JPS60181682A - Fuel aggregate - Google Patents

Fuel aggregate

Info

Publication number
JPS60181682A
JPS60181682A JP59036233A JP3623384A JPS60181682A JP S60181682 A JPS60181682 A JP S60181682A JP 59036233 A JP59036233 A JP 59036233A JP 3623384 A JP3623384 A JP 3623384A JP S60181682 A JPS60181682 A JP S60181682A
Authority
JP
Japan
Prior art keywords
fuel
fuel assembly
powder
rods
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59036233A
Other languages
Japanese (ja)
Inventor
利久 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59036233A priority Critical patent/JPS60181682A/en
Publication of JPS60181682A publication Critical patent/JPS60181682A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、沸騰水型原子炉に使用される燃料多さ合体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to fuel-rich combinations used in boiling water nuclear reactors.

[発明の技術的背景とその問題点] 沸騰水型原子炉の炉心には燃料集合体が装荷されている
。この燃料集合体を第1図に縦断面図で示す。この燃料
集合体1ば、角筒状のチャンネルボックス2内に多数の
燃料棒3及びウォータロッド4をマトリックス状(例え
ば8×8本)に配列し、この燃料棒3及びウォータロッ
ド4の上端部及び下端部を上部タイプレート5及び下部
タイブレート6によりそれぞit支持し、さらにこれら
上部タイプレート5及び下部タイプレート6間の複数箇
所をスミーサ7にて支持することによって燃料棒3の相
互間隔を一定に保持する構成となっている。
[Technical background of the invention and its problems] A fuel assembly is loaded in the core of a boiling water nuclear reactor. This fuel assembly is shown in longitudinal section in FIG. In this fuel assembly 1, a large number of fuel rods 3 and water rods 4 are arranged in a matrix (for example, 8×8 rods) in a rectangular cylindrical channel box 2, and the upper ends of the fuel rods 3 and water rods 4 are The mutual spacing of the fuel rods 3 is controlled by supporting the upper tie plate 5 and the lower tie plate 6, respectively, and by supporting multiple locations between the upper tie plate 5 and the lower tie plate 6 with the smears 7. The configuration is such that it is held constant.

ここで燃料棒の縦断面図を第2図に示す。同図に示す様
に燃料棒3は細長円鋤状の燃料被蝋管8内に円柱状の燃
料ベレット9を多数充填し、燃料被桂管8の上下両端は
上部端イ、¥10及び下部端栓11が溶接により固着さ
れ封止する様にイ6成芒れている。燃料仏櫟管8内の上
部プレナム12にはブレナムスプリング13が装着さ第
1−1その軸方向へ積層された燃料ベレット9に適宜押
圧力を加えて、これらを弾性的に支持している。
Here, a vertical cross-sectional view of the fuel rod is shown in FIG. As shown in the figure, in the fuel rod 3, a large number of cylindrical fuel pellets 9 are filled in an elongated circular plow-shaped fuel tube 8, and the upper and lower ends of the fuel tube 8 are an upper end, a The end plug 11 is fixed by welding and has six holes for sealing. A Blenheim spring 13 is attached to the upper plenum 12 in the fuel barrel tube 8, and applies appropriate pressing force to the fuel pellets 9 stacked in the axial direction of the fuel pellets 1-1 to elastically support them.

この燃料棒3は、燃料集合体の横断面図である第3図に
示す様に燃料果合体lの長手方向に垂直な販内で相互に
等間隔を存して8行8列に正方配列されている。また燃
料集合体1内外周の燃料棒3とチャンネルボックス2と
の間隙な水ギャップと呼んでいるが、この水ギャップも
前記燃料棒3相互の間隔とはI″f、等しく瞑定されて
いる。この様なj然料呆合体はさらに4体のものを正方
配列してその中央にtttll it N 14を配置
σし一つの単位格子を形J2’Z 1.ている。そし−
C,燃料集合体lにid慈料象合体1の横断面内の出力
を平均化きせるために2本のウォータロッド4(図1生
起号W)がほぼ中央(二装置されている。
As shown in FIG. 3, which is a cross-sectional view of the fuel assembly, the fuel rods 3 are arranged in a square arrangement of 8 rows and 8 columns with equal spacing between each other in a column perpendicular to the longitudinal direction of the fuel assembly 1. has been done. Also, the gap between the fuel rods 3 on the inner and outer peripheries of the fuel assembly 1 and the channel box 2 is called a water gap, but this water gap is also equal to the distance between the fuel rods 3, which is I″f. .For such a combination, four units are further arranged in a square array, and tttll it N 14 is placed in the center, σ, to form one unit cell of the shape J2'Z 1..And-
C. Two water rods 4 (indicated by reference number W in FIG. 1) are installed approximately in the center of the fuel assembly 1 in order to average the output within the cross section of the id fuel assembly 1.

前記燃料棒3は第1表(二示す様にウラン−235(以
下U235とする)含肩率をたとえば4段μ&に変化さ
せた54イI類の匁(量科林3が製作されている。
As shown in Table 1 (2), the fuel rod 3 is made of 54-I class I momme (Yonkalin 3 is manufactured) in which the uranium-235 (hereinafter referred to as U235) shoulder content is changed to, for example, 4 steps μ&. .

(i人′T:全6) 第1表 こわ7ら5種類の燃料棒311−1:慾料集合体1の横
断面内の熱中性子束分布にしたがって鋲3図に7エーシ
た如く各燃料棒3の出力分布を均一化する様に配置され
ている。すなわち、熱中性子束レベルが最も高い正方配
列の四隅の燃料棒をi1グもU285含イツ卑が低い■
のカ、イ$料イ、ヤとし、熱中性子束レベルが低下する
(二従ってU285含有率の高い燃料棒を配置している
(i person'T: total 6) Table 1: Five types of fuel rods 311-1: According to the thermal neutron flux distribution in the cross section of the fuel assembly 1, each fuel rod The rods 3 are arranged so as to equalize the power distribution. In other words, the fuel rods at the four corners of the square array, where the thermal neutron flux level is highest, have a low U285 base content.
Therefore, fuel rods with high U285 content are arranged.

燃料集合体1内を通過する冷却材である水は、水と蒸気
の二相流となって上部に行く程?li8騰している。こ
こで第4図に縦軸に燃料集合体の高さ方向をとり、横軸
にチャンネルボックス内蒸気割合と出力分布をとった燃
料果合体の特性分布図な示す。第4図の蒸気捨1」合分
布曲線Aに示す様に燃料果合体1の下部から上部に行く
程蒸気の割合は多くなっている。この酊却材である水は
減速材としての性iQも有しており、速度の遅い中性子
(熱中性子)がとの11.M速材である水によって生成
されるため、速ルーの遅い中性子の供給はチャンネルボ
ックス2外から他にチャンネルボックス2内の冷却材か
らも受けている。その7’cめ燃料集合体1の上部に行
く程蒸気が多くなるためテヤンイ・ルボツクス2内から
の速度の遅い中恢子の供給は、上部に行く程少くなる。
Water, which is a coolant, passing through fuel assembly 1 becomes a two-phase flow of water and steam and goes to the top? Li8 is rising. Here, FIG. 4 shows a characteristic distribution diagram of the fuel assembly, with the vertical axis representing the height direction of the fuel assembly and the horizontal axis representing the steam ratio in the channel box and the output distribution. As shown in steam distribution curve A in FIG. 4, the proportion of steam increases from the bottom to the top of the fuel mixture 1. Water, which is this intoxicant, also has the property iQ as a moderator, and the slow neutrons (thermal neutrons) are 11. Since the neutrons are generated by water, which is an M fast material, slow neutrons are supplied not only from outside the channel box 2 but also from the coolant inside the channel box 2 . Since the steam increases as it goes to the upper part of the 7'c fuel assembly 1, the supply of the slow-speed medium insulator from inside the iron box 2 decreases as it goes to the upper part.

燃料棒3のg(縮度が高さ方向に一株だと、核分裂の割
合σ溶料〜さ分体1の上部に行< lr:a少なくなり
、出力(は上部に行く程小さくなる。なお、燃料果合体
1の上i%iと下部からはそれぞ力中性子が燃も集合体
1外に扇れ出て行くため、中イー1;子のシ1,1」合
力膏、・伏端に少なくなっている。そのため、燃料集合
体1の高さ方向出力分布は第4図の出力分邪曲HI3の
様になっており、燃料集合体1の下端から約届の附近で
は平均の約5割増加となり*+a+方向出力ピーキンダ
(燃料集合体の出力にっいて高さ方向の最大値と平均値
との比)は@11.5になっている。
If the degree of contraction of the fuel rod 3 is one in the height direction, the rate of nuclear fission σ solvent ~ row < lr: a decreases at the top of the splitting body 1, and the output (() decreases as it goes to the top. In addition, since force neutrons fan out from the upper i%i and lower part of the fuel assembly 1, respectively, the resultant force is Therefore, the power distribution in the height direction of the fuel assembly 1 is like the power distribution curve HI3 in Fig. 4, and the average power distribution in the vicinity of the lower end of the fuel assembly 1 is approximately It increased by about 50%, and the *+a+ direction output peak kinda (ratio between the maximum value and the average value of the output of the fuel assembly in the height direction) became @11.5.

@1方+LJ出カビーキングを小さくする方法として、
燃料棒3中のU285の濃縮度を上部より下部の方を低
くする方法かある。例えば特開昭53−40188号公
報に記載された様に、一部の燃料棒15を上下2領域に
分割させ、その燃料1仝15の上部に装荷する燃料ベレ
ットのり2F45 伽縮度が下部の燃料ベレットよりも
高いことを特徴−とじた改良viが示さiしている。こ
の改良例を燃料集合体16の横断面図である第51y、
lを参照して説明する。
As a way to reduce @1 side + LJ output cubby king,
There is a method of making the enrichment of U285 in the fuel rod 3 lower in the lower part than in the upper part. For example, as described in Japanese Unexamined Patent Publication No. 53-40188, some fuel rods 15 are divided into upper and lower regions, and a fuel pellet 2F45 is loaded onto the upper part of the fuel rod 15. An improved version VI is shown that is higher than the fuel pellet. This improved example is shown in No. 51y, which is a cross-sectional view of the fuel assembly 16.
This will be explained with reference to 1.

前記燃料棒15は第2表に示す様にU235暑夷゛率を
変化させた6袖類の燃料棒15が製作されている。
As shown in Table 2, the fuel rods 15 have six sleeves with different U235 heat exchange rates.

第2表 これら6価類の燃料棒15は燃料集合体16の横断面内
の熱中性子束分布にしたがって第5図に示した如く各燃
料棒15の出力分布を均一化する様に配置1−されてい
る。しかしながらこの実施例においてし1゛、燃料棒1
5への濃縮度配分を下部領域で燃料集合体内の全燃料棒
の平均出力を1とした場合の最θ1出力燃料権の出力で
ある局所出力ビーキング(以下り、 P、 Fとする)
が小さくなる様にだめた場合、上部領域でのり、 P、
 Fは商くなってし五う0感料棒の上部平均69縮度を
2.11%とし、下部平均娘縮度を1.94%と1−1
たことにより、軸方向出力分布は平坦化されるが、L、
P、Fが上昇してし19ために燃料棒加重出力ばあ才り
低下しない等の問題点があった。
Table 2 These hexavalent fuel rods 15 are arranged so as to equalize the power distribution of each fuel rod 15 according to the thermal neutron flux distribution in the cross section of the fuel assembly 16 as shown in FIG. has been done. However, in this embodiment, fuel rod 1 is
The local power peaking (hereinafter referred to as P and F) is the output of the maximum θ1 output fuel right when the enrichment distribution to 5 is set to 1 in the lower region and the average output of all fuel rods in the fuel assembly is 1.
If it is made so that it becomes small, the glue in the upper region, P,
F is a quotient, and the upper average 69 degree of shrinkage of the 0-sensitivity bar is 2.11%, and the lower average daughter contractility is 1.94%, 1-1.
As a result, the axial output distribution is flattened, but L,
There were problems such as the fact that the weighted output of the fuel rods did not decrease due to the increase in P and F19.

[発明の目的] 本発明の目的は局す「出力分布を平坦化させることによ
って局演出カビーキングを小さくさせると共に燃料集合
体内高さ方向出力分イ[Jを平坦化させることによって
、軸方向出力ビーキングを小さくさせて健全性を謂すこ
とのできる燃料集合体な得ることにある。
[Objective of the Invention] The object of the present invention is to "reduce the local output caving by flattening the power distribution, and to reduce the axial output caving by flattening the vertical output (J) within the fuel assembly. The aim is to obtain a fuel assembly that can be made smaller and have better soundness.

[発明の概要]°一 本発明は、燃料集合体p軸方向を上部領域と下部領域と
の2領域に分割し、この上部領域のウラン−235の平
均濃縮度UBと下部領域のウラン−235の平均濃縮度
L1とが1.E (UEなる関係を有し、前記燃料集合
体内に収容さt’したi雀の燃料棒下部領域のウラン−
235の濃縮度LEiをi香の燃料棒の上部領域のウラ
ン−235の濃縮度uniに対して、なる関係を廟する
ことを特徴とする燃料集合体にある。
[Summary of the Invention] The present invention divides a fuel assembly in the p-axis direction into two regions, an upper region and a lower region, and determines the average enrichment of uranium-235 UB in the upper region and uranium-235 in the lower region. The average concentration L1 is 1. E (Uranium in the lower region of the i-sparrow fuel rod housed in the fuel assembly, having the relationship UE)
The fuel assembly is characterized in that the enrichment level LEi of 235 uranium-235 has the following relationship with the enrichment level uni of uranium-235 in the upper region of the i-th fuel rod.

[発明の実施例] 以下本発明の一実施例を第6図及び第7図を参照して説
明する。ここで86図に本発明に係る燃料集合体の横断
面図を示す。同図に示す様に燃料集合体20内には燃料
棒21が相互に等10J隔を;IT: してたとえば8
行8列に正方配列されている。この燃料集合体20最外
周の燃料棒21とチャンネルボックス22との間隙を水
ギャップと呼んでいるが、この水ギャップもniJ記燃
料棒21相互の間隔とほぼ等しく設定されている。この
様な燃料集合体20はさらに4体の唱のを正方配列して
その中央に制御棒23を配置し一つの単位格子を形成し
ている。そして、燃料集合体20には燃料集合体20の
横断面内の出力を平均化させるために2本のウォータロ
ッド24がIヨは中央に組込″!、rしている。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIGS. 6 and 7. Here, FIG. 86 shows a cross-sectional view of a fuel assembly according to the present invention. As shown in the figure, fuel rods 21 are arranged at equal intervals of 10 J in the fuel assembly 20;
It is arranged in a square array with 8 rows and 8 columns. The gap between the fuel rods 21 on the outermost periphery of the fuel assembly 20 and the channel box 22 is called a water gap, and this water gap is also set to be approximately equal to the spacing between the niJ fuel rods 21. Such a fuel assembly 20 further has four rods arranged in a square array and a control rod 23 arranged in the center to form one unit cell. Two water rods 24 are installed in the center of the fuel assembly 20 in order to average the output within the cross section of the fuel assembly 20.

mJ記172<科棒21はたとえば第3衣に示す様に軸
方向を2領域に分割し、上部の領域における濃縮度を下
む13の9域における濃縮度よりも高くシ、濃縮層が異
なりかつ下部領域と下部領域の燃料濃靴度比が一定であ
るU285含有率を4段階に変化させた5利1カ′Jの
燃料俺23が製作されている。
For example, the rod 21 is divided into two regions in the axial direction as shown in No. 3, and the concentration in the upper region is higher than that in the 9th region of 13, and the enriched layers are different. In addition, a fuel tank 23 with a 5-ratio and 1-power ratio is manufactured in which the fuel concentration ratio between the lower region and the lower region is constant, and the U285 content rate is varied in four stages.

第3表 ここで第7図に第6図の燃料集合体の胃さ方向における
出力分布図を示す。同図に示す様に従来の高さブ!向一
様濃縮度を持つ焙く料築合体の出力分布曲線Cには軸方
向出力ビーキングが1.5であるのに対して、旨さ方向
を2領域に分けた燃料集付体の出力分布曲線りにおける
明1方向出カビーキングが1.3であり、約用チはど出
力分布が平坦化されていることを示している。よって、
本発明によれば局所出力ビーキングは従来の改良例と同
様に局所出力ビーキングを低下させさらに軸方向出力ビ
ーキングを小さくすることができる。これにより、燃料
棒の最高出力は従来より低くなり、燃料集合体の健全性
が向上することができる。
Table 3 Here, FIG. 7 shows a power distribution diagram in the stomach direction of the fuel assembly of FIG. 6. As shown in the same figure, the height of the conventional one! The output distribution curve C of a roasted material assembly with a uniform concentration has an axial output peaking of 1.5, whereas the output distribution of a fuel assembly that divides the taste direction into two regions. The bright one-direction output cubby king on a curved line is 1.3, indicating that the output distribution on the curved line is flattened. Therefore,
According to the present invention, the local power peaking can be reduced and the axial power peaking can be reduced in the same way as in the conventional improvement example. As a result, the maximum output of the fuel rods becomes lower than before, and the integrity of the fuel assembly can be improved.

なお、上述した本発明に係る;9r1科集合体は以下の
様に製造することができる。前記燃料集合体20の上部
領域におけるU285の濃縮層をUHとし、下部領域に
おけるU2135の敵縮度をLEとし7た場合、LE 
< uπと設定する。そして各柚燃料棒宜における上部
領域のU285の沙縮度をuEiとし、下部領域におけ
るU285の濃縮度をLEiとした場合(r、B;/u
E1) = (LH/UE )とし、各種燃料棒におけ
る上部領域と下部領域におけるし285の濃縮度比を一
定に窟せ、さらにはURN <・・・(uBi+1 (
uBi <・・< UEIと設定する。才た、■≦に≦
Nとし、(IEk+1≦bEi (uP!’にとし、天
然ウランにおけるU2O5の諒縮度をUEN+ll L
BN+1と設定する。i番の燃料棒における下台IS領
域の製造に用いられるU2O5の濃縮度がLgiである
二酸化ウラン粉末を、U2O5の濃縮度がUEkの二酸
化ウラン粉末(以下UO2粉末とする)とuEk+1の
υozの粉末とから混合して製造する場合に、U2O5
のv′A11f度がUEk′t′するUO2粉末を (LEi−uEk+1)/(uEk−Ugk+1 ) 
(υの割合としs U2115の礁縮朋がuEk+ 1
であるUO2粉末を 1−((LEl−UEk+1 )/(t+16に−UW
k+1 ) ) (2+の割合で混合してU2O5の娯
縞度がLEiであるU02粉末を製造する。そして、こ
のUO2粉末を燃料ベレットに加工し、1番Q、ン燃料
棒の下部領域に装填される。
The ;9r1 family aggregate according to the present invention described above can be produced as follows. If the enriched layer of U285 in the upper region of the fuel assembly 20 is UH, and the degree of reduction of U2135 in the lower region is LE, then LE
< Set as uπ. If the degree of U285 shrinkage in the upper region of each yuzu fuel rod is uEi, and the enrichment degree of U285 in the lower region is LEi (r, B; /u
E1) = (LH/UE), the enrichment ratio of 285 in the upper region and lower region of each type of fuel rod is kept constant, and furthermore, URN <...(uBi+1 (
Set uBi <...< UEI. Said, ■≦ni≦
N, (IEk+1≦bEi (uP!'), and the degree of U2O5 in natural uranium is UEN+ll L
Set BN+1. The uranium dioxide powder with a U2O5 enrichment of Lgi used for the production of the lower IS region of the i-th fuel rod, the uranium dioxide powder with a U2O5 enrichment of UEk (hereinafter referred to as UO2 powder) and the powder with υoz of uEk+1 When manufacturing by mixing U2O5 with
UO2 powder whose v'A11f degree is UEk't' is (LEi-uEk+1)/(uEk-Ugk+1)
(As the ratio of υ, the reef shrinkage of s U2115 is uEk+1
UO2 powder is 1-((LEl-UEk+1)/(t+16-UW)
k+1 ) ) (mixed in a ratio of 2+ to produce U02 powder with a U2O5 stripe degree of LEi. Then, this UO2 powder is processed into a fuel pellet and loaded into the lower area of the No. 1 Q, N fuel rod. be done.

たとえば燃料棒Xの下部領域に用いるUO2粉末を製造
する場合に1は、燃料棒Xの上部領域に用いられるUO
22,2)末と燃料棒上の上部に用いられるUO2粉末
を(1)式と121式の割合で混合すればよい。
For example, when producing UO2 powder to be used in the lower region of fuel rod X, 1 is the UO2 powder used in the upper region of fuel rod X.
22,2) powder and the UO2 powder used on the upper part of the fuel rod may be mixed in the ratio of formula (1) and formula 121.

ここで燃H44Xの下部領域に用いる1j02粉末のU
2O5の濃縮度beiは上部領域と下部領域の濃縮度比
を0.9と設定すると153となる。燃料棒Xの上部領
域に用いられる[JO2粉末のU2O5の′$ソ縮度u
ekは17であり、燃料棒刈の上部領域に用いら力、る
UO2粉末の0285のg1縮度uek+1は1.3で
ある。これにより、Uek+1≦L” i < Vek
 ir、i p’i )) 立チ、(1)弐及び(2)
式より、燃料Nu Xの上部領域に用いら1する憩02
粉末を57.5チ及び燃料む号・Jの上部領域に用いら
れるU02粉末を42.5%混合させることによって、
燃料棒Xの下部領域に用いられるU2O5のt旦縮度1
.53のUO2粉木8かることができる。
Here, the U of 1j02 powder used in the lower region of H44X is
The enrichment bei of 2O5 is 153 when the enrichment ratio between the upper region and the lower region is set to 0.9. [U2O5 of JO2 powder used in the upper region of fuel rod
ek is 17, and the force used in the upper region of the fuel rod cutting is 0285 g1 shrinkage uek+1 of UO2 powder is 1.3. As a result, Uek+1≦L”i<Vek
ir, i p'i)) standing chi, (1) 2 and (2)
From the formula, the fuel used in the upper region of Nu
By mixing 57.5% of the powder and 42.5% of the U02 powder used in the upper region of Fuel No. J,
Degree of indentation 1 of U2O5 used in the lower region of fuel rod X
.. 53 UO2 powder can be used for 8 times.

また、他の製造方法として% U2O5の濃縮度が5係
のU02粉末を上限とした沸騰水型原子炉で使用される
最高濃縮KuMのU02粉木と、天然砲縮度NulEの
UO2粉木8から必要とする濃縮度xEのUO2粉末を
製造1−ることによっても可能である。この方法は、最
高濃縮度UEのUO2粉末と天然濃度NVEのUO28
末の混合91」谷は、最高濃縮度UEの二酸化ウラン粉
末を CXH−NVE )/(uE−NVE ) +81とし
、天然6細ji’i NvEを 1−((XE−NVE)/(VB−NVE) ) (4
)として、必要とするの(細度xEのUO2粉禾粉末造
することである。
In addition, other manufacturing methods include U02 powder wood with the highest concentration KuM used in boiling water reactors with U02 powder with a U2O5 concentration of 5 as the upper limit, and UO2 powder wood with natural gun shrinkage NulE 8. It is also possible to produce UO2 powder of the required concentration xE from 1-. This method uses UO2 powder of highest concentration UE and UO28 of natural concentration NVE.
The final mixture of 91" Tani is the highest enrichment UE uranium dioxide powder as CXH-NVE)/(uE-NVE) +81, and the natural 6 fine NvE as 1-((XE-NVE)/(VB- NVE) ) (4
), it is necessary to produce UO2 powder of (fineness xE).

[発明の幼果] 本か3明によれば、燃料果合体の軸方向72領域に分:
”+Nし、上部領域における燃料饋縮匪を下部の領域に
おける3ta N bHxlii度よりも高くしかつ上
部領域ど下@j′I領域の燃料a講縮度比を一足にさせ
たため、局Pl[出力分布を十坦化妊せることによって
局所出力ビーキングを小さくさせると共に燃料集合体の
商さ方向出力分布を平坦化させることによって、軸方向
出力ピーキングを小さくさせて燃料集合体の健全性を増
すことができる。
[Young fruit of the invention] According to this book or three, there are 72 areas in the axial direction of the fuel fruit assembly:
”+N, the fuel compression ratio in the upper region is made higher than the 3ta N bHxlii degree in the lower region, and the fuel a compression degree ratio in the lower @j′I region is made one foot, so that the local Pl[ By flattening the power distribution, local power peaking is reduced, and by flattening the axial power distribution of the fuel assembly, axial power peaking is reduced and the integrity of the fuel assembly is increased. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

は第1図の燃料集合体の横断面図、第4図は第1図の燃
料集合体の性能間勝図、第5図は従来の改良例を示す燃
料集合体の横断面図、第6図は本発明に係る燃料集合体
の(連断i1i]図、第7図は従来vIJと本@明を比
較した出力分布図である。 2υ・・・燃料集合体 21・・・燃料棒゛22・・・
チャンネルボックス 23・・・i、il u 朴24
・・ウォータロッド
is a cross-sectional view of the fuel assembly shown in Figure 1, Figure 4 is a performance diagram of the fuel assembly shown in Figure 1, Figure 5 is a cross-sectional view of the fuel assembly showing a conventional improvement example, and Figure 6 is a cross-sectional view of the fuel assembly shown in Figure 1. The figure is a (continuous i1i) diagram of the fuel assembly according to the present invention, and Fig. 7 is a power distribution diagram comparing the conventional vIJ and this @mei. 2υ...Fuel assembly 21...Fuel rod 22...
Channel Box 23...i,il u Park 24
・Water rod

Claims (1)

【特許請求の範囲】[Claims] (1)燃料集合体の軸方向を上部領域と下部領域との2
領域に分割し、この上部領域のウラン−235の平均濃
石v度υEと下部領域のウラン−235の平均線縮度L
HとがLE<UBなる関係なπし、前記燃料集合体内に
収容されたi番の燃料棒下部領域のウラン−235の奴
九度LEiをi番の燃料棒の上部領域のウラン−235
の濃縮度uH+に対して、なる関係を有することを特徴
とする燃料集合体。
(1) The axial direction of the fuel assembly is divided into two regions: an upper region and a lower region.
Divide into regions, and calculate the average concentration v degree υE of uranium-235 in the upper region and the average linear shrinkage degree L of uranium-235 in the lower region.
H is in the relationship LE<UB, and LEi is 9 degrees LEi of uranium-235 in the lower region of the i-th fuel rod housed in the fuel assembly.
A fuel assembly having the following relationship with respect to the enrichment uH+.
JP59036233A 1984-02-29 1984-02-29 Fuel aggregate Pending JPS60181682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59036233A JPS60181682A (en) 1984-02-29 1984-02-29 Fuel aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59036233A JPS60181682A (en) 1984-02-29 1984-02-29 Fuel aggregate

Publications (1)

Publication Number Publication Date
JPS60181682A true JPS60181682A (en) 1985-09-17

Family

ID=12464052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59036233A Pending JPS60181682A (en) 1984-02-29 1984-02-29 Fuel aggregate

Country Status (1)

Country Link
JP (1) JPS60181682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177486A (en) * 1986-01-31 1987-08-04 株式会社東芝 Fuel aggregate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177486A (en) * 1986-01-31 1987-08-04 株式会社東芝 Fuel aggregate

Similar Documents

Publication Publication Date Title
US4229258A (en) Fuel assembly
US4059484A (en) Hybrid nuclear fuel assembly with reduced linear heat generation rates
US3413196A (en) Fuel element
JPS5829877B2 (en) Boiling water reactor core
US4863680A (en) Fuel assembly
GB951658A (en) Improvements in or relating to swimming-pool nuclear reactors
JPS60181682A (en) Fuel aggregate
JPS59137886A (en) Fuel assembly of bwr type reactor
JPS60201284A (en) Fuel aggregate
JP7437258B2 (en) fuel assembly
JPS5928691A (en) Fuel assembly
JPH065320B2 (en) Fuel assembly for boiling water reactor
JPS60205281A (en) Fuel aggregate for boiling-water type reactor
JPS6110239Y2 (en)
JP6548986B2 (en) Boiling water reactor core, fuel assembly and channel box, and method for improving its seismic resistance
JP2507408B2 (en) Fuel assembly
JPS59217189A (en) Fuel assembly
JP2656279B2 (en) Fuel assembly for boiling water reactor
JPH01291196A (en) Fuel assembly for nuclear reactor
JPS62177486A (en) Fuel aggregate
JPS6327671B2 (en)
JPS61240193A (en) Fuel aggregate and nuclear reactor
JPS6224183A (en) Plutonium fuel aggregate
JPS61134691A (en) Nuclear fuel aggregate
JPS62228193A (en) Nuclear reactor fuel body