JPS6018132B2 - High Mn non-magnetic steel for concrete structures - Google Patents

High Mn non-magnetic steel for concrete structures

Info

Publication number
JPS6018132B2
JPS6018132B2 JP52109294A JP10929477A JPS6018132B2 JP S6018132 B2 JPS6018132 B2 JP S6018132B2 JP 52109294 A JP52109294 A JP 52109294A JP 10929477 A JP10929477 A JP 10929477A JP S6018132 B2 JPS6018132 B2 JP S6018132B2
Authority
JP
Japan
Prior art keywords
steel
magnetic
coating
rust
magnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52109294A
Other languages
Japanese (ja)
Other versions
JPS5442693A (en
Inventor
政司 高橋
賢治 相原
二郎 佐武
哲三 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP52109294A priority Critical patent/JPS6018132B2/en
Publication of JPS5442693A publication Critical patent/JPS5442693A/en
Publication of JPS6018132B2 publication Critical patent/JPS6018132B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 この発明は、表面に防錆性を有するか、又は防錆性と電
気絶縁性との両者を兼ね備えた被覆層を有するコンクリ
ート構造物用高Mn系非磁性鋼材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-Mn non-magnetic steel material for concrete structures, which has a rust-preventive property on its surface or has a coating layer having both rust-preventive property and electrical insulation property.

非磁性鋼材とは、外部磁場によって磁化されることのな
い鋼材である。
Non-magnetic steel is steel that cannot be magnetized by an external magnetic field.

たとえば核融合実験設備、磁気浮上式鉄道の路床のよう
に、強力な外部磁場の影響をうけるコンクリート構造物
に使用される鉄骨、鉄筋等の素材として、非磁性、即ち
透磁率山の小さい材料が要求される。非磁性鋼として、
従来広く知られているのは、1舷r−鮒i鋼を代表とす
るオーステナィトステンレス鋼であるが、これらはNi
を多量に含むため高価であり、又、降伏強度が低いとい
う点からも、コンクリート補強用の鉄骨、鉄筋等の材料
としては不適当である。
For example, non-magnetic materials, that is, materials with small magnetic permeability peaks, are used as materials for steel frames and reinforcing bars used in concrete structures that are affected by strong external magnetic fields, such as nuclear fusion experimental facilities and the roadbed of maglev railways. is required. As a non-magnetic steel,
Conventionally widely known austenitic stainless steels are represented by 1-board R-Funai steel, but these are made of Ni.
It is expensive because it contains a large amount of carbon dioxide, and its yield strength is low, making it unsuitable as a material for steel frames, reinforcing bars, etc. for concrete reinforcement.

本発明者は、先に、安価で、機械的性質もすぐれた非磁
性鋼として、Mn5〜30%を含有する鋼を提案した(
特顕昭51一68311号)。
The present inventor previously proposed a steel containing 5 to 30% Mn as a non-magnetic steel that is inexpensive and has excellent mechanical properties (
Tokuken Showa 51-68311).

この鋼は、Niを多量に含有しないため、上記Cr−N
i系オーステナィト鋼に比較して低廉であるのみならず
、塑性加工に対しても、熱に対しても安定して、低い透
磁率を保持するものであるから、前記のごとき用途に広
い利用が期待される。即ち、この鋼は熱間圧延によって
捧鋼等に加工されたままの状態で、通常、非磁性鋼の仕
様基準とされている仏SI.02を満足し、一般的な非
磁性鋼の用途には十分な性能をもっている。しかし、最
近、たとえば、地磁気観測用試験設備のように、きわめ
て微弱な磁気変化を問題とする構造物、或いは、核融合
実験設備のように強力な交番磁界を使用する構造物等の
特殊な用途には、単に、素材としての透磁率が4・さし
、ことだけでなく、構造物への組込みまで、及び構造物
としての使用中に問題が生じないこと、が要求されるよ
うになって来た。
Since this steel does not contain a large amount of Ni, the Cr-N
It is not only cheaper than i-series austenitic steel, but also stable against plastic working and heat, and maintains low magnetic permeability, so it can be used widely in the above applications. Be expected. In other words, this steel is hot-rolled and processed into steel sheets, etc., and is normally subject to French SI. 02, and has sufficient performance for general non-magnetic steel applications. However, recently, special applications such as structures that deal with extremely weak magnetic changes, such as geomagnetic observation test facilities, or structures that use strong alternating magnetic fields, such as nuclear fusion experimental facilities, have recently been developed. It is now required not only that the material has a magnetic permeability of 4.0, but also that there are no problems when it is incorporated into a structure and when it is used as a structure. It's here.

かかる問題としてあげられるのは次の2点である。【1
} 非磁性鋼材の表面に発生する錆に起因する透磁率の
上昇、‘2) コンクリートに組込まれた鋼材、特に鉄
筋に流れる誘導電流による発熱、まず、{1ーの錆に起
因する問題は、非磁性鋼材といえども、それに発生する
錆は強磁性の酸化鉄を主体とするものであるということ
にある。
The following two points can be raised as such problems. [1
} Increasing magnetic permeability due to rust occurring on the surface of non-magnetic steel, '2) Heat generation due to induced current flowing through steel incorporated in concrete, especially reinforcing bars, First of all, the problem caused by rust in {1- Even though it is a non-magnetic steel material, the rust that occurs on it is mainly composed of ferromagnetic iron oxide.

即ち、銭の発生した鋼材のみかけの透磁率〃1ま次式で
表わされる。.ム=・十(1−C)XI十CX2 ここで、x,=鋼材の磁化率 ね=錆の磁化率 C=錆の生成率(鋼材の重量に対する発 生した錆の重量の比) 上式において「非磁性鋼におけるx,は極く小さい(母
0,01)が、これに比較してx2は10前後と桁違い
に大きい。
That is, the apparent magnetic permeability of the steel material from which the coin is generated is expressed by the linear equation. .. M = 10(1-C) ``x in non-magnetic steel is extremely small (base 0,01), but compared to this, x2 is around 10, which is an order of magnitude larger.

従って、錆の発生量がわずかで、Cが小さい場合でも、
鋼材全体の見かけのムは大きな値となり、前記のごとく
、微小な磁気を問題にする用途では好ましくない影響を
生じることになる。ところが、従来非磁性鋼材における
錆の影響については、何ら検討がなされておらず、従っ
て非磁性鋼に防錆処理を行った例は全く知られていない
。しかし、鋼材の保管、運搬、或いは工事現場での取扱
い中に、幾分かの発錆は当然に予想され、又、コンクリ
ート中に埋め込まれて使用中にも、長年月の間には発錆
する可能性は多分にある。そして、そのわずかな錆であ
っても、非磁性鋼という特殊な材料においては大きな問
題となるものであることは前記のとおりである。次に、
誘導電流について述べる。
Therefore, even if the amount of rust generated is small and C is small,
The apparent value of the steel as a whole becomes large, which, as mentioned above, causes an undesirable effect in applications where minute magnetism is a problem. However, no studies have been made regarding the effects of rust on non-magnetic steel materials, and therefore, there are no known examples of anti-rust treatment being applied to non-magnetic steel. However, some amount of rust is naturally expected when steel is stored, transported, or handled at construction sites, and even when it is embedded in concrete and used, rust may develop over many years. There's a good chance that it will. As mentioned above, even a slight amount of rust can be a big problem in the case of a special material such as non-magnetic steel. next,
Let's talk about induced current.

非磁性鋼材といえども、電気伝導材であるから、これが
ひとつの電気回路を形成していれば、これを磁場内にお
いたときには、誘導電流が発生する。コンクリート中に
埋め込まれた非磁性鋼材も、ひとつひとつが隔離されて
、即ち相互に接触しない状態であれば問題はない。しか
し、多数の鉄筋等を全て非接触の状態に施工するのは事
実上困難であり、どうしても、コンクリート内に鉄筋等
の電気的な閉回路が構成される。そして、このような糠
造体がアルミニウム電解精錬設備のような大電流の使用
によって生じる強磁場、或いは核融合設置のごとき強磁
場内にあると、鉄筋に発生する譲導電流も大きなものと
なり、そのための発熱による鋼材の膨張とコンクリート
の加熱奥危化のために、構造体を破壊に導くおそれがあ
る。この発明は、上記のような非磁性鋼材に特有の問題
点を解決することを目的としてなされたものである。
Even non-magnetic steel is an electrically conductive material, so if it forms an electric circuit, an induced current will be generated when it is placed in a magnetic field. There is no problem with non-magnetic steel materials embedded in concrete as long as they are isolated one by one, that is, they do not come into contact with each other. However, it is practically difficult to construct a large number of reinforcing bars etc. in a non-contact state, and an electrical closed circuit of the reinforcing bars etc. is inevitably formed within the concrete. If such a bran body is placed in a strong magnetic field generated by the use of large currents, such as in aluminum electrolytic refining equipment, or in a strong magnetic field, such as in a nuclear fusion installation, the yield current generated in the reinforcing bars will also become large. As a result, the steel material expands due to the heat generated, and the concrete is heated and becomes dangerous, which may lead to the structure being destroyed. This invention was made with the aim of solving the above-mentioned problems specific to non-magnetic steel materials.

本発明者は、上認1’の問題点を解決するためには、非
磁性鋼材の表面に鋼材のみかけの透磁率を上昇させるお
それがなく、しかも錆発生を有効に防止できるような保
護被覆を施すのが最もよく、又■の問題点を解決するた
めには、非磁性鋼材の表面に、電気絶縁性の被覆を施す
のが有効であることをつきとめた。
In order to solve problem 1' above, the inventors of the present invention have proposed a protective coating on the surface of non-magnetic steel that will not increase the apparent magnetic permeability of the steel and can effectively prevent the occurrence of rust. It was found that applying an electrically insulating coating to the surface of the non-magnetic steel material is effective in solving the problem (2).

特に、非磁性であり、かつ防錆性と絶縁性を兼備した被
覆を施こすことがきわめて望ましいが、地磁気観測用試
験設備のような誘導電流による発熱が起らないような設
備では防錆性を有する被覆のみで十分である。まず、防
錆を目的とする被覆としては、Zn、A夕、Sn等の金
属被覆「リン酸塩、シュウ酸塩等の無機化合物を主体と
する被覆、合成樹脂等の有機系被覆及び油脂、石油精製
副産物のごとき防錆剤が使用できる。
In particular, it is extremely desirable to apply a coating that is non-magnetic and has both rust prevention and insulation properties. A coating with . First, coatings for the purpose of rust prevention include metal coatings such as Zn, aluminum, Sn, coatings mainly composed of inorganic compounds such as phosphates and oxalates, organic coatings such as synthetic resins, oils and fats, Rust inhibitors such as petroleum refining by-products can be used.

金属被覆は、いうまでもなく、それ自体非磁性の金属で
なければならない。
It goes without saying that the metal coating must itself be a non-magnetic metal.

被覆方法としては、溶融金属中に非磁性鋼材を浸糟する
方法、電気メッキ法、或いはAそ等では溶射法やカロラ
ィジング法等も利用できる。これらの被覆法は、一般の
鋼材に行われているものと同様の工程で行いうるが、非
磁性鋼を対象にするということから、被覆前の処理とし
て、デスケーリングを十分完全に行っておくことが肝要
である。次に、絶縁を目的とする被覆について述べる。
As a coating method, a method of impregnating a non-magnetic steel material into molten metal, an electroplating method, or in the case of A, a thermal spraying method, a colorizing method, etc. can be used. These coating methods can be performed using the same processes as those used for general steel materials, but since they are intended for non-magnetic steel, descaling must be done thoroughly and thoroughly before coating. That is essential. Next, we will discuss coatings for the purpose of insulation.

先にも述べたとおり、絶縁被覆は、コンクリート構造物
中に埋め込まれた鉄筋等が相互に接触しても、電気的に
絶縁された状態に置くためのものである。従って、接触
が予想される部分のみを被覆すれば、電気絶縁は達成さ
れるが、同時に防錆も必要なので非磁性鋼の全表面を被
覆することになる。防錆性と電気絶縁性の両者を兼ね備
えた被覆材料としては、ゴム或いは、綿布、麻布、ジュ
ート、紙、これらにグリースやタールを含浸させたもの
、各種合成樹脂等が使用できる。
As mentioned earlier, the insulation coating is used to keep reinforcing bars embedded in a concrete structure electrically insulated even if they come into contact with each other. Therefore, electrical insulation can be achieved by coating only the parts where contact is expected, but rust prevention is also required, so the entire surface of the non-magnetic steel is coated. As the covering material having both rust prevention and electrical insulation properties, rubber, cotton cloth, linen cloth, jute, paper, materials impregnated with grease or tar, various synthetic resins, etc. can be used.

これらの被覆は、通常の被覆法によって鋼材の全面に施
す。上言己被覆材のうち合成樹脂による被覆は、防錆用
としても、又絶縁材としてもすぐれた性質を有するもの
であり、被覆方法も比較的簡単で、かつ被覆層の強度、
被覆後の鋼材の取扱いやすさという点でもすぐれている
。合成樹脂被覆材としては、塩化ビニル樹脂、ェポキシ
樹脂、ポリオレフイン系樹脂、たとえばポリエチレン、
ポリプロピレン等が使用でき、その被覆方法としては粉
体塗装焼付法、液状樹脂塗装法、溶融押出被覆法等があ
る。
These coatings are applied to the entire surface of the steel material using normal coating methods. Of the above-mentioned coating materials, synthetic resin coatings have excellent properties as rust prevention and insulating materials, and the coating method is relatively simple, and the strength of the coating layer is low.
It is also excellent in terms of ease of handling the steel material after coating. As synthetic resin coating materials, vinyl chloride resin, epoxy resin, polyolefin resin, such as polyethylene,
Polypropylene or the like can be used, and coating methods include powder coating baking method, liquid resin coating method, melt extrusion coating method, etc.

被覆を施される非磁性鋼の材質については、特に限定を
要しない。
There is no particular limitation on the material of the non-magnetic steel to be coated.

ただ、この発明の被覆層を有する非磁性鋼材が、前記の
ような用途を指向するものであることから、安価で、機
械的性質その他において、最も実用性にすぐれた高Mn
系の非磁性鋼を対象とするのがよい。さらに、高Mn系
非磁性鋼としては、前掲出願(特豚昭51−68311
号)による本出願人の発明した鋼、即ち、CO.2〜1
.5%、Mn5〜30%、Sio.1〜1.5%を含有
し、学。
However, since the non-magnetic steel material having the coating layer of the present invention is intended for the above-mentioned uses, it is possible to use a high-Mn steel material that is inexpensive and has the most practical properties in terms of mechanical properties and other aspects.
It is best to target non-magnetic steels. Furthermore, as a high Mn non-magnetic steel,
The steel invented by the applicant according to CO. 2-1
.. 5%, Mn5-30%, Sio. Contains 1 to 1.5%,

〔c〕+2皿≧25を満足する鋼、或いはこれに15%
以下のCr、5%以下のNi、1%以下のCu、5%以
下のMo、及び少量のTi、Nb、V、W、Zr等を含
有させた鋼が望ましい。即ち、この銭は上記出願の明細
書にも託したとおり、特にコンクリート構造体用非磁性
鉄筋として、多くのすぐれた特性を備えているからであ
る。非磁性鋼材の形状についても特に限定する必要はな
い。
[c] Steel that satisfies +2 plates ≧ 25, or 15% of this
A steel containing the following Cr, 5% or less Ni, 1% or less Cu, 5% or less Mo, and small amounts of Ti, Nb, V, W, Zr, etc. is desirable. That is, as stated in the specification of the above-mentioned application, this coin has many excellent properties, especially as a non-magnetic reinforcing bar for concrete structures. There is no need to particularly limit the shape of the non-magnetic steel material.

コンクリート構造体に使用される形態としては、鉄筋、
鉄骨材用となる榛鋼、異形榛鋼、形鋼等が多いが、外に
線村、或いはファイバー等各種の成品があり、これらに
おいても、その表面に被覆層を形成することによって、
この発明の効果は同様に発揮される。以下実施例によっ
て、被覆の具体例、並びにその効果を説明する。
Forms used for concrete structures include reinforcing bars,
There are many products such as steel steel, deformed steel steel, and shaped steel that are used for steel frames, but there are also various products such as wire strips and fibers, and even in these products, by forming a coating layer on the surface,
The effects of this invention are similarly exhibited. Hereinafter, specific examples of coatings and their effects will be explained with reference to Examples.

第1表に示す組成の非磁性鋼を用いて、各種の被覆と、
その防錆効果および絶縁効果に関する試験を行った。
Using non-magnetic steel with the composition shown in Table 1, various coatings and
Tests were conducted regarding its rust prevention and insulation effects.

第1表 供試材成分燐 ※1050℃溶体化処理後の磁場強さ 1000eにおける透磁率 ‘ィ} 防錆試験 第1表の鋼A〜Fを10側めの直榛に熱間圧延し、自然
放冷したものについて、第2表に示す表面被覆を施しL
大気中及び人工海水中で試験した。
Table 1 Sample material composition Phosphorus *Magnetic permeability at a magnetic field strength of 1000e after solution treatment at 1050°C Rust prevention test Steels A to F in Table 1 were hot rolled to the 10th straight edge. After being left to cool naturally, the surface coating shown in Table 2 was applied.
Tested in air and artificial seawater.

被覆の方法は次のとおりである。無 処 理・・・酸洗
デスケールのまま Znメッキ・・・酸洗デスケール後溶融Zn浸糟防 錆
油・・・酸洗デスケール後水溶性防錆油塗布ェポキシ
樹脂被覆・・・ショットブラストデスケール後、駿無水
物硬化型ビスフェノールェポキシ樹脂を静電粉体塗装 24000×30分暁付け 膜厚 170〜200〃 塩化ビニル樹脂被覆・・・醗洗デスケール後、100℃
に子熱、塩化ビニル樹脂を静電粉体塗装 220qo×30分 暁付け 膜厚 約170一 試験結果を第2表に示す。
The coating method is as follows. No treatment... Zn plating after pickling and descaling... After pickling and descaling, molten Zn corrosion prevention Rust Oil... After pickling and descaling, water-soluble rust preventive oil coating Epoxy resin coating... After shot blast descaling , electrostatic powder coating of anhydride-curing bisphenolepoxy resin 24,000 x 30 minutes, film thickness 170-200〃 Vinyl chloride resin coating...After washing and descaling, 100℃
Electrostatic powder coating of polyvinyl chloride resin at 220 qo x 30 minutes with a coating thickness of approximately 170 mm.The test results are shown in Table 2.

豹2鼓班鱗拭磯結果 なお、錆発生量は、試験前の試料(IQ岬J)の重量を
測定し、試験後はクエン酸アンモニウム水溶液で錆を除
去して重量を測定し、その重量差を試料の平均直径減少
量(柵)に換算した。
Leopard 2 drum scale scale wiping results The amount of rust generated is determined by measuring the weight of the sample (IQ Misaki J) before the test, and after the test, removing the rust with an aqueous ammonium citrate solution and measuring the weight. The difference was converted to the average diameter reduction (fence) of the sample.

又、透磁率は、10肋ぐx3仇蚊の試料により磁気天秤
で測定した。
The magnetic permeability was measured using a magnetic balance using 10 x 3 mosquito samples.

第2表の結果から、被覆を施していないものは大気中1
ケ月の放置ですでに錆発生による山の増加が1.02を
超えていることがわかる。
From the results in Table 2, it can be seen that the uncoated product is 1 in the atmosphere.
It can be seen that the number of piles due to rust has already increased by more than 1.02 after being left unused for a long time.

又、防錆油による塗装は、大気中では相当の効果を示す
が、人工海水中では殆んど効果がない。これに対して、
Znメッキ及びェポキシ樹脂、塩化ピニル樹脂被覆材は
、大気中及び人工海水中いずれでも良い結果を示し、特
に後2者には全く錆の発生がなく、従って透磁率仏の上
昇は完全に防止されていることが分る。‘ロー 絶縁性
試験 第1表の鋼A、C、Dから熱間圧延によりD22の異形
鉄筋を製造し、第3表に示す表面被覆を施した後、第1
図及び第2図に示す試験法によつて、電気抵抗を測定し
た。
Furthermore, although coating with anti-corrosion oil is quite effective in the atmosphere, it has almost no effect in artificial seawater. On the contrary,
Zn plating, epoxy resin, and pinyl chloride resin coating materials show good results both in the atmosphere and in artificial seawater, and the latter two in particular do not rust at all, so an increase in magnetic permeability is completely prevented. I can see that 'Raw Insulation Test D22 deformed reinforcing bars are produced by hot rolling from steels A, C, and D listed in Table 1, and after applying the surface coating shown in Table 3,
Electrical resistance was measured by the test method shown in FIGS.

即ち、さ700側の謙片1及び90W舷の謎片1′を第
1図に示すように500凧間隔のィゲタ状に組み、交点
2〜4を軟鋼線又はナイロンザイルでいまりつけ、交点
5はゴム管によって絶縁した。これを第2図に示すコン
クリートスラブ6(800×800×5仇岬)に埋め込
み、A機とB端の間の電気抵抗を抵抗計7によって測定
した。なお、試験は、1種類につき5ケのコンクリート
スラブを作製して行った。試験結果を第3表に示す。
That is, as shown in Fig. 1, the 700-side sail piece 1 and the 90-W ship side piece 1' are assembled in a jigeta shape at 500-kite intervals, and the intersection points 2 to 4 are tied with mild steel wire or nylon rope. 5 was insulated with a rubber tube. This was embedded in a concrete slab 6 (800 x 800 x 5 Qianqiao) shown in FIG. 2, and the electrical resistance between the A machine and the B end was measured using a resistance meter 7. In addition, the test was conducted by producing 5 concrete slabs for each type. The test results are shown in Table 3.

圧延のままの鉄筋では、交点の電気抵抗は小さく、鉄筋
相互の接触によって電気的閉回路が形成される可能性が
きわめて大きいことがわかる。
It can be seen that in the as-rolled reinforcing bars, the electrical resistance at the intersection points is small, and there is an extremely high possibility that an electrical closed circuit will be formed due to mutual contact between the reinforcing bars.

又、タールによる塗装は、軟鋼線によろいよりつけによ
って被覆層がやぶれて、絶縁不良となる場合があり、実
際の施工法を考慮すれば、絶縁用被覆としては適当でな
い。これに対して、合成樹脂による被覆はすべて電気抵
抗が無限大、即ち完全絶縁となっており、そのすぐれた
性能が確認された。
Furthermore, tar painting is not suitable as an insulating coating, considering the actual construction method, as the coating layer may be destroyed by twisting the mild steel wire, resulting in poor insulation. In contrast, all synthetic resin coatings had infinite electrical resistance, that is, were completely insulated, confirming their excellent performance.

第3表絶縁試験結果 先の防錆試験の結果と合せて、成樹脂被覆が防錆および
絶縁のいずれの目的にもきわめてすぐれていることが明
らかである。
Table 3 Insulation test results Combined with the results of the rust prevention test mentioned above, it is clear that the synthetic resin coating is extremely excellent for both rust prevention and insulation purposes.

上記実施例では、ヱポキシ樹脂及び塩化ビニル樹脂を代
表として例示したが、このような効果は、先に記載した
各種の合成樹脂被覆でも蓬せられることが確認されてお
り、かかる合成樹脂被覆は曲げ或いは衝撃等に対する機
械的特性にもすぐれているから、非磁性鋼材の被覆とし
て最もすぐれている。
In the above examples, epoxy resin and vinyl chloride resin were exemplified as representatives, but it has been confirmed that the various synthetic resin coatings described above also have such effects, and such synthetic resin coatings are suitable for bending. Also, because it has excellent mechanical properties against impact, etc., it is the most excellent coating for non-magnetic steel materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施による表面被覆非磁性鋼材を使
用した非磁性鉄筋格子の一部を示す平面図、第2図は第
1図の鉄筋格子を有するコンクリートスラブの電気抵抗
を測定するための説明図である。 図中1・・・試片、2,3,4,5・・・交点、6・・
・コンクリートスラブ、8・・・電気抵抗計。 第1図 第2図
Figure 1 is a plan view showing a part of a non-magnetic reinforcing bar grid using surface-coated non-magnetic steel according to the present invention, and Figure 2 is for measuring the electrical resistance of a concrete slab having the reinforcing bar grid shown in Figure 1. FIG. In the figure 1... specimen, 2, 3, 4, 5... intersection, 6...
・Concrete slab, 8... Electric resistance meter. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 表面に防錆性を有するか、あるいは防錆性と電気絶
縁性を兼ね備えた被覆層を有することを特徴とするコン
クリート構造物用高Mn系非磁性鋼材。
1. A high-Mn non-magnetic steel material for concrete structures, characterized by having a surface having rust prevention properties or a coating layer having both rust prevention properties and electrical insulation properties.
JP52109294A 1977-09-10 1977-09-10 High Mn non-magnetic steel for concrete structures Expired JPS6018132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52109294A JPS6018132B2 (en) 1977-09-10 1977-09-10 High Mn non-magnetic steel for concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52109294A JPS6018132B2 (en) 1977-09-10 1977-09-10 High Mn non-magnetic steel for concrete structures

Publications (2)

Publication Number Publication Date
JPS5442693A JPS5442693A (en) 1979-04-04
JPS6018132B2 true JPS6018132B2 (en) 1985-05-09

Family

ID=14506518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52109294A Expired JPS6018132B2 (en) 1977-09-10 1977-09-10 High Mn non-magnetic steel for concrete structures

Country Status (1)

Country Link
JP (1) JPS6018132B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2952266B2 (en) * 1990-01-30 1999-09-20 日新製鋼株式会社 Roof and exterior materials

Also Published As

Publication number Publication date
JPS5442693A (en) 1979-04-04

Similar Documents

Publication Publication Date Title
Singh et al. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH
Wang et al. Effect of grain size and crystallographic orientation on the corrosion behaviors of low alloy steel
Blanco et al. EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions
Abd El Haleem et al. Environmental factors affecting the corrosion behavior of reinforcing steel II. Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca (OH) 2 solutions
US5779818A (en) Process for the production of corrosion-protected metallic materials and materials obtainable therewith
Mohagheghi et al. Corrosion inhibition of carbon steel by dipotassium hydrogen phosphate in alkaline solutions with low chloride contamination
JP4959937B2 (en) Distribution transformer with corrosion diagnostic components
Huang et al. Corrosion behavior and surface analysis of 690 MPa-grade offshore steels in chloride media
Hashimoto et al. Extremely high corrosion resistance of chromium-containing amorphous iron alloys
Zeng et al. A study on weathering steel bolts for transmission towers
JPS6018132B2 (en) High Mn non-magnetic steel for concrete structures
GB2041783A (en) Surface-coated non-magnetic steel material
Gu et al. Polarization resistance of stainless steel-coated rebars
Ahn et al. Effects of Sn and Sb on the corrosion resistance of AH 32 steel in a cargo oil tank environment
DE2251611A1 (en) PROCEDURE FOR PRE-TREATMENT OF METAL SURFACES
DE102017218434A1 (en) Enameling of high-strength steels
CA1122861A (en) Surface-coated nonmagnetic steel material
RU2265930C2 (en) Grounding electrode
Choi et al. Effects of chromium, cobalt, copper, nickel, and calcium on the corrosion behavior of low-carbon steel in synthetic groundwater
JP2012114451A (en) Transformer for power distribution and tank container
Camacho Study of the corrosion and cracking susceptibility of low carbon steels under cathodic protection with AC Interference
JP4917137B2 (en) Distribution transformer
JP5565191B2 (en) Fused Al-Zn plated steel sheet
Hebdon et al. Accelerated Corrosion Testing of ASTM A1010 Stainless Steel
Salman Investigation the corrosion behavior of composite coatings on carbon steel