JPS60183507A - Optical measuring instrument for external size - Google Patents
Optical measuring instrument for external sizeInfo
- Publication number
- JPS60183507A JPS60183507A JP3907684A JP3907684A JPS60183507A JP S60183507 A JPS60183507 A JP S60183507A JP 3907684 A JP3907684 A JP 3907684A JP 3907684 A JP3907684 A JP 3907684A JP S60183507 A JPS60183507 A JP S60183507A
- Authority
- JP
- Japan
- Prior art keywords
- image sensor
- pulse
- light
- pulse signal
- pulse train
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/08—Measuring arrangements characterised by the use of optical techniques for measuring diameters
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【発明の詳細な説明】
イ、産業上の利用分野
本発明は自己走査型−次元フオドダイオードアレイ (
イメージセンサ)を用いた光学式外形寸法測定器に関す
る。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a self-scanning dimensional photodiode array (
This invention relates to an optical external dimension measuring device using an image sensor).
口、従来技術
非接触で線材等の外形寸法を測定する方法の一つとして
イメージセンサを使用するものがあり、本出願人は既に
特願昭58−190292号で、この方式の光学式外径
測定装置を開示し−Cいる。この方法の原理は、第1図
に示すように投光器(1)よりイメージセンサ(2)に
向けて平行光を照射し、投光器(1)とイメージセンサ
(2)間に置かれた物体(3)の影をイメージセンサ(
2)に投影させ、影の長さをイメージセンサ(2)のビ
ット出力によりカウントして物体(3)の外形寸法を測
定するものである。One of the conventional methods for non-contact measurement of the external dimensions of wire rods, etc. is to use an image sensor. A measuring device is disclosed. The principle of this method is that, as shown in Figure 1, a projector (1) emits parallel light toward an image sensor (2), and an object (3) is placed between the projector (1) and the image sensor (2). ) image sensor (
2), and the length of the shadow is counted using the bit output of the image sensor (2) to measure the external dimensions of the object (3).
上記測定方法は照射する光が理想的な平行光である限り
物体の位置によらず安定した計測が可能であり、さらに
可動部がないため機構系が簡単で振動や衝撃に強く、し
かも保守部品が少な(安価に製造できるといった長所を
有する。The above measurement method allows stable measurement regardless of the position of the object as long as the irradiated light is ideal parallel light.Furthermore, since there are no moving parts, the mechanism is simple and resistant to vibration and shock, and requires no maintenance parts. It has the advantage of being less expensive (and can be manufactured at low cost).
口1発明の解決しようとする問題点
上記測定方法の分解能はイメージセンサ自体の分解能、
すなわちイメージセンサ内のフォトセルの配列ピンチに
よって制限される。現時点で入手可能なイメージセンサ
の最大の分解能は7μmであるから、これ以上の分解能
は原理的に得られず、より高精度の測定は不可能であっ
た。1. Problems to be solved by the invention The resolution of the above measurement method is the resolution of the image sensor itself,
That is, it is limited by the arrangement pinch of photocells within the image sensor. Since the maximum resolution of currently available image sensors is 7 μm, higher resolution cannot be obtained in principle, and higher precision measurement has been impossible.
へ〇発明の構成
本発明は光源から被測定物体越しに光をイメージセンサ
に照射し、イメージセンサに投影された被測定物体の影
の長さによって外形寸法を測定するものにおいて、クロ
ックパルスに同期してイメージセンサから出力されるパ
ルス列を補間法によりなめらかな連続出力に変換した後
、所定のレベルで二値化して影の長さに対応する幅のパ
ルス信号を得て、このパルス信号をイメージセンサのク
ロックパルスの数倍の周波数のクロックパルスによりカ
ウントして外形寸法を測定するようにしたことを特徴と
する光学式外形寸法測定器である。F00 Structure of the Invention The present invention irradiates light from a light source onto an image sensor through an object to be measured, and measures external dimensions based on the length of the shadow of the object to be measured projected onto the image sensor. After converting the pulse train output from the image sensor into a smooth continuous output using interpolation, it is binarized at a predetermined level to obtain a pulse signal with a width corresponding to the length of the shadow, and this pulse signal is used as an image. This optical external dimension measuring device is characterized in that external dimensions are measured by counting using clock pulses having a frequency several times that of the clock pulse of the sensor.
ニ、実施例
本発明の一実施例を第2図乃至第6図を参照しながら以
下説明する。D. Embodiment An embodiment of the present invention will be described below with reference to FIGS. 2 to 6.
第2図及び第3図は光学系を示し、(4)は発光源(4
a) 、棒レンズ(4b)及びレンズ(4c)からなる
投光器、(5)はシリンドリカルレンズ(5a)及びイ
メージセンサ(5b)からなる受光器、(6)は被検出
物体である線材である。Figures 2 and 3 show the optical system, and (4) is the light emitting source (4).
a) A light emitter consisting of a rod lens (4b) and a lens (4c), (5) a light receiver consisting of a cylindrical lens (5a) and an image sensor (5b), and (6) a wire rod as an object to be detected.
ここで発光源(4a)には、例えばLED等の固体発光
素子或いはフラッシュランプが使用され、棒レンズ(4
b)は発光源(4a)の光を集光して光強度分布が均一
な線光源を形成する。レンズ(4c)は棒レンズ(4b
)の形成する線光源から拡散された光を平行にし、線材
(6)越しに受光器(5)に入射させる。シリンドリカ
ルレンズ(5a)は受光器(5)に入射した光の光量を
有効に利用して検出感度を高めるために使用され、入射
光の平行化された方向と直交する成分を集光して線状の
光としてイメージセンサ(5b)に入射させる。Here, a solid light emitting element such as an LED or a flash lamp is used as the light emitting source (4a), and a rod lens (4a) is used as the light emitting source (4a).
In b), the light from the light emitting source (4a) is condensed to form a linear light source with a uniform light intensity distribution. The lens (4c) is a rod lens (4b
) The light diffused from the line light source formed by the line light source is made parallel and incident on the light receiver (5) through the wire (6). The cylindrical lens (5a) is used to effectively utilize the amount of light incident on the light receiver (5) to increase detection sensitivity, and focuses the component perpendicular to the parallelized direction of the incident light into a line. The light is made incident on the image sensor (5b) as a shaped light.
上記構成において発光源(4a)をパルス発光させると
、イメージセンサ(5b)に線材(6)の部分が影にな
った光が入射される。この直後にイメージセンサ(5b
)にクロックパルスを与えると、イメージセンサ(5b
)内の各フォトセルからそれに対応したパルス列が出力
される。When the light emitting source (4a) emits pulse light in the above configuration, light with the wire (6) in the shadow is incident on the image sensor (5b). Immediately after this, the image sensor (5b
), the image sensor (5b
) A corresponding pulse train is output from each photocell.
このパルス列の影(D)に対応する期間をカウントする
ことにより線材(6)の外形が測定される。By counting the period corresponding to the shadow (D) of this pulse train, the outer shape of the wire (6) is measured.
上記パルス列の影(D)に対応する期間のカウントは次
のように行われる。Counting of the period corresponding to the shadow (D) of the pulse train is performed as follows.
第4図に示すようにイメージセンサ(3b)の出力であ
るパルス列(b)は、線材(6)の影のエツジ部(b’
) (b” )がなだらかに変化している。これは光の
回折、光が完全に平行でないためのボケ、及びCODセ
ンサフォトセル間のフォトキャリア漏れ出しのためであ
る。このようなイメージセンサの出力特性を、本発明で
は積極的に利用し、補間法によりイメージセンサ自体の
分解能よりも高い分解能を得ている。As shown in FIG. 4, the pulse train (b) that is the output of the image sensor (3b) is generated at the edge (b') of the shadow of the wire (6).
) (b”) changes gently. This is due to light diffraction, blurring because the light is not completely parallel, and photocarrier leakage between COD sensor photocells.Such an image sensor In the present invention, the output characteristics of the image sensor are actively utilized, and a resolution higher than that of the image sensor itself is obtained by interpolation.
以下これについて説明する。This will be explained below.
クロックパルス(a)に同期してイメージセンサから出
力されるパルス列(b)を、サンプルホールド回路を用
いてその発生タイミング毎に次の発生タイミングまで保
持することにより階段波(C)を得て、これを積分回路
を通してなめらかな積分波形(d)に変換する。この積
分波形(d)はパルス列(b)を補間したものであり、
分解能が無限に小さい仮想のイメージセンサの出力に近
似している。次にこの積分波形(d)を所定のスライス
レベル(Vs)で二値化して、線材(6)の影(D)の
長さに対応する幅(L)のパルス信号(e)を得る。こ
の影の長さに対応する幅(L)をイメージセンサ(5b
)のクロックパルス(a)の数倍の周波数のクロックパ
ルス(h)でカウントする。すると分解能とその倍数分
の−に向上できる。例えばイメージセンサ(5b)の実
際の分解能を7μmとし、4倍の周波数のクロックパル
ス(h)でカウントすれば分解能は? / 4 =1.
75μmとすることができる。なお現実に分解能を向上
できるカウント用クロックパルス(h)の周波数の倍数
は数倍程度であった。A staircase wave (C) is obtained by holding the pulse train (b) output from the image sensor in synchronization with the clock pulse (a) at each generation timing until the next generation timing using a sample hold circuit, This is converted into a smooth integrated waveform (d) through an integrating circuit. This integral waveform (d) is an interpolation of the pulse train (b),
It approximates the output of a virtual image sensor with infinitely small resolution. Next, this integral waveform (d) is binarized at a predetermined slice level (Vs) to obtain a pulse signal (e) with a width (L) corresponding to the length of the shadow (D) of the wire (6). The width (L) corresponding to the length of this shadow is measured by the image sensor (5b
) is counted with a clock pulse (h) having a frequency several times that of the clock pulse (a). Then, the resolution can be improved by its multiple. For example, if the actual resolution of the image sensor (5b) is 7 μm, what is the resolution if we count with a clock pulse (h) of 4 times the frequency? / 4 = 1.
It can be set to 75 μm. Note that the frequency of the counting clock pulse (h) that can actually improve the resolution is several times the frequency.
また上記測定方法を実施する場合、イメージセンサの出
力は“0″又は“1″のデジタルデークとしてではなく
アナログデータとして使用しているので、イメージセン
サ(5b)の各フォトセルの感度のバラツキ(同一光量
が照射された各フォトセルの出力するパルス列が第5図
に示すように高低差を生じることをいう)やレンズの収
差による光量等のバラツキが測定精度低下の原因となる
。これは具体的には上記測定法によって得られたカウン
ト数とイメージセンサ(5b)の絶対位置の座標との関
係が非線形になることであり、この非線形の状態は第4
図に示すパルス列(b)の立ち下がり(b゛)と立ち上
がり(b” )を測定した場合とで異なる。そこでこれ
を補正するため、第6図(a)(b)に示すように他の
測長針(7)を用いて平行光を遮る位置を1μm単位で
変化させながら、上記測定方法によってイメージセンサ
(5b)のスタート位置(S)から影のエツジ位置(e
)までを測定したカウント数と、影のエツジが投影され
たイメージセンサ(5b)の絶対位置の座標との関係を
測定してビット補正テーブルを作成する。なお第6図(
a)は立ち上がりの測定用であり第6図(b)は立ち下
がりの測定用である。このようにして本発明装置の一台
毎に2種のビット補正テーブルが作成されて、それに内
蔵されたROM内に収められる。Furthermore, when implementing the above measurement method, the output of the image sensor is used as analog data rather than as a digital data of "0" or "1", so the sensitivity variation of each photocell of the image sensor (5b) ( This means that the pulse trains output from each photocell irradiated with the same amount of light have height differences (as shown in FIG. 5) and variations in light amount due to lens aberrations, etc., which cause a decrease in measurement accuracy. Specifically, this means that the relationship between the count number obtained by the above measurement method and the coordinates of the absolute position of the image sensor (5b) becomes nonlinear, and this nonlinear state is the fourth
The falling edge (b゛) and rising edge (b'') of the pulse train (b) shown in the figure are different. Therefore, in order to correct this, other methods are used as shown in Figure 6 (a) and (b). Using the length measuring needle (7) to change the position where the parallel light is blocked in 1 μm increments, the distance from the start position (S) of the image sensor (5b) to the edge position (e) of the shadow is determined by the above measuring method.
) and the coordinates of the absolute position of the image sensor (5b) onto which the edge of the shadow is projected, and a bit correction table is created. In addition, Figure 6 (
6(a) is for measuring the rising edge, and FIG. 6(b) is for measuring the falling edge. In this way, two types of bit correction tables are created for each device of the present invention and stored in the built-in ROM.
このビット補正テーブルによってカウント値を補正する
ことによって上記測定精度低下を防止する。By correcting the count value using this bit correction table, the above-mentioned decrease in measurement accuracy is prevented.
また測定対象がガラス管や透明チューブの場合に、第4
図中に点線で示すように影に相当する部分の中間に光の
迷い込み信号(n)が出て、測定ミスが生じるのを防止
するため次のような処理をする。Also, when the measurement target is a glass tube or transparent tube, the fourth
In order to prevent a stray light signal (n) from appearing in the middle of a portion corresponding to a shadow, as shown by a dotted line in the figure, and a measurement error occurring, the following processing is performed.
すなわち第4図のパルス信号(e)を微分して立ち上が
り微分出力(f)と立ち下がり微分出力(g)とを作り
、パルス信号(e)の最後の立ち上がりアドレス(A+
)(クロックパルス(h)でカウントした値)と最初の
立ち下がりアドレス(A2)を検出して、このアドレス
(A1)、(A2)を前記ピノ1lli正テーブルで補
正して実測値(A’l)、(A’2 )を得て、A’、
−A’2から影の区間を測定するようにしている。That is, the pulse signal (e) in Fig. 4 is differentiated to produce a rising differential output (f) and a falling differential output (g), and the last rising address (A+) of the pulse signal (e) is generated.
) (value counted by clock pulse (h)) and the first falling address (A2), and correct these addresses (A1) and (A2) using the Pino 1lli positive table to obtain the actual measured value (A' l), (A'2) is obtained, A',
-The shadow section is measured from A'2.
なお上記実施例では平行光線を照射し、物体の影をイメ
ージセンサ(5b)に投影させる光学系を採用していた
が、光学系はこの例に限られない。例えば、図示しない
が物体(6)の後方に投光器を配置し、前方においたレ
ンズによって物体(6)の像をイメージセンサ(5b)
上に結像させるようにしてもよい。Note that although the above embodiment employs an optical system that irradiates parallel light rays and projects the shadow of an object onto the image sensor (5b), the optical system is not limited to this example. For example, although not shown, a projector is placed behind the object (6), and an image of the object (6) is sent to the image sensor (5b) using a lens placed in front.
The image may be formed on top.
また本発明装置は物体の突出長の測定、幅の広いテープ
等の幅測定、或いは走行帯状体の蛇行の有無検出等にも
使用できる。これらの場合は、その両端又は一端を挾む
ように本発明の光学式外形寸法測定装置を設置し、投光
部の端の位置を測定する。The device of the present invention can also be used to measure the protruding length of an object, measure the width of a wide tape, or detect the presence or absence of meandering in a running strip. In these cases, the optical external dimension measuring device of the present invention is installed so as to sandwich both ends or one end thereof, and the position of the end of the light projecting part is measured.
へ0発明の効果
本発明によれば、イメージセンサを用いた光学式外形寸
法測定器において、イメージセンサの出力するパルス列
を補間法によりなめらかな連続出力に変換した後、所定
のレベルで二値化して影の長さに対応する幅のパルス信
号を得て、このパルス信号をイメージセンサのクロ・ツ
クパルスの数倍の周波数のクロックパルスにヨリカウン
トして外形寸法を測定するから、使用するイメージセン
サ自体の分解能の数倍の分解能を得ることができる。According to the present invention, in an optical external dimension measuring instrument using an image sensor, a pulse train output from the image sensor is converted into a smooth continuous output by an interpolation method, and then binarized at a predetermined level. to obtain a pulse signal with a width corresponding to the length of the shadow, and measure the external dimensions by counting this pulse signal into a clock pulse with a frequency several times the clock pulse of the image sensor. It is possible to obtain a resolution several times that of the original resolution.
第1図は光学式外形測定装置の原理説明図、第2図及び
第3図は本発明の光学式外形寸法測定器の一実施例の光
学系を示す正面図及び平面図、第4図は第2図及び第3
図に示す光学系によって得られるパルス列の処理手順を
説明する波形図、第5図はイメージセンサの各フォトセ
ルの感度のバラツキを説明するパルス列の−例を示す図
、第6図(a)(b)は夫々立ち上がり及び立ち下がり
の各々についてピント補正テーブルを作成する方法を説
明する正面図である(4)、−m−投光器、(4a)
−・光源、(5) −受光器、(5b) −イメージセ
ンサ、(6) −被測定物体(線材)、(D)ニー影の
長さ、(a ) −イメージセンサのクロックパルス、
(bL−パルス列、(C)−階段波、(d )−なめら
かな連続出力(積分波系)、(e)−パルス信号、(h
)−−カウント用のクロックパルス、(νS)−スライ
スレベル。
第2 図
+ g
@4図
酊5図
第6図(θ)
/
第6図り)
手続補正書
昭和59年12月11日
1、事件の表示
昭和59年特許願第39076号
2、発明の名称 光学式外形寸法測定器3、補正をする
者
事件との関係 特許出願人
名称北陽電機株式会社
4、代理人 畢550
住 所 大阪府大阪市西区江戸堀1丁目15番26号大
阪商エビルア階
氏名 (645B)弁理土圧 原−省 吾(ほか1名)
5、[正の対象 明細書
明細書中
■、特許請求の範囲を下記の通り補正する。
「(1)光源から被測定物体越しに光をイメージセンサ
に照射し、イメージセンサに投影された被測定物体の影
の長さによって外形寸法を測定するものにおいて、クロ
ックパルスに同期してイメージセンサから出力されるパ
ルス列血広めらかな連続出力に変換した後、所定のレベ
ルで二値化して影の長さに対応する幅のパルス信号を得
て、このパルス信号をイメージセンサのクロックパルス
の数倍の周波数のクロックパルスによりカウントして外
形寸法を測定するようにしたことを特徴とする光学式外
形用法測定器。」■、第3頁第14行
「補間法によりなめらかな・・・」を
「なめらかな・・・」と補正する。
■、第5頁第16行
rCCDセンサフォlフォル」を
「イメージセンサ のフォ1−セル」と補正する。
■、第5頁第19行
「は積極的に利用し、補間法によりイメージ」を
「は積極的に利用し、イメージ」と補正する。
■、第6頁第8行
「パルス列(b)を補間した」を
「パルス列(b)を相用狂ニ補間した」と補正する。
■、第6頁第17行
「分解能とその」を φ
「分解能互その」と補正する。
■、第7頁第11行
「収差による光量等の」を
「収差による王丘度の」と補正する。
■、第8頁第5行・第11行、第9頁第5行、第11頁
第2行〜第3行 。
「ビット補正テーブル」を
「友交ヱ上歎補正テーブル」と補正する。
■、第8頁第9行〜第10行
「ビット補正テーブル・・・に収められる。」を
「カウント数補正テーブルを作成する。」と補正する。
X、第10頁第5行
「パルス列を補間法により」を
「パルス列を擬似的補間法により」と補正する。
X、第11頁第10行
「(積分波系)」を
「(積分波形)」と補正する。FIG. 1 is a diagram explaining the principle of an optical external dimension measuring device, FIGS. 2 and 3 are front and plan views showing an optical system of an embodiment of the optical external dimension measuring device of the present invention, and FIG. Figures 2 and 3
FIG. 5 is a waveform diagram illustrating the processing procedure of the pulse train obtained by the optical system shown in the figure. FIG. b) is a front view illustrating a method of creating a focus correction table for each of rising and falling edges (4), -m- projector, (4a)
- Light source, (5) - Light receiver, (5b) - Image sensor, (6) - Object to be measured (wire rod), (D) Length of knee shadow, (a) - Clock pulse of image sensor,
(bL - pulse train, (C) - staircase wave, (d) - smooth continuous output (integral wave system), (e) - pulse signal, (h
)--clock pulse for counting, (vS)--slice level. Figure 2 + g @ Figure 4, Figure 5, Figure 6 (θ) / Figure 6) Procedural amendment dated December 11, 1980 1, Indication of the case, 1982 Patent Application No. 39076 2, Title of the invention Optical External Dimension Measuring Instrument 3, Relationship with the case of the person making the correction Patent applicant name: Hokuyo Denki Co., Ltd. 4, agent: 550 Taku Address: 1-15-26 Edobori, Nishi-ku, Osaka-shi, Osaka Prefecture Name: Osaka Commercial Evil Area ( 645B) Patent Law Earth Pressure Hara - Shogo (and 1 other person) 5. [Correct Object] ■ In the specification, the scope of the claims is amended as follows. (1) In a device that irradiates light from a light source through an object to be measured onto an image sensor and measures external dimensions based on the length of the shadow of the object to be measured projected onto the image sensor, the image sensor After converting the pulse train output from the blood to a smooth continuous output, it is binarized at a predetermined level to obtain a pulse signal with a width corresponding to the length of the shadow, and this pulse signal is converted to the number of clock pulses of the image sensor. An optical external shape measurement device characterized by measuring external dimensions by counting with clock pulses of twice the frequency.''■, page 3, line 14, ``Smooth measurement by interpolation...''"Smooth..." I corrected. ②, page 5, line 16, rCCD sensor follo” is corrected to “image sensor fo1-cell”. ■, page 5, line 19, ``is actively used and images are created through interpolation'' is corrected to ``are actively used as images''. (2) In the 8th line of page 6, ``Pulse train (b) was interpolated'' is corrected to ``Pulse train (b) was interpolated with synergy.'' ■, page 6, line 17, ``resolution and its'' is corrected to φ ``resolution is mutual.'' ②, page 7, line 11, ``The amount of light due to aberrations, etc.'' is corrected to ``The amount of light due to aberrations, etc.''. ■, page 8, lines 5 and 11, page 9, line 5, page 11, lines 2 to 3. The "bit correction table" is corrected as the "friendship correction table". (2) In the 9th and 10th lines of page 8, "Stored in the bit correction table..." is corrected to "Create a count correction table." X, page 10, line 5, "Pulse train by interpolation method" is corrected to "Pulse train by pseudo interpolation method". X, page 11, line 10, "(integral wave system)" is corrected to "(integral waveform)".
Claims (1)
照射し、イメージセンサに投影された被測定物体の影の
長さによって外形寸法を測定するものにおいて、クロッ
クパルスに同期してイメージセンサから出力されるパル
ス列を補間法によりなめらかな連続出力に変換した後、
所定のレベルで二値化して影の長さに対応する幅のパル
ス信号を得て、このパルス信号をイメージセンサのクロ
ックパルスの数倍の周波数のクロックパルスによりカウ
ントして外形寸法を測定するようにしたことを特徴とす
る光学式外形寸法測定器。(11 In a device that irradiates light from a light source onto an image sensor through the object to be measured and measures external dimensions based on the length of the shadow of the object to be measured projected onto the image sensor, output from the image sensor in synchronization with clock pulses. After converting the pulse train into a smooth continuous output using interpolation method,
Binarize at a predetermined level to obtain a pulse signal with a width corresponding to the length of the shadow, and measure the external dimensions by counting this pulse signal using a clock pulse with a frequency several times that of the image sensor's clock pulse. An optical external dimension measuring instrument characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3907684A JPS60183507A (en) | 1984-02-29 | 1984-02-29 | Optical measuring instrument for external size |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3907684A JPS60183507A (en) | 1984-02-29 | 1984-02-29 | Optical measuring instrument for external size |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60183507A true JPS60183507A (en) | 1985-09-19 |
JPH041845B2 JPH041845B2 (en) | 1992-01-14 |
Family
ID=12543020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3907684A Granted JPS60183507A (en) | 1984-02-29 | 1984-02-29 | Optical measuring instrument for external size |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60183507A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62168410U (en) * | 1986-03-26 | 1987-10-26 | ||
JPH01213504A (en) * | 1988-02-22 | 1989-08-28 | Tadao Totsuka | Optical dimension measuring instrument |
USRE38025E1 (en) * | 1991-02-22 | 2003-03-11 | Cyberoptics Corporation | High precision component alignment sensor system |
US7456978B2 (en) | 2004-11-24 | 2008-11-25 | Kabushiki Kaisha Kobe Seiko Sho | Shape measuring apparatus |
US7746481B2 (en) | 2007-03-20 | 2010-06-29 | Cyberoptics Corporation | Method for measuring center of rotation of a nozzle of a pick and place machine using a collimated laser beam |
US8068664B2 (en) | 2007-06-05 | 2011-11-29 | Cyberoptics Corporation | Component sensor for pick and place machine using improved shadow imaging |
CN106092015A (en) * | 2016-05-27 | 2016-11-09 | 南京理工大学 | A kind of raceway surface depression length detecting method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54102146U (en) * | 1977-12-28 | 1979-07-18 | ||
JPS5852508A (en) * | 1981-09-22 | 1983-03-28 | Yokogawa Hokushin Electric Corp | Shape measuring device |
JPS5853704A (en) * | 1981-09-26 | 1983-03-30 | Nippon Kogaku Kk <Nikon> | Position detecting device |
-
1984
- 1984-02-29 JP JP3907684A patent/JPS60183507A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54102146U (en) * | 1977-12-28 | 1979-07-18 | ||
JPS5852508A (en) * | 1981-09-22 | 1983-03-28 | Yokogawa Hokushin Electric Corp | Shape measuring device |
JPS5853704A (en) * | 1981-09-26 | 1983-03-30 | Nippon Kogaku Kk <Nikon> | Position detecting device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62168410U (en) * | 1986-03-26 | 1987-10-26 | ||
JPH01213504A (en) * | 1988-02-22 | 1989-08-28 | Tadao Totsuka | Optical dimension measuring instrument |
USRE38025E1 (en) * | 1991-02-22 | 2003-03-11 | Cyberoptics Corporation | High precision component alignment sensor system |
US7456978B2 (en) | 2004-11-24 | 2008-11-25 | Kabushiki Kaisha Kobe Seiko Sho | Shape measuring apparatus |
US7746481B2 (en) | 2007-03-20 | 2010-06-29 | Cyberoptics Corporation | Method for measuring center of rotation of a nozzle of a pick and place machine using a collimated laser beam |
US8068664B2 (en) | 2007-06-05 | 2011-11-29 | Cyberoptics Corporation | Component sensor for pick and place machine using improved shadow imaging |
CN106092015A (en) * | 2016-05-27 | 2016-11-09 | 南京理工大学 | A kind of raceway surface depression length detecting method |
Also Published As
Publication number | Publication date |
---|---|
JPH041845B2 (en) | 1992-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3947129A (en) | Apparatus for contactless measuring of the dimensions of objects | |
ATE290686T1 (en) | MULTIFOCAL HARTMAN PLATE WAVE FRONT SENSOR AND USE OF IT IN A LENS MEASURING DEVICE OR AN ACTIVE OPTICAL REFLECTION TELESCOPE | |
JPS60183507A (en) | Optical measuring instrument for external size | |
CN106461572A (en) | Non-imaging coherent line scanner systems and methods for optical inspection | |
GB2083313A (en) | Distance detecting device | |
CN106441127B (en) | A kind of pipe diameter and concave-convex surface detector | |
JPS55119006A (en) | Displacement measuring instrument | |
JPS628006A (en) | Optical apparatus for measuring outer shape | |
US3891857A (en) | Device for the non-contact length measurement of objects | |
JPS61182522A (en) | Linear scale measuring device | |
JPH0369043B2 (en) | ||
US5255066A (en) | Measuring device for track building machines | |
JPS62265525A (en) | Measuring device for increment of length | |
JP3262924B2 (en) | Binarization method | |
JPH0335111A (en) | Absolute position detecting device | |
JPS58168914A (en) | Optical detector for fix point | |
JPH11132729A (en) | Dimension measuring device | |
US2504981A (en) | Visibility meter | |
JPH0421072Y2 (en) | ||
SU451910A1 (en) | Device for measuring the flow of a medium with an optical-mechanical signal pickup unit | |
RU1805299C (en) | Photometer | |
JPH0716963Y2 (en) | Optical scanning measuring device | |
GB868219A (en) | Device for measuring the width or diameter of fixed or movable tapes, wires, tubes, bars and the like | |
SU142699A1 (en) | Measuring device for determining the mutual movement of two moving parts of mechanisms | |
SU108694A1 (en) | Device for measuring linear dimensions of products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |