JPH0368152B2 - - Google Patents

Info

Publication number
JPH0368152B2
JPH0368152B2 JP57149289A JP14928982A JPH0368152B2 JP H0368152 B2 JPH0368152 B2 JP H0368152B2 JP 57149289 A JP57149289 A JP 57149289A JP 14928982 A JP14928982 A JP 14928982A JP H0368152 B2 JPH0368152 B2 JP H0368152B2
Authority
JP
Japan
Prior art keywords
black liquor
combustion
furnace
caustic soda
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57149289A
Other languages
Japanese (ja)
Other versions
JPS5943186A (en
Inventor
Kunio Kishigami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP14928982A priority Critical patent/JPS5943186A/en
Publication of JPS5943186A publication Critical patent/JPS5943186A/en
Publication of JPH0368152B2 publication Critical patent/JPH0368152B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【発明の詳細な説明】 この発明はパルプ製造工程に生じる黒液と称す
る廃液を燃焼させ、含有する薬品を回収すると共
に熱回収を行なう方法に係り、特に直接苛性化法
に好適に実施できる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of burning a waste liquid called black liquor produced in a pulp manufacturing process to recover chemicals and heat recovery, and is particularly suitable for direct causticization. Regarding.

製紙工場において、パルプ製造工程では木材成
分のセルローズ(繊維)とグリニン(樹脂)を分
離してセルローズのみを取り出すための苛性ソー
ダ(NaOH)を中心とした薬品を用いる。蒸解
工程を経た溶解リグニンとNa成分を含有する溶
液は黒液と称する廃液として排出されるが、この
黒液を燃焼させることにより熱回収を行ない、か
つ同時にNaOHを回収して再使用する方法が従
来から実施されている。この方法は黒液燃焼装置
を精密に制御することにより同装置内で黒液を燃
焼させてNa2CO3を反応生成させ、このNa2CO3
を別の工程で生成した消石灰〔Ca(OH)2〕と反
応させることによりNaOHを回収するものであ
り、反応過程が複雑で大きな設備を必要とし、か
つNaOH生成の際に生じたCaCO3を消和工程を
経てCa(OH)2に戻すために多大なエネルギーを
消費するという問題がある。このため設備の簡略
化、エネルギー消費の減少を図って直接苛性化法
と称するNaOH回収方法が提案されている。第
1図を用いてこの直接苛性化法の概略を説明する
と、木材チップは蒸解工程1においてNaOHに
よりリグニンが分離され、リグニンおよびNa成
分を含有する黒液は燃焼過程2において酸化鉄粉
としてFe2O3を添加することにより次式の反応を
行なう。
In the pulp manufacturing process at paper mills, chemicals, mainly caustic soda (NaOH), are used to separate the wood components cellulose (fiber) and glinin (resin) and extract only the cellulose. The solution containing dissolved lignin and Na components after the cooking process is discharged as a waste liquid called black liquor, but there is a method that recovers heat by burning this black liquor and at the same time recovers and reuses NaOH. This has been practiced for a long time. This method involves precisely controlling a black liquor combustion device to combust black liquor within the device to react and generate Na 2 CO 3 .
NaOH is recovered by reacting it with slaked lime (Ca(OH) 2 ) produced in another process.The reaction process is complicated and requires large equipment, and the CaCO 3 produced during NaOH production is recovered. There is a problem in that a large amount of energy is consumed to return Ca(OH) 2 through the slaked process. For this reason, a NaOH recovery method called the direct causticization method has been proposed to simplify equipment and reduce energy consumption. To explain the outline of this direct causticizing method using Figure 1, lignin is separated from wood chips using NaOH in the cooking process 1, and the black liquor containing lignin and Na components is converted into iron oxide powder in the combustion process 2. By adding 2 O 3 , the following reaction is carried out.

2NaOH+OC2→Na2CO3+H2O ……(1) Na2CO3+Fe2O3→2NaFeO2+CO2 ……(2) このうち鉄酸ナトリウム(NaFeO2)は次段階
の溶解過程3において加水分解されNaOHを回
収する。
2NaOH+OC 2 →Na 2 CO 3 +H 2 O ...(1) Na 2 CO 3 +Fe 2 O 3 →2NaFeO 2 +CO 2 ...(2) Of these, sodium ferrate (NaFeO 2 ) is added in the next stage of dissolution process 3. It is hydrolyzed and NaOH is recovered.

2NaFeO2+H2O→2NaOH+Fe2O3 ……(3) つまり直接苛性化法では(1)、(2)、(3)の反応を行
なうことによりNaOHの回収を行なうことがで
きると共に、この回収に使用したFe2O3を循環再
使用することができ、従来方法と比較して設備
費、エネルギー消費量を大幅に減少させることが
できるという利点がある。
2NaFeO 2 +H 2 O → 2NaOH + Fe 2 O 3 ...(3) In other words, in the direct causticization method, NaOH can be recovered by performing the reactions (1), (2), and (3), and this recovery This method has the advantage of being able to recycle and reuse the Fe 2 O 3 used in the process, significantly reducing equipment costs and energy consumption compared to conventional methods.

しかしこの方法において、燃焼を行なう前に黒
液とFe2O3とをあらかじめ混合しておくことは次
の理由により困難である。すなわち、常温では黒
液の粘度は相当に高く、Fe2O3との混合を行なう
ためには黒液を加熱して粘度を低下させねばなら
ず、黒液燃焼により回収した熱量のうち相当量を
黒液加熱用に消費してしまい不経済である。また
両者を混合するための特別な装置を設置せねばな
らず、設備費に加えてこの装置運転のための動力
費も必要となり、この点からも不経済である。
However, in this method, it is difficult to mix black liquor and Fe 2 O 3 before combustion for the following reasons. In other words, the viscosity of black liquor is quite high at room temperature, and in order to mix it with Fe 2 O 3 , it is necessary to heat the black liquor to lower its viscosity, and a considerable amount of the heat recovered from black liquor combustion is consumed. is consumed for heating the black liquor, which is uneconomical. Further, a special device must be installed to mix the two, and in addition to equipment costs, power costs for operating this device are also required, which is also uneconomical.

この発明の目的は上述した問題点に鑑み構成し
たものであり、黒液とFe2O3との混合を不用とし
工程を簡略化した黒液燃焼方法を提供することに
ある。
An object of the present invention is to provide a black liquor combustion method that eliminates the need for mixing black liquor and Fe 2 O 3 and simplifies the process.

要するにこの発明は、燃焼炉に黒液と酸化金属
粉を別々に供給し、炉内温度を1100℃以下に保持
し燃焼させ、燃焼排ガスで炉内で生成した鉄酸ナ
トリウム粉を搬送し、これを集塵機で捕集し、苛
性ソーダと酸化金属粉を回収し、これを溶解槽で
溶解し金属粉と苛性ソーダとに分離し、酸化金属
粉は燃焼炉へ、苛性ソーダはパルプ製造工程に循
環再使用することを特徴とする黒液燃焼方法であ
る。
In short, this invention separately supplies black liquor and oxidized metal powder to a combustion furnace, maintains the temperature inside the furnace at 1100 degrees Celsius or less and burns it, and transports the sodium ferrate powder produced in the furnace with combustion exhaust gas. Collected by a dust collector, caustic soda and oxidized metal powder are recovered, and this is dissolved in a melting tank to separate metal powder and caustic soda. The oxidized metal powder is sent to the combustion furnace, and the caustic soda is recycled and reused in the pulp manufacturing process. This black liquor combustion method is characterized by the following.

以下この発明の実施例を図面を参考に説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第2図において、10は黒液燃焼装置(反応装
置も兼ねる)である流動層ボイラ(流動層炉)で
あり、ボイラ内に形成した流動層10a内には層
内伝熱管10bが配置してあり、黒液燃焼により
生じた熱を回収すると共に給水W1の通過量を調
節することにより層内温度を制御する。ここで、
前記(1)、(2)により生じるNaFeO2の軟化点は1100
℃以上、溶融点は1180℃以上でありNaFeO2は粉
状にすると回収が容易であるから、層内温度は
1100℃以下になるよう、弁4により給水W1を調
節して黒液の供給量を各々制御する。以上の制御
により生じたNaFeO2は粒径が100μ以下の微細な
粒子の粉状であり、炉内を上昇する燃焼排ガスと
共に炉外に排出され集塵装置(図示のものはサイ
クロン)12に至りNaFeO2が回収され、排ガス
Gは系外に排出される。この場合、流動層炉10
で発生したNaFeO2の殆んどは排ガスGと共に炉
外に流出し、かつサイクロン式集塵装置の場合、
捕集可能な最低粒径は約10μとされているので、
結局流動層炉10で発生したNaFeO2の殆んど全
部が集塵装置12で捕集されることになる。捕集
されたNaFeO2はホッパ13に至り、溶解水W2
の供給量に対応してロータリーフィーダ14で供
給量が調節され溶解槽16に至る。ここで前記し
た式(3)に示す加水分解が行なわれ、NaOHと
Fe2O3が生じる。この場合、溶解槽16内の溶液
は加熱した方が反応が促進される。加熱媒体とし
ては流動層ボイラ10で発生し、かつ管路40を
経て供給された温水または蒸気を用いる。
In FIG. 2, 10 is a fluidized bed boiler (fluidized bed furnace) which is a black liquor combustion device (also serving as a reaction device), and an intrabed heat exchanger tube 10b is arranged in a fluidized bed 10a formed in the boiler. The temperature inside the bed is controlled by recovering the heat generated by black liquor combustion and adjusting the amount of feed water W1 passing through. here,
The softening point of NaFeO 2 produced by (1) and (2) above is 1100
℃ or higher, the melting point is 1180℃ or higher, and NaFeO 2 can be easily recovered if it is powdered, so the temperature inside the layer is
The water supply W1 is adjusted by the valve 4 to control the amount of black liquor supplied so that the temperature becomes 1100°C or less. The NaFeO 2 produced by the above control is in the form of fine powder particles with a particle size of 100μ or less, and is discharged from the furnace together with the combustion exhaust gas rising inside the furnace, reaching the dust collector (the one shown is a cyclone) 12. NaFeO 2 is recovered and exhaust gas G is discharged outside the system. In this case, the fluidized bed furnace 10
Most of the NaFeO 2 generated in the process flows out of the furnace together with the exhaust gas G, and in the case of a cyclone type dust collector,
The minimum particle size that can be collected is approximately 10μ, so
In the end, almost all of the NaFeO 2 generated in the fluidized bed furnace 10 is collected by the dust collector 12. The collected NaFeO 2 reaches the hopper 13 and dissolves into dissolved water W 2
The feed amount is adjusted by the rotary feeder 14 in accordance with the feed amount, and the feed amount reaches the dissolution tank 16. Here, the hydrolysis shown in formula (3) above is performed, and NaOH and
Fe 2 O 3 is produced. In this case, heating the solution in the dissolution tank 16 will accelerate the reaction. As the heating medium, hot water or steam generated in the fluidized bed boiler 10 and supplied through the pipe 40 is used.

加水分解されたNaOHとFe2O3の混合液は管路
17により沈降槽19に供給され、沈降分離した
Fe2O3は管路39を経て脱水機20に供給され
る。
A mixed solution of hydrolyzed NaOH and Fe 2 O 3 is supplied to a sedimentation tank 19 through a pipe 17, where it is sedimented and separated.
Fe 2 O 3 is supplied to the dehydrator 20 via a pipe 39.

一方沈降槽19から溢流したNaOHは溢流槽
23に流入し、さらに管路24を経てNaOH貯
槽27に貯留され、管路28をへて逐次蒸解工程
で使用される。なお、脱水機20から排出された
液体(HaOH)は管路26を経てNaOH貯槽2
7に供給される。
On the other hand, NaOH overflowing from the settling tank 19 flows into the overflow tank 23, passes through the pipe line 24, is stored in the NaOH storage tank 27, and passes through the pipe line 28 to be used in the sequential cooking process. Note that the liquid (HaOH) discharged from the dehydrator 20 passes through a pipe 26 to the NaOH storage tank 2.
7.

一方脱水機20から排出されたFe2O3の脱水ケ
ーキはコンベヤ30により貯槽を兼ねる乾燥器3
1に供給され、熱風等の加熱媒体33により完全
に乾燥され粉体として貯蔵される。貯蔵された
Fe2O3はフィーダ32を経てエジェクタ34に所
定量が供給され、気流輸送用空気Aにより管路3
5を介して燃焼装置10の流動槽10aに対して
供給される。一方黒液BLは別の管路36を経て
流動槽10aに供給される。なお別々に供給され
た黒液とFe2O3は流動層10a内において良好に
混合される必要があるので両者を噴射するノズル
37,38は近接して配置するのが好ましい。
On the other hand, the Fe 2 O 3 dehydrated cake discharged from the dehydrator 20 is transferred to a dryer 3 which also serves as a storage tank by a conveyor 30.
1, is completely dried by a heating medium 33 such as hot air, and stored as a powder. stored
A predetermined amount of Fe 2 O 3 is supplied to the ejector 34 via the feeder 32, and the air is transported to the pipe line 3 by the air transporting air A.
5 to the fluidized tank 10a of the combustion device 10. On the other hand, the black liquor BL is supplied to the fluidization tank 10a through another pipe line 36. Note that since the black liquor and Fe 2 O 3 supplied separately need to be well mixed in the fluidized bed 10a, it is preferable that the nozzles 37 and 38 for injecting both are arranged close to each other.

この発明を実施することにより黒液とFe2O3
をあらかじめ混合する装置が不用となり、流動層
内における黒液と酸化金属粉との混合も良好であ
り、設備費、動力費とも低減でき経済的である。
By implementing this invention, a device for mixing black liquor and Fe 2 O 3 in advance becomes unnecessary, and the black liquor and oxidized metal powder can be mixed well in the fluidized bed, reducing equipment costs and power costs. Economical.

また黒液は燃焼装置に噴射するのに十分な粘度
とすれば良いからFe2O3との混合撹拌を行なう場
合に比較して黒液加熱用の熱源は少なくてよい。
Furthermore, since the black liquor only needs to have a viscosity sufficient to be injected into the combustion device, the number of heat sources for heating the black liquor may be smaller than when mixing and stirring with Fe 2 O 3 is performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直接苛性化法の概略を示す系統図、第
2図はこの発明に係る方法を実施するプラントの
系統図である。 10……流動層燃焼装置、35……Fe2O3供給
用管路、36……黒液供給用管路、A……気流輸
送用空気、BL……黒液。
FIG. 1 is a system diagram showing an outline of the direct causticizing method, and FIG. 2 is a system diagram of a plant implementing the method according to the present invention. DESCRIPTION OF SYMBOLS 10... Fluidized bed combustion device, 35... Fe 2 O 3 supply pipe, 36... Black liquor supply pipe, A... Air for air flow transport, BL... Black liquor.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼炉に黒液と酸化金属粉を別々に供給し、
炉内温度を1100℃以下に保持し燃焼させ、燃焼排
ガスで炉内で生成した鉄酸ナトリウム粉を搬送
し、これを集塵機で捕集し、苛性ソーダと酸化金
属粉を回収し、これを溶解槽で溶解し金属粉と苛
性ソーダとに分離し、酸化金属粉は燃焼炉へ、苛
性ソーダはパルプ製造工程に循環再使用すること
を特徴とする黒液燃焼方法。
1. Separately supply black liquor and oxidized metal powder to the combustion furnace,
The temperature inside the furnace is kept below 1100℃ and the combustion is carried out, and the combustion exhaust gas transports the sodium ferrate powder generated in the furnace, which is collected by a dust collector, and the caustic soda and metal oxide powder are recovered, which are then transferred to the melting tank. A black liquor combustion method characterized by dissolving metal powder and separating it into caustic soda.The oxidized metal powder is sent to a combustion furnace, and the caustic soda is recycled and reused in the pulp manufacturing process.
JP14928982A 1982-08-30 1982-08-30 Combustion of black liquor Granted JPS5943186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14928982A JPS5943186A (en) 1982-08-30 1982-08-30 Combustion of black liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14928982A JPS5943186A (en) 1982-08-30 1982-08-30 Combustion of black liquor

Publications (2)

Publication Number Publication Date
JPS5943186A JPS5943186A (en) 1984-03-10
JPH0368152B2 true JPH0368152B2 (en) 1991-10-25

Family

ID=15471924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14928982A Granted JPS5943186A (en) 1982-08-30 1982-08-30 Combustion of black liquor

Country Status (1)

Country Link
JP (1) JPS5943186A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711114B2 (en) * 1986-05-16 1995-02-08 川崎重工業株式会社 Soda recovery method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119804A (en) * 1975-03-19 1976-10-20 Vegeby Anders Process for pulp manufacture and combustion of waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119804A (en) * 1975-03-19 1976-10-20 Vegeby Anders Process for pulp manufacture and combustion of waste water

Also Published As

Publication number Publication date
JPS5943186A (en) 1984-03-10

Similar Documents

Publication Publication Date Title
US4311670A (en) Fluidized bed reactor system
US4244779A (en) Method of treating spent pulping liquor in a fluidized bed reactor
CA1169607A (en) Process and apparatus for recovery of spent pulping liquors
US3523864A (en) Paper pulping chemical recovery system
CA1116817A (en) Recovery process and apparatus for alkali metal-containing spent liquor
US4439272A (en) Pulp mill residual liquor recovery process
CA1282210C (en) Process for recovering sodium hydroxide from an alkaline pulp wasteliquor
JPH0368152B2 (en)
US3414468A (en) Process of regenerating pulping liquor from cellulose digestion waste liquor
JPS58132192A (en) Direct caustification using fluidized layer furnace
US3787283A (en) Treatment of waste liquor from pulp production
JPH0418075B2 (en)
US4035228A (en) Recovery process and apparatus for alkali metal-containing waste liquor
EP0663890A4 (en) A process for recovering alkali metal hydroxide from organic liquors.
JPS58132191A (en) Direct caustification method and apparatus in pulping process
JPS641998Y2 (en)
JPS58126389A (en) Recovery of chemicals from black liquor
JPS60181392A (en) Direct causticizing method using fluidized bed
CA1127479A (en) Waste liquor fluidized bed steam generator
JPS58126390A (en) Direct causticification with enhanced efficiency
JPS58132193A (en) Recovery of caustic soda using fluidized layer
JPS60151395A (en) Direct causticization apparatus
JPS58126391A (en) Direct caustification with enhanced fe203 separating efficiency
JPS602791A (en) Direct caustic method using fluidized layer
JPS59227719A (en) Recovery of caustic soda