JPS6018330B2 - Method for producing antistatic acrylic fiber with improved fiber performance - Google Patents

Method for producing antistatic acrylic fiber with improved fiber performance

Info

Publication number
JPS6018330B2
JPS6018330B2 JP9435177A JP9435177A JPS6018330B2 JP S6018330 B2 JPS6018330 B2 JP S6018330B2 JP 9435177 A JP9435177 A JP 9435177A JP 9435177 A JP9435177 A JP 9435177A JP S6018330 B2 JPS6018330 B2 JP S6018330B2
Authority
JP
Japan
Prior art keywords
fiber
compound
antistatic
weight
acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9435177A
Other languages
Japanese (ja)
Other versions
JPS5430932A (en
Inventor
薫 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP9435177A priority Critical patent/JPS6018330B2/en
Publication of JPS5430932A publication Critical patent/JPS5430932A/en
Publication of JPS6018330B2 publication Critical patent/JPS6018330B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 本発明は繊維性能を改善せしめた制覇性アクリル系繊維
の製造方法に関するものであり、さらに詳しくはアクリ
ル系重合体(1)と所定の制電性単量体等よりなる共重
合体(D)とからアクリル系繊維を製造するにあたり、
上記混合重合体の紙糸原液中に特定の化合物を所定量存
在せしめて鮫糸することを要旨とする繊維性能を顕著に
改善せしめた制覇性アクリル系繊維の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a dominating acrylic fiber with improved fiber performance, and more specifically, the present invention relates to a method for producing a dominating acrylic fiber with improved fiber performance. In producing acrylic fibers from the copolymer (D),
The present invention relates to a method for producing a dominating acrylic fiber with markedly improved fiber performance, the gist of which is the presence of a predetermined amount of a specific compound in the paper yarn stock solution of the above-mentioned mixed polymer.

従来より、アクリル系繊維が保温性、収縮性、形態安定
性、耐候性、風合、染色性等において優れた特徴を発揮
し、衣料用またはインテリア用としてその需要を増大せ
しめていることは良く知られている。
It is well known that acrylic fibers have long exhibited excellent characteristics in terms of heat retention, shrinkability, shape stability, weather resistance, texture, dyeability, etc., and are increasing their demand for use in clothing and interior design. Are known.

しかしながらこのようなアクリル系繊維にも全く実用上
の制約が認められない訳ではなく、早急に対策の確立を
迫られている幾つかの問題点も見受けられる。
However, such acrylic fibers are not without practical limitations, and there are some problems that require urgent measures to be taken.

例えば、上記アクリル系繊維からなる衣料を着用したり
、あるいはカーペット等として使用する際に静電気が蓄
積して人体に著しい不快感を与える等の不都合が惹起さ
れ、それらの商品価値を著しく低減することが欠点とな
っていた。かかる静鰭気障害を取り除く方法として一般
に制電性を付与し得る化合物を繊維表面に付与したり、
あるし、は紡糸に際して上記化合物を繊維構造中に導入
せしめて制電性繊維を得る方法等が知られている。
For example, when clothing made of the acrylic fibers is worn or used as carpets, static electricity accumulates, causing inconveniences such as causing extreme discomfort to the human body, and significantly reducing their commercial value. was a drawback. Generally, as a method to remove such static fin air disturbance, a compound capable of imparting antistatic properties is applied to the fiber surface,
There is also known a method of obtaining antistatic fibers by introducing the above-mentioned compounds into the fiber structure during spinning.

しかしながら上記万法においては、使用せる制電性化合
物が低分子量の界面活性剤であるが故に、繊維加工時又
は繊維製造時に該界面活性剤が繊維表面又は繊維構造中
から脱落しやすくなり、洗濯による制覇性能の低下が著
しいという欠陥が招来されていたのである。また、別法
として米国特許第3507935号明細書に記載のある
如く、最終繊維に制覇性を付与せしめることを目的とし
て、アクリロニトリルとボリアルキレングリコールアク
リレート(またはメタクリレート)等と共重合せしめて
得た共重合体と周知のアクリロニトリル系重合体とを混
合せしめた後紡糸する技術が提案されている。
However, in the above-mentioned method, since the antistatic compound used is a low molecular weight surfactant, the surfactant easily falls off from the fiber surface or fiber structure during fiber processing or fiber manufacturing. This resulted in a flaw in that there was a significant drop in dominating performance. Alternatively, as described in U.S. Pat. No. 3,507,935, a copolymer obtained by copolymerizing acrylonitrile with polyalkylene glycol acrylate (or methacrylate), etc. is used for the purpose of imparting dominating properties to the final fiber. A technique has been proposed in which a polymer and a well-known acrylonitrile polymer are mixed and then spun.

しかしながら、かかる制電付与手段においては確かに前
記低分子量界面活性剤を用いた場合のような欠点は改良
されるものの、反面上記2種の重合体の非相溶性(上記
ポリアルキレングリコールアクリレート含有共重合体に
おいてはその親水性が不必要に大となる)に起因して派
生される不都合、すなわち上述の如くして得られた混合
級糸繊維に多数の空孔(ポィド)が発生することが認め
られたのである。因みに、かかる空孔の発生程度は糠糸
原液に採用せる溶剤によってその様相を異にし、とりわ
け紡糸原液の溶剤としてチオシアン酸ソーダ等の無機塩
類濃厚水溶液を用いる場合には上記雨重合体の非相綾性
が顕著となり、多数の空孔が発生することが確認されて
いる。このように繊維構造中に多数の空孔が発現すれば
、最終的に得られるアクリル系繊維が実用上満足すべき
透明性(発色性)および光沢性を付与しないという致命
的な欠陥が惹起されることのみならず、操業面において
も可織性、延伸性の低下を来たし未延伸糸、繊維粉末等
の異常繊維が多数発生し、上記アクリル系繊維にフィブ
リル化がおこり、屈曲強度および摩擦強度等の最終繊維
の物理的性能が大幅に低下する(紡績工程における滋綿
、糸切れ等のトラブルにつながる)こと等が惹起されて
きた(より一般的にいえば、制電性アクリル系繊維の製
造においては制電性の向上を計ろうとすれば逆に上記の
如き繊維性能が低下し、一方繊維性能の改善を計ろうと
すれば逆に制電性が阻害されること)。
However, although such an antistatic imparting means certainly improves the drawbacks of using the low molecular weight surfactant, on the other hand, the incompatibility of the two types of polymers (the polyalkylene glycol acrylate-containing copolymer) In the case of polymers, their hydrophilicity becomes unnecessarily large. It was recognized. Incidentally, the degree of generation of such pores differs depending on the solvent used for the bran stock solution, and in particular, when a concentrated aqueous solution of inorganic salts such as sodium thiocyanate is used as the solvent for the spinning stock solution, the above-mentioned non-phase of the rain polymer may occur. It has been confirmed that the twilliness becomes noticeable and a large number of pores are generated. If a large number of pores appear in the fiber structure in this way, a fatal defect will occur in that the final acrylic fiber will not have practically satisfactory transparency (color development) and gloss. Not only this, but also in operational aspects, weavability and drawability are reduced, a large number of abnormal fibers such as undrawn yarn and fiber powder are generated, and the acrylic fibers are fibrillated, resulting in a decrease in bending strength and frictional strength. (More generally speaking, the physical performance of the final fiber of antistatic acrylic fibers has been significantly reduced (leading to problems such as stiffness and thread breakage in the spinning process). In manufacturing, if an attempt is made to improve antistatic properties, the above-mentioned fiber performance will conversely deteriorate, while if an attempt is made to improve fiber performance, antistatic properties will be hindered).

以上の事情を勘定するとアクリル系繊維に実用上満足す
べき制電性を付与せしめると同時にこれと相反する繊維
性能の向上も具備ならしめる工業的技術は未だ確立され
ていないと言っても過言ではない。
Taking the above circumstances into consideration, it is no exaggeration to say that an industrial technology that can impart practically satisfactory antistatic properties to acrylic fibers while at the same time improving fiber performance, which is contradictory to this, has not yet been established. do not have.

こ)において、本発明者は、上述の如き在来技術に付随
する種々の制約を悉く解消し、アクリル系繊維の制電性
能を何等低下させることなく、最終繊維に顕著に改善せ
られた繊維性能を付与すべき工業的手段を見し・出すべ
く鋭意研究を行なった結果、所定の構成からなるアクリ
ロニトリル系混合重合体紙糸原液を選択、使用すること
により、本発明の目的を有利に達成し得る事実を見し・
出して本発明に到達した。
In this case, the present inventor has solved all of the various limitations associated with the conventional technology as described above, and has developed a fiber that is significantly improved in the final fiber without any deterioration in the antistatic performance of the acrylic fiber. As a result of intensive research to find and develop industrial means to impart performance, the object of the present invention was advantageously achieved by selecting and using an acrylonitrile-based mixed polymer paper yarn stock solution having a predetermined composition. Look at the possible facts
The present invention was achieved through this research.

而して本発明の主たる目的は、恒久的制電性を有し、か
つ実用上何等問題視されない繊維性能を具備したアクリ
ル系繊維の製造方法を提唱することにある。
The main object of the present invention is to propose a method for producing acrylic fibers that have permanent antistatic properties and have fiber performance that poses no problem in practical use.

また本発明の他の主たる目的は、工業的有用性に優れた
制電性アクリル系繊維製造技術手段を見し、出すことに
ある。
Another main object of the present invention is to discover and provide a technical means for producing antistatic acrylic fibers that is highly industrially useful.

さらに異なれる他の目的は、以下の明細書の記載から明
らかとなろう。
Further different objects will become apparent from the description below.

而して、本発明のかかる目的は、ポリアクリロニトIJ
ルまたはアクリロニトリル7の重量%以上と他の重合性
不飽和ビニル化合物の少なくとも1種からなるアクリル
系重合体(1)ならびにアクリロニトリル30〜7の重
量%および下記一般式(A)で示す単量体70〜3の重
量%よりなる単量体温合物を共重合せしめて得られる制
電性共重合体(n)からなるアクリロニトリル系重合体
紡糸原液よりアクリル系繊維を製造するに際し、‘1’
該紡糸原液中に一般式(A)にて示す単量体を混合重合
体に対して0.3〜4.の重量%存在せしめること、‘
2)また該紙糸原液中に下記一般式(B)にて示す化合
物を混合重合体に対して0.05〜1の重量%存在せし
めること、を一体的に採用して紙糸することによって達
成することができる。
Therefore, the object of the present invention is to obtain polyacrylonite IJ.
An acrylic polymer (1) consisting of at least 7% by weight of acrylonitrile or acrylonitrile 7 and at least one other polymerizable unsaturated vinyl compound, and 30 to 7% by weight of acrylonitrile and a monomer represented by the following general formula (A) When producing an acrylic fiber from an acrylonitrile polymer spinning stock solution consisting of an antistatic copolymer (n) obtained by copolymerizing a monomer polymer having a proportion of 70 to 3% by weight, '1'
The monomer represented by general formula (A) is added to the spinning dope in an amount of 0.3 to 4. to be present in weight percent of '
2) Also, by integrally incorporating the compound represented by the following general formula (B) in the paper yarn stock solution in an amount of 0.05 to 1% by weight based on the mixed polymer, and forming the paper yarn. can be achieved.

C止=CRCO0(CH2CQO)mR′ (A
)(式中Rは水素原子またはメチル基、R′は水素原子
または炭素数8以下のアルキル基、mは5〜100の整
数を示す)R″(CH2CH20)nH
(B)(式中R″は炭素数1槌〆下のァルコキシ基、ァ
ルキルフェノキシ基、フェノキシ基、nは1〜15の整
数を示す)かくの如き本発明方法に従って得られるアク
リル系繊維は、適度な制電性を有し、しかも該繊維中に
空洞が存在しないため、透明性、光沢が優れているとと
もに、染色物の色相の鮮明性の低下、発色性の低下が全
く惹起されず、著しく商品価値の高いものである。
C stop = CRCO0 (CH2CQO) mR' (A
) (In the formula, R is a hydrogen atom or a methyl group, R' is a hydrogen atom or an alkyl group having 8 or less carbon atoms, m is an integer from 5 to 100) R''(CH2CH20)nH
(B) (In the formula, R'' is an alkoxy group, an alkylphenoxy group, or a phenoxy group having 1 or less carbon atoms, and n is an integer of 1 to 15.) The acrylic fiber obtained according to the method of the present invention is , has appropriate antistatic properties, and since there are no cavities in the fiber, it has excellent transparency and gloss, and does not cause any decrease in the vividness of the hue of dyed products or decrease in color development. , which has extremely high commercial value.

かかる特異な繊維性能を有するアクリル系繊維を製造す
るに際し特に重要なことは、アクリロニトリル系重合体
紙糸原液中に所定量の制電性化合物(A化合物)を存在
させると同時に特定の化合物(B化合物;前記一般式で
示される低分子量の界面活性剤)を所定量存在させる点
にある。
What is particularly important in producing acrylic fibers with such unique fiber properties is to have a predetermined amount of an antistatic compound (compound A) present in the acrylonitrile polymer paper yarn stock solution, and at the same time to add a specific compound (compound B). A predetermined amount of a compound (a low molecular weight surfactant represented by the above general formula) is present.

かかる本発明の技術構成の有意性をより分かりやすく理
解するためにまずA化合物のみを用いた場合における在
来のアクリル系繊維の制電性と繊維性能との相互関係に
ついて第1図および第2図を用いて説明する。まず第1
図は上記制電性化合物の含有量と最終繊維の染色物の乾
燥等による発色性の劣化度合(K/S比:これについて
は後述する)との関係を例示するものであるが、かかる
第1図からアクリル系繊維中に存在せる制電性化合物が
増加するに従って、上記K/S比が直線的に減少し、最
終繊維の熱等による発色性変化が著しく劣悪になる事実
が理解される。また第2図は前記制電性化合物の含有量
と制電性能(半減期にて評価)との関係を図示するもの
であるが、第2図からアクリル繊維中の制電性化合物の
含有量が増加するにつれて、制電効果が増大する事実が
明瞭に理解される。なお、本発明においては、前記K/
S比が65%以上(アクリル繊維に内在せる制電性化合
物の含有量が全混合重合体重量に対して4重量%以下)
であれば、最終繊維の染色物の発色性、色相の鮮明性の
低下等の不都合を惹起しないことを確認している。また
半減期が6秒以下(上記制電性化合物の含有量が4%以
上)であれば、最終繊維の制電性能を改良し得ることを
確認している。以上の説明は、とりもなおさず在来の制
電性アクリル系繊維の製造において、制蟹性の改良を計
るべく該繊維の構成成分としての制電性化合物を多量に
導入すれば逆に繊維性能が低下し、一方機雛性能の向上
を計ろうとすれば逆に制電性が阻害されるという相矛盾
した事実を明瞭化しているものである。
In order to more clearly understand the significance of the technical configuration of the present invention, firstly, the correlation between the antistatic properties and fiber performance of conventional acrylic fibers when only compound A is used is shown in Figures 1 and 2. This will be explained using figures. First of all
The figure illustrates the relationship between the content of the above-mentioned antistatic compound and the degree of deterioration of color development due to drying of the dyed product of the final fiber (K/S ratio: this will be described later). From Figure 1, it can be seen that as the antistatic compound present in the acrylic fiber increases, the above K/S ratio decreases linearly, and the change in color development due to heat etc. of the final fiber becomes significantly worse. . In addition, Figure 2 illustrates the relationship between the content of the antistatic compound and the antistatic performance (evaluated by half-life). The fact that the antistatic effect increases as the is increased is clearly understood. In addition, in the present invention, the above K/
S ratio is 65% or more (the content of the antistatic compound inherent in the acrylic fiber is 4% by weight or less based on the weight of the total mixed polymer)
If so, it has been confirmed that there will be no disadvantages such as a decrease in the color development and sharpness of the hue of the dyed product of the final fiber. Furthermore, it has been confirmed that if the half-life is 6 seconds or less (the content of the antistatic compound is 4% or more), the antistatic performance of the final fiber can be improved. The above explanation shows that in the production of conventional antistatic acrylic fibers, if a large amount of antistatic compound is introduced as a component of the fiber in order to improve anti-crab properties, the fiber This clarifies the contradictory fact that the performance deteriorates, and that attempts to improve the chick performance actually impede the antistatic properties.

次にB化合物のみを用いた場合、得られるアクリル系繊
維は上記A化合物のみを用いた場合に比べて繊維性能の
低下の程度を小さくできるものの、紡糸工程での脱落現
象が生起されるため、制電性能及び制電性の洗濯耐久性
が著しく劣化し、良品質なものが得られなかったのであ
る。
Next, when only Compound B is used, the resulting acrylic fiber has a smaller degree of decrease in fiber performance than when only Compound A is used, but shedding phenomenon occurs during the spinning process. The antistatic performance and the washing durability of the antistatic property deteriorated significantly, and a product of good quality could not be obtained.

しからば何故化合物(A)と同時に化合物(B)を繊維
構造中に導入すれば所望の効果が奏されうるかについて
は発明者自身も明確な理論的根拠を得るに至っていない
が、使用せる2種の重合体の非相溶‘性に係るデメリッ
トがおそらく化合物(A)と化合物(B)との良相溶性
等の相互作用に基づく効果、即ち級糸工程での化合物(
B)の残留効率が高められるという作用効果によりカバ
ーされ、以つて制覇性能、ひいては洗濯耐久性能を向上
せしめ、さらに空洞の発現をも抑制せしめ得たからであ
ると推察される。
The inventor himself has not yet obtained a clear theoretical basis as to why the desired effect can be achieved by introducing compound (B) into the fiber structure at the same time as compound (A). The disadvantages related to the incompatibility of the seed polymers are probably due to the effects due to interactions such as good compatibility between compound (A) and compound (B), i.e.
This is presumed to be because it was compensated for by the effect of increasing the residual efficiency of B), thereby improving the conquering performance and washing durability performance, and further suppressing the formation of cavities.

なお、前記のアクリル系繊維の制電性(半減期)ならび
に染色物の発色性の劣化度合(K/S比)は下記の測定
によって算出したものである。
The antistatic properties (half-life) of the acrylic fibers and the degree of deterioration of the color development of dyed products (K/S ratio) were calculated by the following measurements.

【1} 制電性最終的に得られたアクリル系繊維よりな
る編織物をモノゲンュニ(プロクターアンドギャンブル
サンホーム社製)含有液(濃度2#/ぞ、浴比1/30
)中に投入し、しかる後該液を、60〜100qo、3
び分間昇温し、引続いて、10び0、60分間処理して
供試繊維物に作製した。
[1] Antistatic properties The final knitted fabric made of acrylic fibers was soaked in a solution containing Monogeny (manufactured by Procter & Gamble Sunhome) (concentration 2#/zo, bath ratio 1/30).
), then add the liquid to 60 to 100 qo, 3
The temperature was raised for 1 and 2 minutes, followed by treatment for 10, 0, and 60 minutes to produce test fibers.

次いで該供試繊維線織物を温度20oo、相対湿度40
%の条件下に2昼夜調湿した。しかる後談編織物を取り
出し、スタティックオネストメータ(宍戸商会製)を用
いて下記の条件の下にその半減期を測定した。スタティ
ックオネストメータ使用様式印加電圧;10000ボル
ト 印加時間:3分間 試料回転数;100仇.P.m 上記の半減期は、それが短いほど被処理繊維の制電性が
良好であることを示す。
Next, the test fiber wire fabric was heated at a temperature of 20 oo and a relative humidity of 40
% conditions for two days and nights. The resulting knitted fabric was taken out and its half-life was measured using a static honest meter (manufactured by Shishido Shokai) under the following conditions. How to use static honest meter Applied voltage: 10,000 volts Application time: 3 minutes Sample rotation speed: 100 volts. P. m The above half-life indicates that the shorter the half-life, the better the antistatic property of the treated fiber.

また洗濯に対する制電性の耐久性は、最終的に得られた
上記測定用試料を家庭用電気洗濯機(モ/ゲンュニ濃度
2夕/そ、裕比1/50〜1/loo4び○)に投入し
、10分間洗濯した後、20分間水洗を行なって、さら
に乾燥したもの(耐久性評価はこの操作をくり返し行な
う)について上述の如き方法にてその半減期を求めて評
価した。
In addition, the durability of the antistatic property against washing was determined by placing the finally obtained sample for measurement in a household electric washing machine (Mo/Gyuni concentration 2 hours/So, Yu ratio 1/50 to 1/loo 4 Bi○). After washing for 10 minutes, washing with water for 20 minutes, and drying (this operation was repeated to evaluate durability), the half-life was determined and evaluated using the method described above.

‘2’K/S比 測定用繊維に、アイゼンカチロンプルーK−匁LH(保
土谷化学製力チオン染料)を0.5%o.w.f(o.
w.fとは繊維乾燥重量に対する吸着染料の重量割合)
完全吸尽させた後、6ぴ○、60分間乾燥した。
'2' Add 0.5% o. of Eisenkatilone Plue K-Momme LH (a thione dye made by Hodogaya Chemical Co., Ltd.) to the fiber for K/S ratio measurement. w. f(o.
w. f is the weight ratio of adsorbed dye to the dry weight of the fiber)
After complete exhaustion, it was dried for 60 minutes.

次いで乾燥後の染色物の反射濃度(K./S,値)をハ
ンター型反射光量計;カラーマシンCM−20型(カラ
ー・マシンK.K製)にて測定し、下式によりK/S比
を算出した。K/S比=袋まき歩×・〇。(%)なお、
上式において分母の数値瓜2/S2)は通常のアクリル
系繊維の上記処方に従って得られた染色物の反射濃度を
示し、かかるK/S比が大なる程、最終繊維の発色性の
低下度合が小さいことを意味する。
Next, the reflection density (K./S, value) of the dyed product after drying was measured using a Hunter type reflection light meter; Color Machine CM-20 model (manufactured by Color Machine KK), and the K/S value was determined by the following formula. The ratio was calculated. K/S ratio = Fukumaki Ayumu ×・〇. (%)In addition,
In the above formula, the denominator value 2/S2) indicates the reflection density of the dyed product obtained according to the above recipe for ordinary acrylic fibers, and the larger the K/S ratio, the lower the degree of color development of the final fiber. means that is small.

本発明に使用せるポリアクリロニトリルまたはアクリロ
ニトリル7の重量%以上と他の重合性不飽和ビニル化合
物の少なくとも1種からなるアクリル系重合体(1)は
、周知の重合手段、例えば懸濁重合法、乳化重合法、溶
液重合法等によって製造することが出釆、またアクリロ
ニトリルの共重合成分たる重合性不飽和ビニル化合物と
してはアクリル酸、メタクリル酸又はこれらのメチルェ
ステル、エチルェステル等のェステル類:アクリルアミ
ド、メタクリルアミド又はこれらのNーアルキル置換体
;酢酸ビニル、プロピオン酸ピニル等のビニルヱステル
類;塩化ピニル、臭化ビニル、塩化ビニリデン等のハロ
ゲン化ビニル又はビニリデン類;ビニルスルホン酸、ア
リルスルホン酸、メタリルスルホン酸、p−スチレンス
ルホン酸等の不飽和スルホン酸又はこれらの塩類;スチ
レン、メタクリロニトリル等のアクリロニトリルと共重
合可能な周知の不飽和化合物を挙げることができる。
The acrylic polymer (1) composed of polyacrylonitrile or at least 7% by weight of acrylonitrile 7 and at least one other polymerizable unsaturated vinyl compound used in the present invention can be produced by well-known polymerization methods such as suspension polymerization, emulsification, etc. Polymerizable unsaturated vinyl compounds that can be produced by polymerization methods, solution polymerization methods, etc., and are copolymerizable components of acrylonitrile include acrylic acid, methacrylic acid, and esters thereof such as methyl ester and ethyl ester: acrylamide and methacrylamide. or N-alkyl substituted products thereof; vinyl esters such as vinyl acetate and pinyl propionate; vinyl halides or vinylidenes such as vinyl chloride, vinyl bromide, and vinylidene chloride; vinyl sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, Examples include unsaturated sulfonic acids such as p-styrenesulfonic acid or salts thereof; well-known unsaturated compounds copolymerizable with acrylonitrile such as styrene and methacrylonitrile.

また上記アクリル系重合体(1)の混合相手である前記
共重合体(0)は、アクリロニトリル30〜7の重量%
および一般式C舷=CRCO0(CH2CKO)mR′
にて示す制電性単量体70〜3の重量%を共重合せしめ
られるものである。
Further, the copolymer (0), which is a mixing partner of the acrylic polymer (1), contains 30 to 7% by weight of acrylonitrile.
and general formula C=CRCO0(CH2CKO)mR'
70 to 3% by weight of the antistatic monomer shown in is copolymerized.

即ち、アクリロニトリル含有量が共重合体重量に対して
3の重量%に満たない場合には、制電耐久性に不都合が
認められ好ましくなく、一方該含有量が7値重量%を超
える場合にも、充分な制電効果が付与されない。また上
記共重合体(0)は、前述のアクリル系重合体(1)の
作製に同様な重合法(懸濁重合法、乳化重合法、溶液重
合法等)を採用して得られ、かかる重0合に際しての重
合触媒も公知のもの(ベンゾィルパーオキサイド、アゾ
ビスイソブチロニトリル、過硫酸塩、過酸化水素、過硫
酸塩と酸性亜硫酸ソーダ等のレドツクス開始剤及び紫外
線等のラジカル重合開始剤等)から任意に選択して製造
され夕る。かくの如き得られた2種の重合体(1及び0
)は、この後前記一般式(A)に示す単量体が全混合重
合体の重量に対して0.3〜4.0重量%に保持される
ように混合されることが必要である。
That is, if the acrylonitrile content is less than 3% by weight based on the weight of the copolymer, it is undesirable because it will cause problems in antistatic durability.On the other hand, if the content exceeds 7% by weight, , sufficient antistatic effect is not provided. Further, the above-mentioned copolymer (0) is obtained by employing the same polymerization method (suspension polymerization method, emulsion polymerization method, solution polymerization method, etc.) for producing the above-mentioned acrylic polymer (1). The polymerization catalyst used for the polymerization is also known (benzoyl peroxide, azobisisobutyronitrile, persulfate, hydrogen peroxide, redox initiators such as persulfate and acidic sodium sulfite, and radical polymerization initiation such as ultraviolet rays). It can be manufactured by arbitrarily selecting from the following. The two types of polymers thus obtained (1 and 0
) needs to be mixed so that the monomer represented by the general formula (A) is maintained at 0.3 to 4.0% by weight based on the weight of the entire mixed polymer.

すなわ0ち、該制電性単量体が全混合重合体の重量に対
して0.乳重量%に満たない場合には、充分な制電性を
最終繊維に付与することが困難となるし、一方これが4
.の重量%を超えると前述した如く最終繊維の染色性(
発色性、色相の鮮明性等)を損なう5ので望ましくない
。また上記の如き制覇性単量体含有量を所定の範囲を満
足するように調整する手段に関しては、アクリル系重合
体(1)と共重合体(0)との混合割合を適宜決定する
ことによりなされ得るものである。さらに上記2種の重
合体0の混合方式であるが、これも格別の制限を設ける
ものでなく、通常の混合手段が選択できる。例えば‘a
}アクリル系重合体(1)と制電性共重合体(0)とを
混合した後任意の溶剤にて溶解し、紙糸原液となす方法
、‘b’アクリル系重合体(1)のタ欲糸原液と共重合
体(0)の薮糸原液とを混合する方法、{cーアクリル
系重合体(1)の紙糸原液に共重合体(0)を溶解し、
抜糸原液となす方法あるいは{d’共重合体(ロ)の紡
糸原液にアクリル系重合体(1)を溶解し、荻糸原液と
なす方法等が40選択使用される。なお、前述の共重合
体(0)ならびにアクリル系重合体(1)の紡糸原液の
作製に用いられる溶剤としては、ジメチルホルムアミド
、ジメチルアセトアミド、ジメチルスルホキシド、エチ
レンカーボネート、y−ブチロラクトン等の如き有機溶
剤又はチオシアン酸ナトリウム、塩化亜鉛、硝酸等の濃
厚水溶液の如き無機溶剤等を挙げることが出釆、競中紙
糸原液を構成する溶剤としてチオシアン酸ナトリウムの
濃厚水溶液を使用することにより、本発明の目的を効果
的に達成することができる。また本発明の実施において
重要なことは、かくの如き所定量の缶9電性単量体を存
在せしめて作製された混合重合体紙糸原液中に下記一般
式(B)にて示す化合物を混合重合体使用量に対して0
.05〜1の重量%存在せしめることである。R″(C
H2CH20)nH (式中Rは炭素数18以下のアルコキシ基、アルキルフ
ヱノキシ基、フェノキシ基、nは1〜15の整数を示す
)すなわち、上記一股式においてnが15を超える場合
には、化合物(B)の水に対する溶解性が大となり、級
糸過程での脱溶媒工程において該化合物(B)がアクリ
ル系繊維構造中より脱落し、最終的に満足すべき制電性
を付与せしむるには至らず望ましくない。
In other words, the antistatic monomer is 0.0% based on the weight of the total mixed polymer. If it is less than 4% by weight of milk, it will be difficult to impart sufficient antistatic properties to the final fiber;
.. If the weight percentage exceeds , the dyeability of the final fiber (
This is undesirable because it impairs color development, sharpness of hue, etc.). In addition, as for means for adjusting the content of the dominating monomer as described above so as to satisfy a predetermined range, by appropriately determining the mixing ratio of the acrylic polymer (1) and the copolymer (0). It can be done. Further, regarding the mixing method of the above two types of polymers 0, there is no particular restriction on this method either, and any ordinary mixing means can be selected. For example 'a
}Method of mixing the acrylic polymer (1) and the antistatic copolymer (0) and then dissolving it in any solvent to make a stock solution of paper yarn, 'b' method of acrylic polymer (1) A method of mixing a yarn stock solution and a bush thread stock solution of copolymer (0), {dissolving copolymer (0) in a paper thread stock solution of c-acrylic polymer (1),
40 methods are used, including a method of preparing a stock solution for thread removal, or a method of dissolving the acrylic polymer (1) in a spinning stock solution of {d' copolymer (b) to obtain a stock solution of threads. Incidentally, as the solvent used for preparing the spinning dope of the above-mentioned copolymer (0) and acrylic polymer (1), organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene carbonate, y-butyrolactone, etc. Alternatively, inorganic solvents such as concentrated aqueous solutions of sodium thiocyanate, zinc chloride, nitric acid, and the like can be used. Able to achieve objectives effectively. Furthermore, what is important in carrying out the present invention is that a compound represented by the following general formula (B) is added to the mixed polymer paper yarn stock solution prepared by the presence of a predetermined amount of the nine-electrode monomer as described above. 0 for the amount of mixed polymer used
.. 05 to 1% by weight. R''(C
H2CH20)nH (In the formula, R is an alkoxy group having 18 or less carbon atoms, an alkylphenoxy group, a phenoxy group, n represents an integer of 1 to 15) That is, when n exceeds 15 in the above single-pronged formula, The solubility of the compound (B) in water increases, and the compound (B) falls out of the acrylic fiber structure in the solvent removal step during the threading process, ultimately imparting satisfactory antistatic properties. It is undesirable to do so.

また該化合物(B)の含有量が0.05重量%に満たな
い場合には、最終繊維に充分な制電効果が奏されず、一
方談含有量が1の重量%を越える場合には、最終繊維の
屈曲強度、摩擦強度等の物理的性能が劣化するのみなら
ず、染色物の発色性、色相の鮮明性にも難点がみうけら
れ、しかも綾糸の操業性においてもトラブルが派生する
ので好ましくない。なお、前記化合物(B)は、分子量
700以下のものから選択することが好ましくこれ以上
のものの使用では、アクリル系共重合体(1)と制軍性
共重合体(0)との相港性の面でいよいよトラブルが派
生し、制電性能が低下する場合もあり得るので、化合物
(B)の使用においてはその分子量を検討することは本
発明の目的、効果上好ましいことである。
Furthermore, if the content of the compound (B) is less than 0.05% by weight, sufficient antistatic effect will not be achieved in the final fiber, while if the content exceeds 1% by weight, Not only will the physical properties such as bending strength and frictional strength of the final fiber deteriorate, but there will also be problems with the color development and clarity of the hue of the dyed product, and troubles will also arise in the workability of the twill yarn. Undesirable. The compound (B) is preferably selected from those with a molecular weight of 700 or less, and when using a compound with a molecular weight of 700 or less, the compatibility between the acrylic copolymer (1) and the anti-military copolymer (0) Problems may arise in this regard, and the antistatic performance may deteriorate. Therefore, it is preferable for the purpose and effect of the present invention to consider the molecular weight when using compound (B).

さらに付言すれば、使用せる化合物(B)がこのような
低分子量の界面活性剤であるにもかかわらず製造過程で
何等脱落せず、繊維性能及び制覇性能のバランスを良好
に維持しうる事実は、前述した如く化合物(A)との相
溶性(なじみやすさ)がよいことに起因しているものと
推察している。さらに本発明の好適な実施態様として、
前述の化合物(B)に加えて下記一般式(C)にて示す
化合物ならびに必要に応じて下記一般式(D)にて示す
化合物をアクリル系繊維構造中に導入することもできる
Furthermore, although the compound (B) used is such a low molecular weight surfactant, it does not fall off during the manufacturing process and maintains a good balance between fiber performance and dominating performance. This is presumed to be due to the good compatibility (easiness of compatibility) with compound (A) as described above. Furthermore, as a preferred embodiment of the present invention,
In addition to the above-mentioned compound (B), a compound represented by the following general formula (C) and, if necessary, a compound represented by the following general formula (D) can also be introduced into the acrylic fiber structure.

(C) (式中Xは水素原子またはfCH2C比0)IH、1は
1〜30の整数、Yは水素原子またはメチル基、qは1
〜3の整数を示す)(D) (式中R…は炭素数1腿父下のァルキル基を示す)上述
したこれら化合物の導入量は、前記化合物(A)の導入
量と関連せしめて化合物(A):化合物(C)=1:0
.01〜1.5化合物(A):化合物(C):化合物(
0)=1:0.01〜1.6:0.01〜1.5となる
如く共存させることによってさらに制電性能の向上が計
られる。
(C) (In the formula, X is a hydrogen atom or fCH2C ratio 0) IH, 1 is an integer from 1 to 30, Y is a hydrogen atom or a methyl group, q is 1
(D) (In the formula, R... represents an alkyl group having 1 carbon number) The amount of the above-mentioned compounds introduced is determined in relation to the amount of the compound (A) introduced. (A): Compound (C) = 1:0
.. 01-1.5 Compound (A): Compound (C): Compound (
0)=1:0.01 to 1.6:0.01 to 1.5, the antistatic performance can be further improved.

またこれら化合物の導入手段は、混合重合体織糸原液中
へ混合する方法あるいは重合時混入する方法等任意に選
べるものである。
Further, the means for introducing these compounds may be arbitrarily selected, such as a method of mixing them into the mixed polymer yarn stock solution or a method of mixing them during polymerization.

上記の如き作製された混合重合体紙糸原液は、この後紙
糸して繊維糸条体に形成し、さらに該糸条体に引続き脱
溶剤、水洗、熱延伸、乾燥繊密化、弛緩熱処理、捲線付
与処理等を施して最終繊維に作製する。
The mixed polymer paper yarn stock solution prepared as described above is then made into paper yarn to form a fiber yarn body, and the yarn body is then subjected to solvent removal, water washing, hot stretching, drying and densification, and relaxation heat treatment. , winding treatment, etc. are performed to produce the final fiber.

なお、本発明に係る紡糸手段としては、特別の制限を設
けるものではないが、本発明の特徴を有利に達成せしめ
るには、湿式紙糸法が好適に採用されるものである。叙
述の如きアクリル系重合体ならびに制電性共重合体の混
合重合体薮糸原液よりアクリル系繊維を製造するにあた
り、該鉄糸原液中に【11所定量の制電性単量体を含有
せしめること、‘21特定の化合物を所定量存在せしめ
ることを結合採択することにより、元釆制電効果を担う
役目を具備する制電性単量体の混合重合体中に占める含
有割合を減少させても、新たに紡糸原液中に添加した特
定化合物が制電性低下度合(上記制電性単量体の減少量
にみあった制電性低下割合)を抑止する役割を果し、し
かも驚くべきことにかかる制電性低下度抑止に対応して
派生される繊維性能の低減が何等惹起さないという事実
が見し、出されたのである。
The spinning means according to the present invention is not particularly limited, but a wet paper yarn method is preferably employed in order to advantageously achieve the features of the present invention. In producing acrylic fibers from a mixed polymer bushing solution of an acrylic polymer and an antistatic copolymer as described above, a predetermined amount of an antistatic monomer (11) is contained in the iron thread stock solution. By combining the '21 specific compound with the presence of a predetermined amount, the content ratio of the antistatic monomer, which plays the role of antistatic effect in the base pot, in the mixed polymer can be reduced. In addition, a specific compound newly added to the spinning stock solution plays a role in suppressing the degree of decrease in antistatic property (the rate of decrease in antistatic property commensurate with the amount of decrease in the antistatic monomer mentioned above), and it is surprising that In particular, this proposal was made based on the fact that there was no reduction in fiber performance that would result from suppressing the degree of deterioration in antistatic property.

以下本発明の実施例を記載するが、本発明はかかる実施
例によって発明の範囲を何等制限されるものではない。
なお特に断わらない限り、部および百分率はすべて重量
基準にて表示するものとする。実施例 1 アクリロニトリル5$都およびメトキシポリオキシェチ
レン(30モル)メタアクリレート5の部を共重合して
制覇性共重合体を作製した。
Examples of the present invention will be described below, but the scope of the present invention is not limited in any way by these Examples.
Note that unless otherwise specified, all parts and percentages are expressed on a weight basis. Example 1 A superior copolymer was prepared by copolymerizing 5 parts of acrylonitrile and 5 parts of methoxypolyoxyethylene (30 moles) methacrylate.

一方、アクリロニトリル91部、アクリル酸メチル87
部およびメタリルスルホン酸ソーダ0.3部を共重合せ
しめてアクリル系重合体を得た。* 次いでかくの如き
作製された2種の重合体を、制覇性共重合体:アクリル
系重合体:1:24になるように混合(全混合重合体重
量に対するメトキシポリオキシェチレンメタクリレート
の存在量は2.0%)した後、44%ロダン酸ソーダ水
溶液に溶解せしめ、紡糸原液に作製した。
On the other hand, 91 parts of acrylonitrile, 87 parts of methyl acrylate
1 part and 0.3 part of sodium methallylsulfonate were copolymerized to obtain an acrylic polymer. *Next, the two kinds of polymers thus prepared were mixed in a ratio of dominant copolymer: acrylic polymer: 1:24 (the amount of methoxypolyoxyethylene methacrylate relative to the weight of the total mixed polymer). (2.0%), and then dissolved in a 44% aqueous sodium rhodanate solution to prepare a spinning stock solution.

かくの如き作製した縁糸原液または該織糸原液中に第1
表に記載する如き化合物(B)を添加せしめて得られた
級糸原液は、通常の条件下で湿式紙糸、脱落剤、水洗、
熱延伸された後、100ooの乾燥絶愛密化および弛緩
熱処理を施され、単繊維デニール3デニールのアクリル
系繊維に作製された。
In the hem thread stock solution or the weaving thread stock solution prepared as above, the first
The grade yarn stock solution obtained by adding the compound (B) as described in the table can be prepared by adding wet paper yarn, shedding agent, washing with water, etc. under normal conditions.
After being hot stretched, it was subjected to dry densification and relaxation heat treatment of 100 oo to produce an acrylic fiber with a single fiber density of 3 deniers.

かくして得られたアクリル系繊維の制電性および繊維性
能を測定した結果を第1表に掲載する。
Table 1 shows the results of measuring the antistatic properties and fiber performance of the acrylic fibers thus obtained.

第 1 表(注)(1)化合物Bとして、C9日ー 0(CH2CH20)4日を使用。Table 1 (Note) (1) As compound B, C9-day 0 (CH2CH20) 4 days were used.

(2) 化合物Bの繊維中への残留率は、繊維の紫外線
吸収測定にて求めた残留量を添加量で割つて百分率に換
算して求めたものである。
(2) The residual rate of compound B in the fiber was determined by dividing the residual amount determined by ultraviolet absorption measurement of the fiber by the amount added and converting the result into a percentage.

第1表の結果より、本発明方法(前述した発明構成要件
の一体的結合)に従って得られたアクリル系繊維が実用
上満足すべき制電性を付与せしめるとともに良好な繊維
性能(就中、発色性)を具備ならしめるものであること
を理解することが出来る。なお、本発明方法において作
製したアクリル系繊維を顕微鏡観察したところ、ほとん
ど繊維中にポィドの発生は認められなかった。実施例
2 実施例1と同様なアクリル系重合体ならびに制電性共重
合体を、第2表に示す如く化合物Aが全霊合重合体中1
.5%を占めるように混合した後、44%ロダン酸ソー
ダ水溶液に溶解せしめて級糸原0液に作製した。
From the results in Table 1, it is clear that the acrylic fibers obtained according to the method of the present invention (integral combination of the above-mentioned constituent elements of the invention) have practically satisfactory antistatic properties, and have good fiber performance (in particular, color development). You will be able to understand that it is something that makes you possess the characteristics (sexuality). When the acrylic fibers produced by the method of the present invention were observed under a microscope, almost no pores were observed in the fibers. Example
2 The same acrylic polymer and antistatic copolymer as in Example 1 were prepared, and as shown in Table 2, Compound A was added to 1% of the whole polymer.
.. After mixing so as to account for 5%, it was dissolved in a 44% sodium rhodanate aqueous solution to prepare a 0-liquid grade yarn material.

‐次いでかかる紡糸原液に第2表に記載する如き化合物
【B}、化合物‘C}及び化合物皿を添加せしめ、実施
例1と同様な方法にて単繊総デニール3デニールのアク
リル系繊維を作製した。
- Next, compound [B}, compound 'C}, and compound plate as listed in Table 2 were added to the spinning dope, and a single acrylic fiber with a total denier of 3 deniers was produced in the same manner as in Example 1. did.

第2表 (注) (1)化合物Bとして、 C9日,9 ○(CH2CH20)8日を使用 (2)化合物Cとして、 を使用 (3)化合物Dとして、 を使用 第2表の結果より、本発明に係る紙糸原液中に化合物B
に加えて、さらに化合物Cあるいは必要に応じて化合物
Cに加えて化合物Dを導入して作製したアクリル系繊維
がよりその制電性能を改善し得る事実が理解される。
Table 2 (Note) (1) As compound B, use C9 days, 9 ○ (CH2CH20) 8 days. (2) As compound C, use (3) As compound D, use. From the results in Table 2, Compound B in the paper yarn stock solution according to the present invention
It is understood that the antistatic performance of acrylic fibers prepared by further introducing Compound C or, if necessary, Compound D in addition to Compound C, can be further improved.

実施例 3 実施例1と同様なアクリル系重合体ならびに制亀性共重
合体を用いて紡糸原液を作製し、これに下記式で示す化
合物を、混合重合体に対して2%になるように添加し、
実施例1と同様の手法で単繊総デニール3デニールのア
クリル系繊維を得た。
Example 3 A spinning stock solution was prepared using the same acrylic polymer and tortoise control copolymer as in Example 1, and a compound represented by the following formula was added to it at a concentration of 2% based on the mixed polymer. Add,
A single acrylic fiber with a total denier of 3 deniers was obtained in the same manner as in Example 1.

C,2日250キCH2CH20)5日 得られた繊維は、半減期:洗濯10回で2.2秒、0染
色物のK/S比;総%で、実用上満足すべき制蝿性を有
すると共に良好な繊維性能を具備するものであった。
C, 250 kg for 2 days CH2 CH20) The fiber obtained in 5 days has half-life: 2.2 seconds after 10 washes, K/S ratio of 0 dyed product: total %, and has practically satisfactory fly resistance. In addition, it had good fiber performance.

かかる結果は、元釆相溶性のよくないアクリル系重合体
(1)と制蟹性共重合体(0)とを用いているにもかか
わらず、導入したク特定化合物がそれを打消すべく特異
な制電性付与挙動を示したがゆえのものであると解され
る。
These results were obtained despite the fact that the acrylic polymer (1) and the crab-controlling copolymer (0) were used, which had poor compatibility with the original pot. This is understood to be due to the fact that it exhibited a good antistatic property imparting behavior.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、在釆方法により作製されるアクリル系繊維に
存在せる制亀性単量体含有量と該繊維の0染色物の乾燥
等による発色性の劣化度合(K/S比)との関係を例示
するものであり、第2図は上記制覇性単量体含有量と前
記繊維の制電性との関係を図示するものである。 第1図 第2図
Figure 1 shows the relationship between the content of anti-tormogenous monomers present in acrylic fibers produced by the lacquering method and the degree of deterioration of coloring properties (K/S ratio) due to drying of zero-dyed products of the fibers. FIG. 2 illustrates the relationship between the content of the above-mentioned dominating monomer and the antistatic property of the fiber. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 ポリアクリロニトリルまたはアクリロニトリル70
重量%以上と他の重合性不飽和ビニル化合物の少なくと
も1種からなるアクリル系重合体(I)ならびにアクリ
ロニトリル30〜70重量%および下記一般式(A)で
示す単量体70〜30重量%よりなる単量体混合物を共
重合せしめて得られる制電性共重合体(II)からなるア
クリロニトリル系重合体紡糸原液よりアクリル系繊維を
製するに際し、(1) 該紡糸原液中に一般式(A)に
て示す単量体を混合重合体に対して0.3〜4.0重量
%存在せしめること、(2) また該紡糸原液中に下記
一般式(B)に示す化合物を混合物重合体に対して0.
05〜10重量%存在せしめること、を一体的に採用し
て紡糸することを特徴とする繊維性能を改善せしめた制
電性アクリル系繊維の製造方法。 CH_2=CRCOO(CH_2CH_2O)_mR′
(A)(式中Rは水素原子またはメチル基、R′は水
素原子または炭素数8以下のアルキル基、mは5〜10
0の整数を示す)R″(CH_2CH_2O)_nH
(B)(式中R″は炭素数18以下のアルコキシ基、ア
ルキルフエノキシ基、フエノキシ基、nは1〜15の整
数を示す)
[Claims] 1. Polyacrylonitrile or acrylonitrile 70
From an acrylic polymer (I) consisting of at least % by weight and at least one other polymerizable unsaturated vinyl compound, and from 30 to 70% by weight of acrylonitrile and 70 to 30% by weight of a monomer represented by the following general formula (A) When producing an acrylic fiber from an acrylonitrile polymer spinning solution consisting of an antistatic copolymer (II) obtained by copolymerizing a monomer mixture of (1) general formula (A) in the spinning solution, (2) In addition, a compound represented by the following general formula (B) is added to the mixed polymer in the spinning dope. Against 0.
1. A method for producing an antistatic acrylic fiber with improved fiber performance, characterized by integrally spinning the fiber in an amount of 0.05 to 10% by weight. CH_2=CRCOO(CH_2CH_2O)_mR'
(A) (wherein R is a hydrogen atom or a methyl group, R' is a hydrogen atom or an alkyl group having 8 or less carbon atoms, m is 5 to 10
(represents an integer of 0)R″(CH_2CH_2O)_nH
(B) (In the formula, R'' is an alkoxy group, an alkylphenoxy group, or a phenoxy group having 18 or less carbon atoms, and n is an integer of 1 to 15.)
JP9435177A 1977-08-05 1977-08-05 Method for producing antistatic acrylic fiber with improved fiber performance Expired JPS6018330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9435177A JPS6018330B2 (en) 1977-08-05 1977-08-05 Method for producing antistatic acrylic fiber with improved fiber performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9435177A JPS6018330B2 (en) 1977-08-05 1977-08-05 Method for producing antistatic acrylic fiber with improved fiber performance

Publications (2)

Publication Number Publication Date
JPS5430932A JPS5430932A (en) 1979-03-07
JPS6018330B2 true JPS6018330B2 (en) 1985-05-09

Family

ID=14107854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9435177A Expired JPS6018330B2 (en) 1977-08-05 1977-08-05 Method for producing antistatic acrylic fiber with improved fiber performance

Country Status (1)

Country Link
JP (1) JPS6018330B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179412U (en) * 1985-04-26 1986-11-08
JPS62100334U (en) * 1985-12-16 1987-06-26

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179412U (en) * 1985-04-26 1986-11-08
JPS62100334U (en) * 1985-12-16 1987-06-26

Also Published As

Publication number Publication date
JPS5430932A (en) 1979-03-07

Similar Documents

Publication Publication Date Title
JP4773849B2 (en) Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property
JPS5818444B2 (en) Microporous acrylic fiber with improved water absorption
JPS6018330B2 (en) Method for producing antistatic acrylic fiber with improved fiber performance
JP3656311B2 (en) Anti-pill ultrafine acrylic fiber and method for producing the same
US4100143A (en) Filaments which may be cross-linked comprising at least 65% acrylonitrile and 0.5-10% N-methylol derivative of a urethane
US4293613A (en) Acrylic fiber having improved basic dyeability
WO1991015525A1 (en) Acrylonitrile copolymer and fiber or core-sheath type composite fiber produced therefrom
JPH06158422A (en) Flame-retardant acrylic fiber having high shrinkage
JP4533319B2 (en) Acrylic shrink fiber
JPS6029764B2 (en) Manufacturing method of antistatic acrylonitrile synthetic fiber
JP4480858B2 (en) Lightweight composite acrylic fiber and method for producing the same
JPS5930805B2 (en) Method for producing antistatic acrylic synthetic fiber with good fiber performance
US3931120A (en) Flameproof modacrylic fibers
JPS5930804B2 (en) Method for producing antistatic acrylic synthetic fiber with improved fiber performance
WO1999058586A1 (en) Acrylic fiber polymer precursor and fiber
JPS61138710A (en) Production of acrylic yarn having improved durability
US2698842A (en) Fibers of acrylonitrile-alkyl alphaacylamino acrylate copolymer
JPS6112981A (en) Anti-pilling acrylic fiber having excellent feeling
JPS6112909A (en) Acrylic fiber having antipilling property and high shrinkage
JPH07216640A (en) Acrylic synthetic yarn having excellent yellowing resistance
JP2519185B2 (en) Flame-retardant acrylic composite fiber
JP2001131821A (en) Foamed fiber and method for producing the same
JP2005120512A (en) Acrylic conjugate fiber having refreshing cool feeling and method for producing the same
JPS6343482B2 (en)
JPH0718515A (en) Production of permanent antistatic acrylic fiber having excellent dyeability