JPS60181392A - Direct causticizing method using fluidized bed - Google Patents

Direct causticizing method using fluidized bed

Info

Publication number
JPS60181392A
JPS60181392A JP1836384A JP1836384A JPS60181392A JP S60181392 A JPS60181392 A JP S60181392A JP 1836384 A JP1836384 A JP 1836384A JP 1836384 A JP1836384 A JP 1836384A JP S60181392 A JPS60181392 A JP S60181392A
Authority
JP
Japan
Prior art keywords
fluidized bed
particles
black liquor
fluidized
direct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1836384A
Other languages
Japanese (ja)
Other versions
JPH0411674B2 (en
Inventor
岸上 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1836384A priority Critical patent/JPS60181392A/en
Publication of JPS60181392A publication Critical patent/JPS60181392A/en
Publication of JPH0411674B2 publication Critical patent/JPH0411674B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は流動層を用いた直接苛性化方法に係り、特に
使用する酸化金属の耐用時間を延長し得る方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a direct causticizing process using a fluidized bed, and more particularly to a process that can extend the service life of the metal oxides used.

製紙工場においてパルプ製造工程では木材成分のセルロ
ーズとリグニンとを分離してセルローズのみを取り出す
ための苛性ソーダ(NaOH)を中心とした薬品を用い
る。蒸解工程を経た溶解リグニンとNa成分を含有する
溶液は黒液と称する廃液として排出されるが、この黒液
を燃焼させて熱回収すると共にNaOHを回収する方法
が従来から実施されている。従来法は、黒液燃焼時にN
 a2.o o3を反応生成させ、このN at 、 
003を別の工程で生成した消石灰(Oa (OH)2
 )と反応させNaOHを回収するものであるが、反応
過程が複雑かつ設備が大型化すること、及びNaOH生
成の際に生じたCa00を消和工程を経て0a(OH)
に戻すために多大なエネルギーを消費するという問題が
ある。このため省エネルギー化と設備の簡略化を目的と
して直接苛性化法と称す初aclH回収方法が提案され
、その−例として流動層炉を用いた方法を発明者は提案
している。【特願昭57−4029号)直接苛性化法自
体は、燃焼過程において酸化金属例えばFe2O3を添
加することにより鉄酸ナトリウム(NaFe02)を生
じ、さらにこのNaFeO2を加水分解することにより
NaOHを回収する方法であるが、流動層を用いた場合
にはこの流動媒体としてFexOaを用いることにより
燃焼と、NaFe0zの生成反応とを行わせるようにし
た方法である。
In the pulp manufacturing process at a paper mill, chemicals, mainly caustic soda (NaOH), are used to separate the wood components cellulose and lignin and extract only the cellulose. A solution containing dissolved lignin and Na components that has passed through the cooking process is discharged as a waste liquid called black liquor, and a method of burning this black liquor to recover heat and recover NaOH has been conventionally practiced. The conventional method uses N during black liquor combustion.
a2. o o3 is reacted and produced, and this N at ,
Slaked lime (Oa (OH)2) produced from 003 in a separate process
) to recover NaOH, but the reaction process is complicated and the equipment becomes large, and the Ca00 generated during NaOH generation is converted to 0a(OH) through a slaked process.
There is a problem in that a large amount of energy is consumed to restore the For this reason, a primary aclH recovery method called a direct causticization method has been proposed for the purpose of energy saving and equipment simplification, and the inventor has proposed a method using a fluidized bed furnace as an example thereof. [Patent Application No. 57-4029] The direct causticizing method itself produces sodium ferrate (NaFe02) by adding an oxide metal such as Fe2O3 during the combustion process, and then recovers NaOH by hydrolyzing this NaFeO2. In this method, when a fluidized bed is used, FexOa is used as the fluidized medium to cause combustion and a reaction to generate NaFeOz.

この方法は第1図に示す如く、先ず、図中(a)の様に
Fe20Bから成る媒体粒子4の表面において黒液との
燃焼反応によりNaFeαの表層部5を形成し、この様
になった媒体粒子を流動層中から抜き出し、水を添加す
ることにより加水分解を行ってN 2LOHを回収する
。この間に表層部5は水中に溶出するわけであるが、こ
の結果粒子はこの表層部5の分だけ粒子径が小さくなり
、何回か繰り返し使用するうちに(0)(d)に示す如
く媒体粒子は小径化し、ついには空塔部に飛散し集塵器
に大きな負坦をかけることになる。さらにこの様に小径
化した粒子は使用不能となり、NaFe0zへの反応そ
のものは十分に行える粒子が、単に粒径の低下という状
態になったことにより大量に廃棄されることになってき
わめて不経済である。なお上述の理由の外に、流動層内
に直接供給された黒液が完全に反応するまでに一定の時
間が必要であるが、この間に媒体粒子間の衝突、摩耗に
よる粒子の小径化も無視し得ない。
As shown in Fig. 1, this method first forms a surface layer 5 of NaFeα on the surface of media particles 4 made of Fe20B through a combustion reaction with black liquor as shown in (a) in the figure. The media particles are extracted from the fluidized bed and hydrolyzed by adding water to recover N2LOH. During this time, the surface layer 5 dissolves into the water, and as a result, the particle diameter of the particles becomes smaller by the amount of the surface layer 5, and as the particles are used several times, they dissolve into the medium as shown in (0) and (d). The particles become smaller in diameter and eventually scatter into the sky tower, placing a heavy burden on the dust collector. Furthermore, particles whose diameter has been reduced in this way become unusable, and particles that can sufficiently react to NaFe0z are simply reduced in particle size and are discarded in large quantities, which is extremely uneconomical. be. In addition to the reasons mentioned above, it takes a certain amount of time for the black liquor directly supplied into the fluidized bed to completely react, but this also ignores the collisions between media particles and the reduction in particle size due to abrasion during this time. I can't.

この発明の目的は上述した問題点を除去し、小径化した
粒子でも十分流動媒体として使用でき、かつ粒子の小径
化自体も低減し得る方法を提供することにある。
An object of the present invention is to eliminate the above-mentioned problems, to provide a method in which even small-sized particles can be used sufficiently as a fluidizing medium, and the reduction in particle size itself can be reduced.

要するにこの発明は黒液と酸化金属粒子との混合液を流
動層空塔部から所定の粒径の粒子(液滴)として噴霧し
、空塔部下陣中に黒液との反応の少くとも一部を行なう
気化燃焼をさせて流動層に達するときは、鉄酸ナトリウ
ム粒子とし、はぼ所定の粒径の媒体粒子を形成するよう
にした方法である。
In short, this invention sprays a liquid mixture of black liquor and metal oxide particles from the upper part of the fluidized bed as particles (droplets) of a predetermined size, and at least part of the reaction with the black liquor is carried out in the lower part of the upper part of the upper part of the upper part of the upper part of the fluidized bed. When reaching the fluidized bed through vaporization combustion, sodium ferrate particles are used to form medium particles with a predetermined particle size.

以下この発明の実施例を図面を参考に説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図において、6は流動層炉であり、流動層炉起動時
には従来方法と同じく酸化金属(以下[Fe20s J
で説明する)がら成る流動媒体が充填してあり、多孔板
7がら供給される空気Aにより流動化されている。なお
粒径は100〜1’oooμ程度としておく。従来はこ
の流動層に対して直接黒液が供給されていたが、この方
法においては空塔部から噴霧供給される。すなわち混合
槽8において黒液9と酸化鉄粒子(Fe2O3)は混合
攪拌され、両者の混合液11は管路29を経て流動層炉
空塔部6aに配置したオツシレータ12に供給される。
In Fig. 2, 6 is a fluidized bed furnace, and when starting the fluidized bed furnace, metal oxide (hereinafter [Fe20s J
) is filled with a fluidized medium consisting of (described in ), and is fluidized by air A supplied from the perforated plate 7. Note that the particle size is approximately 100 to 1'oooμ. Conventionally, black liquor was supplied directly to this fluidized bed, but in this method, black liquor is supplied by spraying from the empty column. That is, the black liquor 9 and the iron oxide particles (Fe2O3) are mixed and stirred in the mixing tank 8, and the mixed liquid 11 of both is supplied via the pipe line 29 to the oscillator 12 disposed in the empty tower part 6a of the fluidized bed furnace.

オツシレータ12がらは黒液とFI9203の混合液が
噴霧されるが、この場合噴霧される液の粒径は数mm程
度として、後述の流動媒体の粒径が適当な大きさとなる
ようにする。
A mixed liquid of black liquor and FI9203 is sprayed onto the oscillator 12, and in this case, the particle size of the sprayed liquid is set to be about several mm, so that the particle size of the fluidizing medium described later becomes an appropriate size.

第3図は噴霧された液体の粒子の変化の状態を模式的に
示したものである。オツシレータ12により空塔部内に
噴霧された液体の粒子(以下「液滴」と称する)は、例
えばほぼ中央部にFe2O3から成る粒子4が位置して
いる。この粒子4は例えば第1図の(d)で示す廃棄処
分すべき小径の粒子であってもがまゎない。この様な状
態で空塔部に噴霧されだ液滴は、空塔部内の熱H,によ
って燃焼反応し、次式(1)及び(2)がら成る反bt
;を行い、NaFe0zがら成る層5を形成する。
FIG. 3 schematically shows how the particles of the sprayed liquid change. In the liquid particles (hereinafter referred to as "droplets") sprayed into the sky column by the oscillator 12, particles 4 made of Fe2O3 are located, for example, approximately in the center. The particles 4 may be, for example, small-diameter particles that should be disposed of as shown in FIG. 1(d). In such a state, the droplets sprayed into the empty column undergo a combustion reaction due to the heat H in the empty column, and the antibt formed by the following formulas (1) and (2) is generated.
; to form a layer 5 made of NaFeOz.

2NaOH+(!02Na、Co、 十H20−(1)
Na200s+Fe2o3−+2NaFflO+ Co
2・・・(2)この間に層中には空洞部13がJと成さ
れ多孔質となる。この様にして反応を進行させながら落
下し、流動層14に至る。ここにおいてさらに層内温度
H2によって反応が進行し完全にNaFeO2となりこ
の粒子が媒体粒子となる。一方あらがじめ流動媒体とし
て投入されたFe、0.粒子は、未反応または反応未了
で落下する黒液と反応し、NaFeO2となる。このた
め流動層内の粒子は徐々にNaFeO2粒子に置換され
てゆく。ここでFezesの真比重は4.5〜5.0で
重く、流動化した場合の見掛比重は2.5〜3.0程度
であるが、一方、1JaFeoaの媒体粒子とした場合
の見掛比重は1.0〜1.5程度である。従って例えば
NaFeO2粒子にほぼ全量が置換した場合、50o〜
looommAqの圧力損失のみで800〜1200m
m程度の深い流動層を形成でき反応を効果的に?テうこ
とかできる。
2NaOH+(!02Na, Co, 10H20-(1)
Na200s+Fe2o3-+2NaFflO+Co
2...(2) During this time, a cavity 13 is formed in the layer and the layer becomes porous. In this way, the reaction proceeds while falling, reaching the fluidized bed 14. Here, the reaction further progresses due to the temperature H2 in the layer, and the particles become NaFeO2 completely, and these particles become medium particles. On the other hand, Fe, which was previously introduced as a fluid medium, was 0. The particles react with the unreacted or unreacted black liquor that falls to form NaFeO2. Therefore, the particles in the fluidized bed are gradually replaced by NaFeO2 particles. Here, the true specific gravity of Fezes is heavy at 4.5 to 5.0, and the apparent specific gravity when fluidized is about 2.5 to 3.0, but on the other hand, the apparent specific gravity when made into media particles of 1 Ja Feoa is Specific gravity is about 1.0 to 1.5. Therefore, for example, when almost the entire amount is replaced with NaFeO2 particles, 50o~
800-1200m with pressure loss of looommAq only
Is it possible to form a fluidized bed as deep as 1000 ft for effective reaction? I can say te.

次に第4図は別の液滴の変化の状態を示すものである。Next, FIG. 4 shows another state of droplet change.

この液滴は例えば第3図で流動媒体を形成した粒子の核
となっているFe20sとほぼ同様のきわめて小径の粒
子4aの複数個が混合しており、通常はこの様に粒径の
異る複数個の粒子が含まれている方が一般的である。こ
の様なきわめて一小径の粒子との混合物であっても液滴
自体の粒径は数mm程度の大きさであるので、流動層1
4において流動媒体粒子として十分に使用可能である。
These droplets are a mixture of a plurality of extremely small particles 4a, which are almost the same as Fe20s, which is the core of the particles that formed the fluidized medium in Fig. 3, and usually have different particle sizes like this. It is more common for it to contain multiple particles. Even in the case of a mixture with particles of extremely small diameter, the particle size of the droplets themselves is approximately several mm, so the fluidized bed 1
4, it can be fully used as a fluidized medium particle.

このためFe2O,は事実上、集塵器で捕集したものは
全て利用可能となる。
Therefore, virtually all Fe2O collected by the dust collector can be used.

NaFeO2の生成に当ってF e /N aのモル比
は重要な因子であるが、Fe20s粒子が細い場合、F
e/Naモル比を1.1以上にしても反応率は殆んど不
変であることが確認された。一方、生成されるNaFe
ozはFe/N、aのモル比が大きくなるほど融点は高
くなる。しかし反応率の点から観ればモル比o、9〜1
.1程度で操作することが好ましく、この範囲で生成さ
れるNaFeO2の軟化点ね約1100℃となる。この
ため流動層の運転温度は1100℃以下とする。
The molar ratio of F e /N a is an important factor in the generation of NaFeO2, but when the Fe20s particles are thin, F e
It was confirmed that the reaction rate remained almost unchanged even when the e/Na molar ratio was increased to 1.1 or more. On the other hand, the generated NaFe
oz is Fe/N, and the larger the molar ratio of a, the higher the melting point. However, from the point of view of reaction rate, the molar ratio o is 9 to 1.
.. It is preferable to operate at a temperature of about 1, and the softening point of NaFeO2 produced in this range is about 1100°C. For this reason, the operating temperature of the fluidized bed is set to 1100°C or less.

以上の方法により形成されたNaFeO2粒子は流動層
から溢流され、溶解槽15に供給される。
The NaFeO2 particles formed by the above method are overflowed from the fluidized bed and supplied to the dissolution tank 15.

この場合、排ガスGと共に飛散した小径粒子も集塵器1
6において捕集され同槽に供給される。
In this case, the small diameter particles scattered together with the exhaust gas G are also collected in the dust collector 1.
6 is collected and supplied to the same tank.

この溶解槽15に対しては水Wが供給され、次式(3)
の如く加水分解が行われる。
Water W is supplied to this dissolution tank 15, and the following formula (3)
Hydrolysis is carried out as follows.

2NaFeOz +H202NaOH+Fe20g =
(3)なお、この場合蒸気S等の加熱媒体により槽内を
加熱させて反応速度を高めるようにするとよい。加水分
解により生じたNaOHll!:Fe20sの混合液は
管路16を経て沈降槽17に至り、沈降分離したFez
Oaは管路18を経て脱水器19に至る。この場合、分
離すべきFe20gはかなり小径の粒子が多量に含まれ
ているため、従来法で用いてきた真空式、加圧式、ベル
トプレス式等の脱水機用の濾布では不十分である。この
ため、この発明においてはa利に対してあらかじめ濾過
助剤(この場合は濾過すべきFe2O,粒子を用いると
よい)を濾過させて濾過面に助剤層を形成したフィルタ
ーを用い、小径の粒子による極端なケーキの抵抗の増大
を防止するよう構成すると良い。脱水を終ったケーキ(
Fe20g)は乾燥器21に供給され乾燥される。この
場合、乾燥用の加熱媒体として流動層炉6の排ガスGを
用いると経済的である。
2NaFeOz +H202NaOH+Fe20g =
(3) In this case, it is preferable to heat the inside of the tank with a heating medium such as steam S to increase the reaction rate. NaOHll produced by hydrolysis! : The mixed liquid of Fe20s reaches the sedimentation tank 17 via the pipe 16, and the Fe20s mixture is sedimented and separated.
Oa reaches a dehydrator 19 via a pipe 18. In this case, since the 20 g of Fe to be separated contains a large amount of particles of considerably small diameter, filter cloths for dehydrators such as vacuum type, pressure type, belt press type, etc. used in conventional methods are insufficient. Therefore, in this invention, a filter with a filter aid (in this case, it is preferable to use Fe2O particles to be filtered) is filtered in advance to form an aid layer on the filter surface, and a filter with a small diameter is used. It is preferable to configure the structure to prevent an extreme increase in cake resistance due to particles. Cake after dehydration (
Fe20g) is supplied to the dryer 21 and dried. In this case, it is economical to use the exhaust gas G of the fluidized bed furnace 6 as the heating medium for drying.

一方NaOH溶液は管路22を経て濾過器23に入る。On the other hand, the NaOH solution enters the filter 23 via the pipe 22.

 この場合の濾材も前述の脱水器19の場合と同様に濾
過面に対してFe、 O,粒子による助剤層を形成して
おくと良い。この場合、濾過したFed Osの微粒子
も乾燥器21に供給し使用しても良い。脱水519及び
濾過器23がら分離したNaOHはN aOH貯槽24
に貯留され蒸解工程に対して適宜供給される。
It is preferable that the filter medium in this case also has an auxiliary agent layer made of Fe, O, and particles formed on the filtering surface as in the case of the dehydrator 19 described above. In this case, filtered Fed Os fine particles may also be supplied to the dryer 21 for use. The NaOH separated from the dehydration 519 and the filter 23 is stored in the NaOH storage tank 24.
It is stored in and supplied to the cooking process as needed.

また乾燥器21で乾燥されたFe20x粒子1oはホッ
パ25に供給され貯留される。貯留されたFθgos粒
子は管路26を経て攪拌槽8に供給され、黒液9と混合
され、管路27を経てオンジレータ12に供給され、前
述した燃焼をrテう。なお、混合攪拌の際にも加熱媒体
を利用して混合を促進するようにすると良い。
Further, the Fe20x particles 1o dried in the dryer 21 are supplied to the hopper 25 and stored therein. The stored Fθgos particles are supplied to the stirring tank 8 through the pipe line 26, mixed with the black liquor 9, and supplied to the ongilator 12 through the pipe line 27, where they are subjected to the above-described combustion. In addition, it is preferable to use a heating medium to promote mixing during mixing and stirring.

この発明を実施することにより酸化鉄粒子等の酸化金属
粒子の粒径に係りなくほぼ所定粒径の流動媒体を形成し
得るので、酸化金属を最期まで使用することができ、き
わめて経済的である。
By carrying out this invention, it is possible to form a fluidized medium of almost a predetermined particle size regardless of the particle size of the metal oxide particles such as iron oxide particles, so the metal oxide can be used until the end, which is extremely economical. .

また、空塔部の熱も反応に利用し得るので層内での反応
時間を短縮でき、媒体粒子を早期に層外に排出でき、こ
のため粒子の衝突、摩耗による小径化も最少限に押える
ことが1丁能となり酸化金属の粒子の小径化自体も遅ら
せることができる。
In addition, since the heat in the empty column can be used for the reaction, the reaction time within the bed can be shortened, and media particles can be quickly discharged from the bed, thereby minimizing particle collisions and reduction in diameter due to abrasion. This makes it possible to delay the size reduction of metal oxide particles themselves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の流動媒体粒子の変化の状態を示す断面図
、第2図はこの発明に係る方法を実施するプラントの系
統図、第3図及び第4図は酸化鉄粒子と黒液との混合液
粒子の炉内の変化状態を示す断面図である。 4.10・・・・・・酸化鉄粒子 5・・・・・・鉄酸ナトリウム層 6・・・・・・流動層炉 6a・・・・・・空塔部 9・・・・・・黒液 11・・・・・・黒液と酸化鉄粒子の混合液12・・・
・・・オツシレータ (0) (b) (c) (d) 第3図 I2
Fig. 1 is a cross-sectional view showing the state of change in particles of a conventional fluidized medium, Fig. 2 is a system diagram of a plant implementing the method according to the present invention, and Figs. 3 and 4 show the relationship between iron oxide particles and black liquor. FIG. 3 is a cross-sectional view showing the changing state of mixed liquid particles in the furnace. 4.10...Iron oxide particles 5...Sodium ferrate layer 6...Fluidized bed furnace 6a... Sky tower section 9... Black liquor 11... Mixture of black liquor and iron oxide particles 12...
...oscillator (0) (b) (c) (d) Figure 3 I2

Claims (1)

【特許請求の範囲】 1、 黒液と酸化金属とを流動層炉内で反応させて黒液
中のナトリウム分を回収する方法において、黒液と酸化
金属との混合物を流動層炉空塔部から噴霧し、反応の少
くとも一部を空塔部内で行い、流動層に落下した粒子を
流動媒体として利用することを特徴とする流動層を用い
た直接苛性化方法。 2、前記混合物の噴霧粒子の粒径を、約1mm以上とし
たことを特徴とする特t1・請求の範囲第1項記載の流
動層を用いた直接苛性化方法。 3、前記酸化金属を酸化鉄とし、かつ反応生成物を鉄酸
ナトリウムとし、さらに流動層起動時の流動媒体を酸化
鉄粒子としたことを特徴とする特許請求の範囲第1項ま
たは第2項記載の流動層を用いた直接苛性化方法。 4、鉄とナトリウムとのモル比を約0.9から約1.1
の間とし、かつ流動層の層中温度を約1100℃以下に
制御することを特徴とする特許請求の範囲第3項記載の
流動層を用いた直接苛性化方法。
[Scope of Claims] 1. In a method for recovering sodium content in black liquor by reacting black liquor and metal oxide in a fluidized bed furnace, a mixture of black liquor and metal oxide is passed through the cavity of the fluidized bed furnace. A direct causticizing method using a fluidized bed, characterized in that the particles are sprayed from the bed, at least a part of the reaction is carried out in the empty column, and the particles that have fallen into the fluidized bed are used as a fluidized medium. 2. The direct causticizing method using a fluidized bed according to claim 1, characterized in that the particle size of the sprayed particles of the mixture is about 1 mm or more. 3. Claims 1 or 2, characterized in that the metal oxide is iron oxide, the reaction product is sodium ferrate, and the fluidized medium at the time of starting the fluidized bed is iron oxide particles. Direct causticization method using a fluidized bed as described. 4. Adjust the molar ratio of iron and sodium from about 0.9 to about 1.1.
4. A direct causticizing method using a fluidized bed according to claim 3, characterized in that the temperature in the fluidized bed is controlled to be between about 1,100° C. or less.
JP1836384A 1984-02-06 1984-02-06 Direct causticizing method using fluidized bed Granted JPS60181392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1836384A JPS60181392A (en) 1984-02-06 1984-02-06 Direct causticizing method using fluidized bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1836384A JPS60181392A (en) 1984-02-06 1984-02-06 Direct causticizing method using fluidized bed

Publications (2)

Publication Number Publication Date
JPS60181392A true JPS60181392A (en) 1985-09-17
JPH0411674B2 JPH0411674B2 (en) 1992-03-02

Family

ID=11969610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1836384A Granted JPS60181392A (en) 1984-02-06 1984-02-06 Direct causticizing method using fluidized bed

Country Status (1)

Country Link
JP (1) JPS60181392A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268884A (en) * 1986-05-16 1987-11-21 川崎重工業株式会社 Soda recovery method
JPS62268889A (en) * 1986-05-16 1987-11-21 川崎重工業株式会社 Direct causticizing furnace and starting method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135700A (en) * 1978-04-13 1979-10-22 Ishikawajima Harima Heavy Ind Co Ltd Recovering method for caustic soda from pulp waste fluid
JPS55112392A (en) * 1979-02-20 1980-08-29 Nittetsu Kakoki Kk Treating of waste liquor
JPS58132191A (en) * 1982-01-27 1983-08-06 バブコツク日立株式会社 Direct caustification method and apparatus in pulping process
JPS58132192A (en) * 1982-01-27 1983-08-06 バブコツク日立株式会社 Direct caustification using fluidized layer furnace
JPS58136893A (en) * 1982-02-03 1983-08-15 バブコツク日立株式会社 Combustion of black liquor
JPS59162129A (en) * 1983-02-28 1984-09-13 Kawasaki Heavy Ind Ltd Recovery of sodium hydroxide from pulp waste
JPS59162128A (en) * 1983-02-28 1984-09-13 Kawasaki Heavy Ind Ltd Recovery of sodium hydroxide from pulp waste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135700A (en) * 1978-04-13 1979-10-22 Ishikawajima Harima Heavy Ind Co Ltd Recovering method for caustic soda from pulp waste fluid
JPS55112392A (en) * 1979-02-20 1980-08-29 Nittetsu Kakoki Kk Treating of waste liquor
JPS58132191A (en) * 1982-01-27 1983-08-06 バブコツク日立株式会社 Direct caustification method and apparatus in pulping process
JPS58132192A (en) * 1982-01-27 1983-08-06 バブコツク日立株式会社 Direct caustification using fluidized layer furnace
JPS58136893A (en) * 1982-02-03 1983-08-15 バブコツク日立株式会社 Combustion of black liquor
JPS59162129A (en) * 1983-02-28 1984-09-13 Kawasaki Heavy Ind Ltd Recovery of sodium hydroxide from pulp waste
JPS59162128A (en) * 1983-02-28 1984-09-13 Kawasaki Heavy Ind Ltd Recovery of sodium hydroxide from pulp waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268884A (en) * 1986-05-16 1987-11-21 川崎重工業株式会社 Soda recovery method
JPS62268889A (en) * 1986-05-16 1987-11-21 川崎重工業株式会社 Direct causticizing furnace and starting method therefor

Also Published As

Publication number Publication date
JPH0411674B2 (en) 1992-03-02

Similar Documents

Publication Publication Date Title
US4303469A (en) Process and apparatus for recovery of spent pulping liquors
US4666694A (en) Method for treating by-products from flue gas
US2377282A (en) Manufacture of sulphite pulp
US3758668A (en) So2 absorption system with regeneration of absorbent
CA1282210C (en) Process for recovering sodium hydroxide from an alkaline pulp wasteliquor
JPS60181392A (en) Direct causticizing method using fluidized bed
US5984987A (en) Black liquor gasification process
US3787283A (en) Treatment of waste liquor from pulp production
US5597445A (en) Method for recovering sodium from a spent cooking liquor
US3414468A (en) Process of regenerating pulping liquor from cellulose digestion waste liquor
CA1193406A (en) Process to regenerate kraft liquor
US4035228A (en) Recovery process and apparatus for alkali metal-containing waste liquor
JPS58132192A (en) Direct caustification using fluidized layer furnace
JPH0428835B2 (en)
JPS59162129A (en) Recovery of sodium hydroxide from pulp waste
JPS602791A (en) Direct caustic method using fluidized layer
CA1127479A (en) Waste liquor fluidized bed steam generator
JPH0368152B2 (en)
JPS58132193A (en) Recovery of caustic soda using fluidized layer
JPH09268488A (en) Production of kraft pulp
JPS58132191A (en) Direct caustification method and apparatus in pulping process
JPH0411673B2 (en)
JP2000136490A (en) Production of kraft pulp
JPS58126390A (en) Direct causticification with enhanced efficiency
JPS62268883A (en) Soda recovery method