JPS60183524A - Average air flow rate detecting apparatus by karman's vortex street type air flow rate sensor - Google Patents

Average air flow rate detecting apparatus by karman's vortex street type air flow rate sensor

Info

Publication number
JPS60183524A
JPS60183524A JP59039564A JP3956484A JPS60183524A JP S60183524 A JPS60183524 A JP S60183524A JP 59039564 A JP59039564 A JP 59039564A JP 3956484 A JP3956484 A JP 3956484A JP S60183524 A JPS60183524 A JP S60183524A
Authority
JP
Japan
Prior art keywords
flow rate
air flow
average
pulse
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59039564A
Other languages
Japanese (ja)
Other versions
JPH0432973B2 (en
Inventor
Minoru Takahashi
稔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP59039564A priority Critical patent/JPS60183524A/en
Publication of JPS60183524A publication Critical patent/JPS60183524A/en
Publication of JPH0432973B2 publication Critical patent/JPH0432973B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3287Means for detecting quantities used as proxy variables for swirl circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Flowmeters (AREA)

Abstract

PURPOSE:To detect the average of pulse cycles with high precision during large flow rate by calculating the average cycle or the average air flow rate at every detection of a pulse cycle more than a prescribed time after counting a prescribed number or the smaller number than that of pulse by Karman's vortex street. CONSTITUTION:The pulse output of a Karman's sensor 3 in which an output signal (a) becomes 1 at every generation of Karman's vortex is counted by microprocessor 9. Whether the prescribed cycle is exceeded or not is discriminated in case >= the prescribed number Nmax, and the average pulse cycle is calculated in case >= said cycle. The prescribed number Nmin in exceeded or not is discriminated in case <= the number Nmax, the average air flow rate is obtained in case <=Nmin, whether the prescribed cycle is exceeded or not is discriminated in case >=Nmin. The average pulse cycle is calculated in case >= said cycle, and the average air flow rate is calculated switchedly in case <= said cycle. Further, in calculation of the average pulse cycle, a constant in prescribed limit is added to Nmax, the averaging processing is performed to prepare next processing.

Description

【発明の詳細な説明】 本発明は、自動車エンジン等に流入する空気の平均流量
をカルマン渦式空気流量センサの出力パルスを処理して
検出する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting the average flow rate of air flowing into an automobile engine or the like by processing output pulses of a Karman vortex type air flow sensor.

従来技術と問題点 一般に、内燃機関においてはその吸入空気量を計測し、
計測結果に基づいて空燃比が一定になるように燃料噴射
量を制御している。吸入空気量を開側する計測装置は従
来より各種提案されているが、その中で、優れた応答性
を有するカルマン渦式空気流量センサ(以下カルマンセ
ンサという)が注目されている。このカルマンセンサは
、内燃機関の吸気側に渦発生体を置くとその近傍に空気
流量に比例した頻度で空気の渦(カルマン渦)が発生ず
ることを利用し、カルマン渦の発生を公知の各種の手段
にて検出し、カルマン渦の発生に関係したタイミングで
パルスを発生するものであり、この発生したパルス信号
の周期はその時の流入空気量に反比例したものとなる。
Conventional technology and problems In general, in internal combustion engines, the amount of intake air is measured,
Based on the measurement results, the fuel injection amount is controlled to keep the air-fuel ratio constant. Various types of measuring devices for measuring the amount of intake air have been proposed in the past, and among them, a Karman vortex air flow sensor (hereinafter referred to as a Karman sensor), which has excellent responsiveness, has been attracting attention. This Karman sensor utilizes the fact that when a vortex generator is placed on the intake side of an internal combustion engine, air vortices (Karman vortices) are generated in the vicinity at a frequency proportional to the air flow rate. A pulse is generated at a timing related to the generation of the Karman vortex, and the period of the generated pulse signal is inversely proportional to the amount of inflowing air at that time.

ところで、内燃機関の空気流量は、吸気、排気等の工程
を周期として変動しており、第1図に示すように、スロ
ワ1−ルハルブ開度か大きくなれはなるほど、その変動
幅も大きくなる。カルマンセンサはこのような変動にも
十分に追従するだけの応答性を有するから、例えば第2
図に示すように、スロットルバルブ開度が大きい大流量
時においては、流量大の期間に発生する周期の極めて短
いパルス列と、流量小の期間に生しる周期の比較的短い
パルス列とを含むものとなる。従って、何等かの方法で
パルスの周期の平均をめる必要が生じる。
Incidentally, the air flow rate of an internal combustion engine fluctuates periodically during processes such as intake and exhaust, and as shown in FIG. 1, the greater the opening of the throat, the greater the range of fluctuation. Since the Kalman sensor has sufficient responsiveness to follow such fluctuations, for example, the second
As shown in the figure, when the throttle valve opening is large and the flow rate is large, the pulse train includes a pulse train with an extremely short period that occurs during the period when the flow rate is large, and a pulse train with a relatively short period that occurs during the period when the flow rate is small. becomes. Therefore, it is necessary to average the pulse period by some method.

この為の一般的な技術としては、エンジンクランク角の
所定角度に相当する時間毎に前記パルス信号を区切って
その平均をめることが考えられる。これは、瞬時空気流
量の一変動周期pに相当する期間毎に平均をめるもので
あり、期間の始点、終点のタイミングはクランク角セン
サの所定角度の出力で与えられる。この方式では、周期
pを第2図の符号p1に示すようにその始点、終点が大
きな周期の途中になるように設定すると、これら大きな
周期Lpを計測することができなくなり、平均化誤差が
あまりにも大きくなる。そこで、第2図の1.i−号p
2に示ずように周期pが大きな周期12を含むように設
定するものであるが、それでも周期l)の最初と終りの
パルスの周期は計測できず誤差が残ると共に、通常、周
期pの始点を検出してからパルスを計数し得る状態にな
るまでにはどうし−ζも多少の遅れ時間があるので、パ
ルス周期の極めて短い場所に始点を設定することはパル
ス数の計数誤差を招来し、その為の誤差も加わる不都合
がある。
As a general technique for this purpose, it is conceivable to divide the pulse signal at intervals of time corresponding to a predetermined angle of the engine crank angle and calculate the average thereof. This is averaged for each period corresponding to one variation period p of the instantaneous air flow rate, and the timing of the start point and end point of the period is given by the output of a predetermined angle from the crank angle sensor. In this method, if the period p is set so that its start and end points are in the middle of a large period, as shown by symbol p1 in Figure 2, it becomes impossible to measure these large periods Lp, and the averaging error becomes too large. also becomes larger. Therefore, 1 in Figure 2. i-no.p
As shown in Figure 2, the period p is set to include a large period 12, but even so, the pulse periods at the beginning and end of period l) cannot be measured and errors remain, and the starting point of period p is usually Since there is some delay time between when the pulse is detected and when the pulse can be counted, setting the starting point at a place where the pulse period is extremely short will result in an error in counting the number of pulses. This has the disadvantage of adding errors.

発明の目的 本発明はごのような従来の欠点を改善したものであり、
その目的は、瞬時空気流量の変動が激しい大流量時にお
りる一変動毎のカルマンセンサ出力パルス周期の平均を
積度良く検出し得るようにすることにある。
OBJECT OF THE INVENTION The present invention improves the drawbacks of the prior art, such as:
The purpose of this is to make it possible to accurately detect the average of the Kalman sensor output pulse periods for each fluctuation during a large flow rate when the instantaneous air flow rate fluctuates rapidly.

発明の原理、構成及び作用 一般にカルマンセンサでは、大流量時の変動幅の大きい
時には、第2図に示したように、複数個のパルスか出現
すると共にパルス間隔(周!IJI )の大きい状態が
瞬時空気流量の変動の一周期毎に現れた。そこでへ所定
値(T max )より大きな周期か現れる毎に平均1
7,1期をめるようにすれば、変動幅が大きい大流量時
には変動の一周期毎に平均を算出することかできる。即
し、大流量時には第3図(a)に示すようなパルス列か
発斗、するので、大きな周期か現れる毎に平均周期をめ
るとずれば符号Qで示ずような間隔で平均化が行なわれ
、その間隔が瞬時空気流量の一変動周期と合致すること
となる。ところか、実際には第3図(b)に示すように
、時々人きい周期の後乙、二比・1り的長い周期が現れ
、これか所定値(1″maχ)以」二となることにより
、同図の符号Q゛に示ずよ・うに平均化か行なわれ、瞬
時空気流星の一変u’dノJail >υ1旬に止器に
平均化されない場合か生じる。本発明はこの点をも考慮
したものであり、所定値(Tmax)より大きな周期が
現れると必ず平均周期をめることは−ヒず、前回の平均
処理終了パルスから所定数(Nmin )のパルスか現
れる後に所定値(Tmax)より大きな周期が現れだと
きに初めて平均処理を行なうこととしている。こうずれ
は、第3図(b)に示したようにパルスl) 1の後に
比較的長い間隔を置いてパルスP2が現れても、前回の
平均終了パルスかこの場合PIであるからそれは無視さ
れ、パルスP 3を検出したときに平均処理が実行され
る。1足って、瞬時空気流量の一変動周期毎に平均処理
を行なうことが可能となる。
Principle, Structure, and Function of the Invention In general, in a Kalman sensor, when the fluctuation range is large during a large flow rate, a plurality of pulses appear and the pulse interval (period!IJI) is large, as shown in Fig. 2. The fluctuation of instantaneous air flow rate appeared every cycle. Every time a cycle larger than a predetermined value (T max ) appears, the average value is 1.
By setting 7.1 period, it is possible to calculate the average for each cycle of fluctuation when the flow rate is large and the range of fluctuation is large. In other words, when the flow rate is large, a pulse train as shown in Fig. 3(a) occurs, so if we add the average period each time a large period appears, we can average it at intervals as shown by the symbol Q. The interval will match one variation period of the instantaneous air flow rate. In reality, however, as shown in Figure 3(b), sometimes after a short cycle, a longer cycle appears, which is longer than a predetermined value (1"maχ). As a result, averaging is performed as shown by reference numeral Q' in the same figure, and a case may occur in which the instantaneous air meteor is not averaged to a stop when the instantaneous air meteor changes. The present invention takes this point into account, and does not always adjust the average period when a period larger than a predetermined value (Tmax) appears, but instead calculates a predetermined number of pulses (Nmin) from the previous average processing end pulse. Averaging processing is performed only when a cycle larger than a predetermined value (Tmax) appears after Tmax. As shown in Fig. 3(b), even if pulse P2 appears after a relatively long interval after pulse l)1, it is ignored because it is the previous average ending pulse or in this case PI. , the averaging process is performed when pulse P3 is detected. One addition makes it possible to perform averaging processing for each period of fluctuation of the instantaneous air flow rate.

また、小流量時におけるカルマンセンサの出力パルスの
間隔(周期)は、まばらで一般に大きい。
Furthermore, the intervals (periods) of the output pulses of the Kalman sensor when the flow rate is small are sparse and generally large.

従って、−1二連のようにすれば、小流量時にはカルマ
ンセンサの所定数(Nmin)個のパルス毎に平均か算
出されることになり、比較的応答性良く平均化し得るも
のとなる。
Therefore, if -1 is used twice, the average is calculated every predetermined number (Nmin) of pulses of the Kalman sensor when the flow rate is small, and averaging can be performed with relatively good responsiveness.

しかし、中流量時にはパルスの周期は適当な所定値(T
max)より小さなものか殆どとなる。この為−所定数
(N+n1n)のパルス発η二後の所定値(T max
 )より大きな周期か現れる毎に平均周期をめるたりで
は中流量時の平均化が困yf[となる。
However, at medium flow rates, the pulse period is set to an appropriate predetermined value (T
max) is smaller or almost the same. For this reason, a predetermined value (T max
) If the average period is increased every time a larger period appears, it is difficult to average the medium flow rate.

この為、本発明では、パルスか所定数(N max)現
れる毎にその平均を算出することをh(本とし、所定数
(Nmin)のパルス発生後の所定値(”l”may)
より大きな周期を検1−11ずればN max個になる
前に平均を算出するようにしている。こうずれは、低流
量時、高流量時とも応答性良くカルマンセンサの出力パ
ルスの平均周期をめることか可能となり、中流量時には
T max以上の周期か現れなくても最低N個毎に平均
かめられることになる。
For this reason, in the present invention, calculating the average every time a predetermined number (N max) of pulses appear is defined as "h", and a predetermined value ("l" may) after a predetermined number (N min) of pulses occur.
If a larger cycle is detected and shifted by 1-11, the average is calculated before the number N max is reached. This deviation makes it possible to adjust the average cycle of the output pulses of the Kalman sensor with good responsiveness at both low and high flow rates, and at medium flow rates, it is possible to average every N pulses at least even if the cycle is greater than or equal to T max. You will be bitten.

第4図は本発明の構成説明図であり、カルマンセンサC
3からカルマン渦の発生に関係したタイミングで発生さ
れるパルス信号は、alZ均周期成は平均空気流量算出
手段性に入力される。パルス数計数手段CNは、カルマ
ンセンサC3から出力されるパルスを計数するもので、
所定数(Nmin)たけ計数するとその旨を所定周期検
出手段DEに1ffl知し、所定数(Nmax)だり計
数すると算出手段へ1゛に算出指令を発する。パルス周
期検出手段PDは、カルマンセンサC3の出力パルスの
周期を計測し所定値(′l’max)より大きい周期を
検出するもので、検出するとその旨を所定周期検出手段
1]Uに通知する。
FIG. 4 is an explanatory diagram of the configuration of the present invention, in which the Kalman sensor C
3, the pulse signal generated at a timing related to the generation of Karman vortices is inputted to the alZ equalization cycle generation means for calculating the average air flow rate. The pulse number counting means CN counts the pulses output from the Kalman sensor C3,
When a predetermined number (Nmin) has been counted, this fact is notified to the predetermined period detection means DE, and when a predetermined number (Nmax) has been counted, a calculation command is issued to the calculation means. The pulse period detection means PD measures the period of the output pulse of the Kalman sensor C3 and detects a period larger than a predetermined value ('l'max), and when detected, notifies the predetermined period detection means 1]U of this fact. .

所定周期検出手段DEは、パルス数計数手段CNで所定
数(Nn+in)のパルスが計数された後パルス周期検
出手段PDで所定値(Tmax)以」二の周期が検出さ
れると、算出手段性に算出指令を発する。この算出手段
性は、算出指令がパルス数計数手段CNからか或は所定
周期検出手段叶から発せられる毎に平均円期成は平均空
気流量を算出する。
The predetermined period detection means DE detects a predetermined number of pulses (Nn+in) by the pulse number counting means CN, and when the pulse period detection means PD detects a period less than or equal to a predetermined value (Tmax), the calculation means function. A calculation command is issued. This calculation means calculates the average air flow rate each time a calculation command is issued from the pulse number counting means CN or from the predetermined period detection means.

第5図は本発明の動作説明図であ刀′、(a)は11f
1時空気流量の時間的変化の一吠を示し、(b)はその
時のカルマンセンサの出力パルスの一例を示す。なお、
L1〜t48はカルマンセンサの各出力パルス、Q1〜
Q8は平均化された空気流量を示す。第4図のような構
成によれば、所定時間(Tmax)を大流量時に現れる
最大周期より若干小さ目に設定することにより、大流量
時には変動の一周期毎に平均が算出され(Q5〜Q7参
照)、低流量時にはカルマンセンサO3の出力パルスの
周期が所定時間(Tmax)以−にとなるか、所定数(
Nmin、ここでは3とした)の制限により平均化はカ
ルマンセンサC3の3パルス毎に行なわれるごとになる
(Ql、Q2.Q8参照)。また、中流量時にはパルス
数計数手段CNが所定パルス数(Nmax 、 ここで
は9とした)計数する毎に平均が算出される(Q3.Q
4#照)。
FIG. 5 is an explanatory diagram of the operation of the present invention, and (a) is 11f.
1 shows a temporal change in the air flow rate, and (b) shows an example of the output pulse of the Kalman sensor at that time. In addition,
L1~t48 are each output pulse of the Kalman sensor, Q1~
Q8 indicates the averaged air flow rate. According to the configuration shown in Fig. 4, by setting the predetermined time (Tmax) slightly smaller than the maximum period that appears during large flow rates, the average is calculated for each cycle of fluctuation during large flow rates (see Q5 to Q7). ), when the flow rate is low, the period of the output pulse of the Kalman sensor O3 is longer than the predetermined time (Tmax), or the period of the output pulse of the Kalman sensor O3 is longer than the predetermined number (
Due to the limitation of Nmin (here, 3), averaging is performed every three pulses of the Kalman sensor C3 (see Ql, Q2, and Q8). Furthermore, at medium flow rates, an average is calculated every time the pulse number counting means CN counts a predetermined number of pulses (Nmax, here 9) (Q3.
4 #sho).

なお、第5図では、小流量から中流量に移行する際に、
3パルス検出毎の平均からいきなり9パルス検出毎の平
均に切換わっている。これは、所定数(Nmax)を固
定とした為であり、この部分で応答性が多少損なわれる
ことば否めない。これを改善するには、平均を算出した
ときのパルス数計数手段CNの計数値に関連して所定数
(Nmax)を所定の範囲内で順次大ぎくずれぽ良い。
In addition, in Fig. 5, when transitioning from a small flow rate to a medium flow rate,
The average every 3 pulses detected is suddenly switched to the average every 9 pulses detected. This is because the predetermined number (Nmax) is fixed, and it cannot be denied that the responsiveness is somewhat impaired in this part. To improve this, the predetermined number (Nmax) may be gradually deviated within a predetermined range in relation to the count value of the pulse number counting means CN when calculating the average.

また、所定数(Nmin)も小流量時には例えば1とし
、1]J、大流量になるはと大きく例えば3と変化させ
れば小流量時に1パルス毎に平均化することが可能とな
る。第6図はそのような対策を施したときの本発明の動
作説明図であり、第5図と相違するところは、第5図の
小流量における平均Ql、Q2が平均QIO,Ql’1
. Q12およびQ20. Q21. Q22にそれぞ
れ細分され、また小流量から中流量への移行時の平均Q
3がQ30. Q31にに細分されている点である。こ
の例は、所定数(Nmax)を順次3ずつ人き(したが
、どの程度の割合で増加させるかは任意である。
Further, if the predetermined number (Nmin) is set to 1, for example, when the flow rate is small, and is changed to 1]J, and to 3, for example, when the flow rate is large, it becomes possible to average every pulse when the flow rate is small. FIG. 6 is an explanatory diagram of the operation of the present invention when such measures are taken, and the difference from FIG. 5 is that the average Ql, Q2 at the small flow rate in FIG. 5 is the average QIO, Ql'1
.. Q12 and Q20. Q21. Each is subdivided into Q22, and the average Q when transitioning from small flow rate to medium flow rate.
3 is Q30. This point is subdivided into Q31. In this example, the predetermined number (Nmax) is increased by 3 (however, the rate at which the number is increased is arbitrary).

更に、所定値(Nmax)の増加割合を、加速時には少
し小さくなるようにずれば、過度時と(に小流量から大
流量に急変する時により応答が良くなるので好適である
Furthermore, it is preferable to shift the increase rate of the predetermined value (Nmax) so that it becomes a little smaller during acceleration, since the response will be better during transient situations and when there is a sudden change from a small flow rate to a large flow rate.

また、エンジン回転数によって、空気流量の変動周期が
決定され、従っ・て瞬時空気流量の変動幅の大きい大流
量時に現れるパルス間隔(周期)の大きい状態も必然的
に異なってくる。従って、パルス周期検出手段PDにお
ける所定周期(TmaX)はそのときのエンジン回転数
に応じて最適値に設定することが望ましい。即ぢ、エン
ジン回転数が高いほど所定周期(TmaX)を小さくす
ると良い。
Furthermore, the fluctuation period of the air flow rate is determined by the engine speed, and therefore, the state in which the pulse interval (period) is large, which appears when the instantaneous air flow rate has a large fluctuation range and a large flow rate, inevitably differs. Therefore, it is desirable that the predetermined period (TmaX) in the pulse period detecting means PD be set to an optimal value according to the engine rotation speed at that time. In other words, the higher the engine speed, the smaller the predetermined period (TmaX).

発明の実施例 第7図は本発明の実施例の要部ブロック図であり、■は
内燃機関、2はエアクリーナ、3はカルマンセンサであ
り、カルマン渦が発生ずる毎にその出力信号aを“°l
゛とするものである。4ばスロットルチャンバ、5ばイ
ンテークマニホールド、6は電磁式のフューエルインジ
ェクタ、7は吸入空気の流れを制御するスロットルバル
ブ、8はクランク角センサ、9はマイクロブIllセソ
ザ、10はメモリ、11はクランク角センサ8の出力や
他のエンジンパラメータ例えば冷却水温、吸気温、スロ
ットルバルブ開度、アイドルスイッチ等各種スイッチの
オンオフ情報等をマイクロプロセッサ9に入力する為の
データ入力部、12はデータ出力部である。
Embodiment of the Invention FIG. 7 is a block diagram of the main parts of an embodiment of the present invention, where ■ is an internal combustion engine, 2 is an air cleaner, and 3 is a Karman sensor. Every time a Karman vortex is generated, its output signal a is °l
゛. 4 is a throttle chamber, 5 is an intake manifold, 6 is an electromagnetic fuel injector, 7 is a throttle valve that controls the flow of intake air, 8 is a crank angle sensor, 9 is a microbe sensor, 10 is a memory, 11 is a crank angle A data input section 12 is a data output section for inputting the output of the sensor 8 and other engine parameters such as cooling water temperature, intake temperature, throttle valve opening, on/off information of various switches such as an idle switch, etc. to the microprocessor 9. .

吸入空気は、エアクリーナ2よりカルマンセンサ3.ス
ロツトルチヤンバ4を経てインテークマニホールド5の
各ブランチより各シリンダに供給され、燃料はフューエ
ルインジェクタ6により内燃機関l内に噴射される。ま
た、吸入空気量は、内燃機関の状態に応じて、第5図、
第6図に示したように変化するものであり、その変化に
応じて出力信号aも変化する。カルマンセンサ3の出力
信号aはマイクロプロセッサ9の割込み端子INTに入
力され、出力信号aの例えば立上がり時に割込みがかけ
られる。
Intake air is supplied from the air cleaner 2 to the Karman sensor 3. Fuel is supplied to each cylinder from each branch of an intake manifold 5 via a throttle chamber 4, and is injected into the internal combustion engine l by a fuel injector 6. In addition, the amount of intake air is determined according to the state of the internal combustion engine as shown in Fig. 5.
The output signal a changes as shown in FIG. 6, and the output signal a also changes in accordance with the change. The output signal a of the Kalman sensor 3 is input to the interrupt terminal INT of the microprocessor 9, and an interrupt is generated when the output signal a rises, for example.

第8図はこの割込み処理の一例を示すフローチャートで
あり、81〜S14は各ステップを示す。
FIG. 8 is a flowchart showing an example of this interrupt processing, and 81 to S14 indicate each step.

マイクロプロセッサ9ば割込みがかかると、先ずその時
の時刻を最新パルス時刻′■゛1として記憶しくSl、
)、パルスカウン]・数Nを+1カウントアンプする(
S2)。次に、パルスカウント数Nが所定数(Nmax
)以上であるか否かを判別し、所定数(Nmax、)以
上であればステップS6へ移所定数(Nmin)未満と
判別されると、最新パルス時刻′r1の値を1パルス前
の割込み時刻T3として(513)、メインルーチンへ
復帰する。また所定数(Nmin)以上と判別されると
、最新パルス時刻1゛1から1パルスriijの割込み
時刻′「3を引いて今回のパルス周期′「2をめ(S5
)、72が所定周期(1’ max’ )以」二である
か否かを判別−!1−る(S6)、そして、′f゛2が
所定周期(Tma、x)以上であればステップ7へ移行
し、所定周期(′I゛maχ)未満であれはステップS
i4へ移行する。
When the microprocessor 9 receives an interrupt, it first memorizes the time at that time as the latest pulse time '■゛1.
), pulse count]・Amplify the number N by +1 count (
S2). Next, the pulse count number N is set to a predetermined number (Nmax
) or more, and if it is more than a predetermined number (Nmax, ), proceed to step S6. If it is determined that it is less than a predetermined number (Nmin), the value of the latest pulse time 'r1 is set to the interrupt of one pulse before. At time T3 (513), the process returns to the main routine. If it is determined that the number is greater than the predetermined number (Nmin), the latest pulse time 1 is subtracted from the interrupt time of 1 pulse riij by 3 to obtain the current pulse period of 2 (S5
), 72 is less than or equal to the predetermined period (1'max') -! 1- (S6), and if 'f゛2 is greater than or equal to the predetermined period (Tma,
Move to i4.

ステップS7では、最新パルス時刻TIから前回の平均
化終了時の時刻T5を引いて平均化するパルス間時間T
 4をめ、この′「4をパルスカウント数Nで割ること
により平均パルス周期′■゛6を算出する(S8)。そ
して、最新パルス時刻T1を平均化終了時の時刻1゛5
として記憶しくS9)、所定数(Nmax)の値を、今
回のパルス数Nに素数αを足した値に変更する(SIO
)。また、N maxの最大値を制限する為にNmax
を所定値βと比較し、βより太き(なればβの値にクラ
ンプする処理を行なう(Sll、312)。平均化処理
を完了したときは、パルスカウント数Nを零にクリアし
て次回の処理に備える(S13)。
In step S7, the inter-pulse time T5 is averaged by subtracting the time T5 at the end of the previous averaging from the latest pulse time TI.
4, and calculate the average pulse period '■゛6 by dividing this '4 by the pulse count number N (S8).Then, the latest pulse time T1 is set as the time 1゛5 at the end of averaging.
(S9), and changes the value of the predetermined number (Nmax) to the value obtained by adding the prime number α to the current number of pulses N (SIO
). Also, in order to limit the maximum value of Nmax, Nmax
is compared with a predetermined value β, and if it is thicker than β, a process is performed to clamp it to the value of β (Sll, 312). When the averaging process is completed, the pulse count number N is cleared to zero and the next (S13).

また、マイクロプロセッサ9は第8図のフローチャート
に示すように、メインルーチンにおいて””f + (
1−6)なる公知の関係式より平均パルス周期T6から
平均空気流量Qをめ(S 20 )、且つTmax =
 f 2 (エンジン回転数)なる関係式(エンジン回
転数が大きくなるほどTmaxが小さくなるような関係
式)によりエンジン回転数に応して′J″mayの値を
変更する処理を行なう(S 21 )。
Further, as shown in the flowchart of FIG. 8, the microprocessor 9 performs ""f + (
From the known relational expression 1-6), the average air flow rate Q is determined from the average pulse period T6 (S 20 ), and Tmax =
Processing is performed to change the value of 'J''may according to the engine speed using the relational expression f 2 (engine speed) (a relational expression such that Tmax decreases as the engine speed increases) (S 21 ). .

更に、Nm1n =f 3 (1/T6X工ンジン回転
数)なる関係式(小流量時が例えば1で中から大流量に
なるほど大きく例えば3となるような関係式)によりN
m4口の値を変更しく522)、α−f4(1/T6X
工ンジン回転数)なる関係式(小流量時には例えば1と
小さく中から大流量になるほど例えば4と大きくなる関
係式)により所定値(Nmax)の増量値αを変更する
(S23)。大流量時にαの値を大きくするのは、瞬時
空気流量の変動幅の大きい箇所では一変動周期当りに発
生するカルマンセンサの出力パルス数がハラツクからで
ある。また、平均円期成は平均空気流量の変化率等によ
り加速状態であるか否かを判別しく524)、加速状態
であればαを1だけ減しる処理を行なう(S25) 、
 ステップS26.S27はαの値を1にクランプする
為の処理である。な4イ、 1/T6x工ンジン回転数はQ/n(Qば平均流入空気
fl、nはエンジン回転数)と′4価であるから、前者
の代りに後者を流量の大小を判別するパラメータに使用
しても良い。
Furthermore, by the relational expression Nm1n = f 3 (1/T6X engine rotation speed) (a relational expression in which the value is 1 for example at a small flow rate and increases to 3 for example as the flow rate increases from medium to large), N
Change the value of m4 (522), α-f4 (1/T6X
The increase value α of the predetermined value (Nmax) is changed according to a relational expression (a relational expression that is small, for example, 1 when the flow rate is small, and increases to 4, for example, as the flow rate increases from medium to high) (S23). The reason why the value of α is increased when the flow rate is large is because the number of output pulses of the Kalman sensor generated per cycle of fluctuation becomes large at locations where the fluctuation range of the instantaneous air flow rate is large. In addition, the average circle period formation determines whether or not it is in an accelerated state based on the rate of change of the average air flow rate, etc. (524), and if it is in an accelerated state, a process is performed to reduce α by 1 (S25).
Step S26. S27 is a process for clamping the value of α to 1. 4B. Since 1/T6x engine rotation speed is Q/n (Q: average inflow air fl, n is engine rotation speed), the latter is used as a parameter to determine the magnitude of the flow rate. May be used for

発明の詳細 な説明したように、本発明は、カルマン渦式空気流量セ
ンザからカルマン渦の発生に関係したタイミングで発生
されるパルス信号の周期に基づき内燃機関に流入する平
均空気流量を検出する装置において、発生ずる前記パル
ス信号の個数を計数するパルス数計数手段と、発生する
前記パルス信号の周期を計数するパルス周期検出手段と
を備え、前記パルス数計数手段により所定数(N ma
x)のパルスが計数されるか或は前記パルス数計数手段
により所定数(Nmax)より小さい所定数(Nmin
)が計数された後前記パルス周期検出手段により所定時
間(Tmax)以上の周期が検出される毎に平均円期成
は平均空気流量を算出するようにしたものであり、一般
にカルマンセンサでは、大流量時の変動’IQの大きい
時には、第2図、第3図に示したように、パルス間隔(
周期)の大きい状態が瞬時空気流量の変動の一周期毎に
現れ、且つ、小流量時におけるカルマンセンサの出力パ
ルスの間隔(周期)は一般に大きいから、本発明のよう
に、パルスが所定数(Nmax)現れる毎にその平均を
算出することを基本とし、所定数(Nmin) (II
のパルス発注後に所定値(Tmax)より大きな周期を
検出すればN個になる前に平均を算出するようにすれば
、変動幅が大きい大流量時には第3図(b)の如く大き
な周期が連続しても、変動の一周期毎に平均が算出され
、小流量時にはカルマンセンサの故パルス毎に平均が算
出されることになり、低流量時、高流量時とも応答性良
くカルマンセンサの出力パルスの平均周期をめることが
可能となる。また、中流量時も少なくともNmaχ個毎
に平均が算出されることになる。このように、本発明に
よれば、カルマンセンサの出力信号のみ処理するだけで
、低流量時、高流量時とも応答性良くカルマンセンサの
出力パルスの平均周期、平均空気流量を算出することが
可能となる。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the present invention provides an apparatus for detecting the average air flow rate flowing into an internal combustion engine based on the period of a pulse signal generated from a Karman vortex air flow sensor at a timing related to the generation of a Karman vortex. The pulse number counting means counts the number of the generated pulse signals, and the pulse period detection means counts the period of the generated pulse signals, and the pulse number counting means calculates a predetermined number (N ma
x) pulses are counted or the pulse number counting means counts a predetermined number (Nmin) smaller than a predetermined number (Nmax).
) is counted, and each time a period longer than a predetermined time (Tmax) is detected by the pulse period detecting means, the average circular period is calculated to calculate the average air flow rate. When the fluctuation in flow rate 'IQ is large, the pulse interval (
Since a state with a large number of pulses (period) appears every cycle of fluctuation in the instantaneous air flow rate, and the interval (period) of the output pulses of the Kalman sensor at the time of a small flow rate is generally large, as in the present invention, a state in which the pulses are Basically, the average is calculated every time a predetermined number (Nmin) (II
If a cycle larger than a predetermined value (Tmax) is detected after ordering pulses, the average is calculated before the number reaches N, then during large flow rates with large fluctuation range, large cycles will continue as shown in Figure 3 (b). Even if the flow rate is low, the average is calculated for each cycle of fluctuation, and at low flow rates, the average is calculated for each pulse due to the Kalman sensor. It becomes possible to increase the average period of Further, even when the flow rate is medium, an average is calculated for at least every Nmaχ. As described above, according to the present invention, it is possible to calculate the average cycle of the output pulses of the Kalman sensor and the average air flow rate with good responsiveness both at low and high flow rates by simply processing the output signal of the Kalman sensor. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスロットルバルブ開度と内燃機関に流入する瞬
時空気流量の変動との関係を示す線図、第2図は大流量
時の瞬時空気流量とそのときのカルマンセンサの出力パ
ルスの状態を示す線図、第3図は大流量時におけるカル
マンセンサの出力パルスの状態を示す図、第4図は本発
明の構成説明図、第5図及び第6図は本発明の動作説明
図、第7図は本発明の実施例の要部ブロック図、第8図
はマイクロプロセッサ9の割込み処理の一例を示すフロ
ーチャート、第9図はマイクロプロセッサ9のメインル
ーチンの要部を示すフローチャートである。 ■は内燃機関、2ばエアクリーナ、3はカルマンセンサ
、4はスロソ1−ルチャンバ 5ばインテークマニホー
ルド、6は電磁式のフユーエルインシコークタ、7は吸
入空気の流れを制御するスロノI−ルハルブ、8はクラ
ンク角センザ、9はマイクロブIコセソサ、10はメモ
リ、11はデータ入力部、12はデータ出力部である。 特許出願人富士通テン株式会社 代理人弁理士玉蟲久五部外1名 埴 1 図 第 2 図 第3図 第 4 図 第7図 第 8 図 第 9 図
Figure 1 is a diagram showing the relationship between the throttle valve opening and fluctuations in the instantaneous air flow rate flowing into the internal combustion engine, and Figure 2 shows the instantaneous air flow rate at a large flow rate and the state of the output pulse of the Kalman sensor at that time. FIG. 3 is a diagram showing the state of the output pulse of the Kalman sensor at the time of a large flow rate, FIG. 4 is an explanatory diagram of the configuration of the present invention, and FIGS. 7 is a block diagram of a main part of an embodiment of the present invention, FIG. 8 is a flowchart showing an example of interrupt processing of the microprocessor 9, and FIG. 9 is a flowchart showing a main part of the main routine of the microprocessor 9. 2 is an internal combustion engine, 2 is an air cleaner, 3 is a Kalman sensor, 4 is a throttle chamber, 5 is an intake manifold, 6 is an electromagnetic fuel injector, 7 is a throttle valve that controls the flow of intake air, 8 is a crank angle sensor, 9 is a microbe I sensor, 10 is a memory, 11 is a data input section, and 12 is a data output section. Patent Applicant Fujitsu Ten Ltd. Representative Patent Attorney Tamamushiku Go 1 person outside the department 1 Fig. 2 Fig. 3 Fig. 4 Fig. 7 Fig. 8 Fig. 9

Claims (1)

【特許請求の範囲】 (1)カルマン渦式空気流量センサからカルマン渦の発
生に関係したタイミングで発生されるパルス信号の周期
に基づき内燃機関に流入する平均空気流量を検出する装
置において、発生する前記パルス信号の個数を計数する
パルス数計数手段と、発生ずる前記パルス信号の周期を
計数するパルス周期検出手段とを備え、前記パルス数計
数手段により所定数(Nmaに)のパルスが計数される
か或は前記パルス数計数手段により所定数(Nn+ax
)より小さい所定数(Nmin)が計数された後前記パ
ルス周期検出手段により所定時間(Tmax)以上の周
期が検出される毎に平均周期成は平均空気流量を算出す
るようにしたことを特徴とするカルマン渦式空気流量セ
ンサによる平均空気流量検出装置。 (2、特許請求の範囲第1項記載のカルマン渦式空気流
量センサによる平均空気流量検出装置において、前記所
定時間(Tmax)は、エンジン回転数等の機関バラメ
ークで決定されることを特徴とするカルマン渦式空気流
量センサによる平均空気流量検出装置。 (3)特許請求の範囲第1項記載のカルマン渦式空気流
量センサによる平均空気流量検出装置において、前記所
定数(Nmax)は、平均周期成は平均空気流量を算出
したときのパルスカウント数(N)に関係して決定され
ることを特徴とするカルマン渦式空気流量センサによる
平均空気流量検出装置。 (4)特許請求の範囲第3項記載のカルマン渦式空気流
量センサによる平均空気流量検出装置において、前記所
定数(Nmtn)は、小流量時には小さく中流量から大
流量になるにつれて大きくなるような値であることを特
徴とするカルマン渦式空気流量センサによる平均空気流
量検出装置。 (5)特許請求の範囲第4項記載のカルマン渦式空気流
量センサによる平均空気流量検出装置において、前記所
定数(Nmin)を、算出した平均円期成は平均空気流
量の変化率等の内P、機関の過度状態に応して補正する
ことを特徴とするカルマン
[Claims] (1) In a device for detecting the average flow rate of air flowing into an internal combustion engine based on the period of a pulse signal generated from a Karman vortex air flow sensor at a timing related to the generation of a Karman vortex, A pulse number counting means for counting the number of the pulse signals, and a pulse period detection means for counting the period of the generated pulse signal, and a predetermined number (Nma) of pulses are counted by the pulse number counting means. Alternatively, the pulse number counting means calculates a predetermined number (Nn+ax
) The average period generator calculates the average air flow rate every time a period longer than a predetermined time (Tmax) is detected by the pulse period detection means after a predetermined number (Nmin) smaller than ) has been counted. An average air flow rate detection device using a Karman vortex type air flow sensor. (2. In the average air flow rate detection device using a Karman vortex type air flow sensor as set forth in claim 1, the predetermined time (Tmax) is determined by engine variables such as engine rotation speed. An average air flow rate detection device using a Karman vortex type air flow sensor. (3) In the average air flow rate detection device using a Karman vortex type air flow rate sensor according to claim 1, the predetermined number (Nmax) is an average period component. An average air flow rate detection device using a Karman vortex air flow sensor, characterized in that is determined in relation to the number of pulse counts (N) when calculating the average air flow rate. (4) Claim 3 In the average air flow rate detection device using the Karman vortex type air flow sensor described above, the predetermined number (Nmtn) is a value that is small at a small flow rate and increases as the flow rate increases from a medium flow rate to a large flow rate. (5) In the average air flow rate detection device using a Karman vortex type air flow sensor according to claim 4, the predetermined number (Nmin) is calculated as the average circular period. Karman is characterized in that the change rate of the average air flow rate, etc., is corrected according to the transient state of the engine.
JP59039564A 1984-03-01 1984-03-01 Average air flow rate detecting apparatus by karman's vortex street type air flow rate sensor Granted JPS60183524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59039564A JPS60183524A (en) 1984-03-01 1984-03-01 Average air flow rate detecting apparatus by karman's vortex street type air flow rate sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59039564A JPS60183524A (en) 1984-03-01 1984-03-01 Average air flow rate detecting apparatus by karman's vortex street type air flow rate sensor

Publications (2)

Publication Number Publication Date
JPS60183524A true JPS60183524A (en) 1985-09-19
JPH0432973B2 JPH0432973B2 (en) 1992-06-01

Family

ID=12556574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59039564A Granted JPS60183524A (en) 1984-03-01 1984-03-01 Average air flow rate detecting apparatus by karman's vortex street type air flow rate sensor

Country Status (1)

Country Link
JP (1) JPS60183524A (en)

Also Published As

Publication number Publication date
JPH0432973B2 (en) 1992-06-01

Similar Documents

Publication Publication Date Title
KR100192110B1 (en) Process for correcting measurement errors of a hot-film device for measuring air masses
JPH02163443A (en) Controller for engine equipped with supercharger
JPH01244138A (en) Fuel injection control device for engine for automobile
US4633838A (en) Method and system for controlling internal-combustion engine
JP2829891B2 (en) Fuel injection timing control device for internal combustion engine
US5115397A (en) Surge-corrected fuel control apparatus for an internal combustion engine
US4760829A (en) Fuel control apparatus for a fuel injection system of an internal combustion engine
JPS60183524A (en) Average air flow rate detecting apparatus by karman&#39;s vortex street type air flow rate sensor
JPS63167045A (en) Fuel control device for internal combustion engine
JPH0432972B2 (en)
US4777919A (en) Ignition timing control apparatus for an internal combustion engine
JPH0570086B2 (en)
JPS6321344A (en) Electronically controlled fuel injection device for internal combustion engine
JPH09228899A (en) Egr device for diesel engine
JPS6166825A (en) Acceleration judging device of internal-combustion engine
JPS60261947A (en) Accelerative correction of fuel injector
JPH06167239A (en) Method and apparatus for obtaining quantity of fuel supplied to internal combustion engine
JP2567320Y2 (en) Fuel supply device for internal combustion engine
JP2715676B2 (en) Engine air volume detector
JPS59213931A (en) Electronic control fuel injector for internal-combustion engine
JPS60187728A (en) Electronic control system for internal-combustion engine
JPS6053171B2 (en) fuel control device
KR910004385B1 (en) Method and system for controlling internal combustion engine
JPS6035156A (en) Fuel injection device for internal-combustion engine
JPS6256963B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term