 2005-11-24 Gen Electric Diffuser for flat panel display
WO2007141893A1 (en) 2006-06-07 2007-12-13 Sumitomo Dow Limited Flame-retardant and light-diffusing polycarbonate resin composition and light-diffusing plate made of the same
WO2008023445A1 (en) 2006-08-25 2008-02-28 Sumitomo Dow Limited Flame retardant and light diffusing polycarbonate resin composition and light diffusing plate comprising the same
US7960450B2 (en) 2006-08-25 2011-06-14 Styron Europe Gmbh Flame retardant and light diffusing polycarbonate resin composition and light diffusing sheet thereof
JP2008074970A (en) * 2006-09-21 2008-04-03 Admatechs Co Ltd Resin composition for optical diffusion
US8426015B2 (en) 2007-06-12 2013-04-23 Styron Europe Gmbh Clear and flame retardant polycarbonate resin film

Also Published As

Publication number Publication date
JPH072910B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
US5607764A (en) Optical diffuser
JP2007206674A (en) Optical thin sheet
JP4002320B2 (en) Silica composite resin particles and production method thereof
US5004785A (en) Light-diffusing methacrylic resin and process for production thereof
JPS60184559A (en) Light-diffusing plastic
JP3040705B2 (en) Resin fine particles for light diffusion sheet and light diffusion sheet
CN106496902A (en) A kind of light scattering thermoplastic polyester composition
JP2958191B2 (en) Light diffusion sheet
CN103724974B (en) High-light-reflectivity PC (polycarbonate) film material and preparation method thereof
JPH03143950A (en) Light-scattering polycarbonate resin
JPH04314522A (en) Anisotropic light scattering material, its manufacture and lenticular lens for screen of projection television
JP2667878B2 (en) Light diffusing plastic
JP3478973B2 (en) Light diffusion sheet
JPH11109113A (en) Light diffusing film and light diffusing film bead used therefor
JPS614762A (en) Light-diffusing plastic
KR20120078508A (en) Optical sheet
JPH1160966A (en) Light diffusing resin composition
JPS60139758A (en) Light-diffusing plastic
JPH01236257A (en) Light-diffusing methacrylic resin and its production
US4963624A (en) Process for producing light-diffusing methacrylic resin article
JP2981268B2 (en) Lenticular lens sheet
JP3212085B2 (en) Manufacturing method of lenticular lens sheet
TWI398699B (en) Light-diffusing sheet and optical sheet for a back light unit
JPH01301745A (en) Production of optically diffusive methacrylic resin molding
JP2892808B2 (en) Lenticular lens sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees