JPS60180598A - Production of l-threonine - Google Patents

Production of l-threonine

Info

Publication number
JPS60180598A
JPS60180598A JP3418784A JP3418784A JPS60180598A JP S60180598 A JPS60180598 A JP S60180598A JP 3418784 A JP3418784 A JP 3418784A JP 3418784 A JP3418784 A JP 3418784A JP S60180598 A JPS60180598 A JP S60180598A
Authority
JP
Japan
Prior art keywords
threonine
fermentation
phase
producing
secretion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3418784A
Other languages
Japanese (ja)
Inventor
Shunichi Matsumoto
俊一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3418784A priority Critical patent/JPS60180598A/en
Publication of JPS60180598A publication Critical patent/JPS60180598A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To produce L-threonine in high productivity, by culturing a microbial strain capable of producing and accumulating L-threonine and essentially in the secretion phase, in a nutrient medium under aeration, and producing and accumulating L-threonine. CONSTITUTION:A microbial strain capable of producing and accumulating L- threonine (Brevibacterium fermentum, FERM-P No.4182) is cultured in a nutrient medium under aeration. The microbial cell finished its proliferation phase and entered in the secretion phase is held in the fermentation system, and the reaction product is separated from the system while keeping the cell in the secretion phase. The nutrient medium containing saccharides is introduced into the fermentation system to effect the aerobic fermentation, and L-threonine is produced and accumulated in the culture liquid. The objective L-threonine is separated from the culture liquid by filtration, centrifugal separation, adsorption, etc.

Description

【発明の詳細な説明】 本発明は発酵法によってL−スレオニンを製造する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing L-threonine by fermentation.

一般に、発酵系においては、微生物(菌体)が発酵原料
(例えば、糖)を資化し、分裂によって増殖する増殖フ
ェーズと、増殖した菌体がさらに発酵原料を資化し、細
胞内での代謝作用を通じて菌体外にL−スレオニンを排
出する分泌フェーズとに大別できる。
In general, in a fermentation system, there is a growth phase in which microorganisms (bacterial cells) assimilate fermentation raw materials (e.g. sugar) and multiply by division, and a second phase in which the proliferated bacterial cells further assimilate fermentation raw materials and undergo metabolic effects within the cells. It can be roughly divided into a secretion phase in which L-threonine is excreted from the bacterial body through the secretion phase.

このうち増殖フェーズは、発酵初期に位置し、ここでは
単−細胞当りの割合からすると資化のために菌体内に取
り込んだ原料糖の大部分が菌体増殖による菌体形成に使
用される。
Among these, the growth phase is located in the early stage of fermentation, and in this phase, most of the raw sugar taken into the bacterial cells for assimilation, based on the ratio per single cell, is used for bacterial cell formation by bacterial cell proliferation.

一方、分泌フェーズは、発酵後期に位置し、ここでは、
菌体内に取り込まれた原料糖が菌体形成よりも菌体外へ
のし一スレオニンの分泌に使用されている。
On the other hand, the secretion phase is located in the later stages of fermentation, where:
The raw sugar taken into the bacterial body is used for secretion of threonine outside the bacterial body rather than for bacterial cell formation.

図1を参照してより具体的に説明する。図1は従来法に
おいてグルコースを原料としたし一スレオニンの発酵生
産系中のグルコースIIk、 L−スレオニン量、菌体
量の各々を経時的に測定した結果をグラフによって示し
たものである。図1中(ハ)の領域は増殖フェーズであ
り、消費されたグルコースが主として菌体形成に用いら
れており、図1においては培養開始後約30時間までの
領域に相当する。
This will be explained in more detail with reference to FIG. FIG. 1 is a graph showing the results of measuring the amounts of glucose IIk, L-threonine, and bacterial cells over time in a conventional fermentation production system for monothreonine using glucose as a raw material. The region (c) in FIG. 1 is the growth phase, in which consumed glucose is mainly used for bacterial cell formation, and in FIG. 1 corresponds to the region up to about 30 hours after the start of culture.

一方、図1中(ハ)の領域は分泌フェーズであり、もは
や菌体の増殖はほぼ終了し飽和状態となり、消費された
グルコースの大部分がL−スレオニンの生成蓄積に用い
られる。この分泌フェーズは図1においては培養開始後
約52時間以降の領域に相当する。
On the other hand, the region (c) in FIG. 1 is the secretion phase, where the growth of the bacterial cells has almost finished and reached a saturated state, and most of the consumed glucose is used to produce and accumulate L-threonine. In FIG. 1, this secretion phase corresponds to the region approximately 52 hours after the start of culture.

しかるに、従来法においては、増殖フェーズ、分泌フェ
ーズが一旦終了すると、用いられた菌体は、発酵系内に
生成蓄積したし一スレオニンの分離採取前後に廃棄処理
されるのが通常であった。
However, in conventional methods, once the growth phase and the secretion phase have been completed, the used bacterial cells are usually discarded before or after the separation and collection of threonine produced and accumulated in the fermentation system.

それは、増殖フェーズ、分泌フェーズの各時間およびL
−スレオニン生産蓄積量は菌体それ自体の代謝能力によ
って一意的に定まり、たとえ発酵時間を長くしても分泌
フェーズにおけるし一スレオニノ生成蓄積量を増大せし
めることが不可能であったためである。
It depends on the time of proliferation phase, secretion phase and L
- The amount of threonine produced and accumulated is uniquely determined by the metabolic ability of the bacterial cell itself, and it was impossible to increase the amount of threonine produced and accumulated during the secretion phase even if the fermentation time was increased.

つまり、従来より発酵法によってL−スレオニンを製造
する際、L−スレオニンの生成蓄積量を増大せしめるた
めに、微生物、添加物、発酵条件等において種々の検討
、改良がなされているが、いかなる改良も菌体の代謝能
力以上にL−スレオニンの生産性を向上させることはほ
とんど不可能であると従来考えられていた。従って、新
たに発酵を行なう場合にはその都度新たな菌体を使用し
、増殖フェーズ、分泌フェーズをくり返していたのであ
る。
In other words, when producing L-threonine by conventional fermentation methods, various studies and improvements have been made on microorganisms, additives, fermentation conditions, etc. in order to increase the amount of L-threonine produced and accumulated. It was previously thought that it was almost impossible to improve the productivity of L-threonine beyond the metabolic ability of bacterial cells. Therefore, each time a new fermentation was carried out, a new bacterial cell was used, and the growth phase and secretion phase were repeated.

しかるに本発明者は、菌体の代謝能力以上にL−スレオ
ニンの生産性を向上せしめることを目的として鋭意研究
を行なった結果、本発明に到達しtこ。
However, the present inventor has conducted extensive research aimed at improving the productivity of L-threonine beyond the metabolic ability of bacterial cells, and as a result has arrived at the present invention.

すなわち、本発明は、L−スレオニンを生成蓄積せしめ
る能力のある微生物を通気発酵せしめることにより系内
に生成蓄積したし一スレオニンを分離採取する方法にお
いて、前記微生物として、実質的に分泌フェーズにある
もののみを用いることを特徴とする発酵法によるし一ス
レオニンの製造法である。
That is, the present invention provides a method for separating and collecting L-threonine produced and accumulated in a system by subjecting a microorganism capable of producing and accumulating L-threonine to aeration fermentation, wherein the microorganism is substantially in the secretion phase. This is a method for producing ni-threonine by a fermentation method, which is characterized by using only chlorine.

本発明の主たるねらいは、増殖フェーズにある発酵を避
けて分泌フェーズの発酵を持続させるにある。
The main aim of the present invention is to avoid fermentation in the growth phase and to sustain fermentation in the secretion phase.

かかる検討はL−グルタミン酸の発酵法についてはなさ
れていた(特公昭3’ 8−25292号)が、L−ス
レオニンの発酵法においてはなされておらず、本発明に
よってはじめて達成できたものである。
Although such studies have been carried out on the fermentation method of L-glutamic acid (Japanese Patent Publication No. 3'8-25292), they have not been carried out on the fermentation method of L-threonine, and this has been achieved for the first time by the present invention.

本発明では、まず、L−スレオニンを生成蓄積せしめる
能力のある微生物で、実質的に分泌フェーズにあるもの
のみを、発酵系中で通気攪拌する。
In the present invention, first, only microorganisms capable of producing and accumulating L-threonine that are substantially in the secretion phase are aerated and stirred in the fermentation system.

本発明において、L−スレオニンを生成gm−ttしめ
る能力のある微生物としては、ニジエリシア属、ブレビ
バクテリウム属、アエロバクタ−属、セラチア属、コリ
ネバクテリウムIti、一般的ニ発酵法によりL−スレ
オニンを製造しようとする場合、野生株はほとんど菌体
外にL−スレオニンを生産しないので、野生株に人工的
に突然変異を生起せしめて、L−スレオニン生産能を付
与する方法がとられている。従来知られているし一スレ
オニノ生産能を有する人工変異株としては、α−アξノ
ーβ−ビトロキシ吉草酸に耐性を有するブレビバクテリ
ウム属(特公昭45−26708号公報)、エンエリン
ア属(特公昭45−26709号公報)、コリネバクテ
リウム属(特公昭47−34956号公報)の微生物が
挙げられ、代表的な例としては、コリネバクテリウム・
グルタミン酸ム(ATCC−21660)、ブレビバク
ゾリウム−ラクトフェルメンタム(FERM−p 41
82) 、ブレビバクテリウム・ブラバム(FERM−
p 211) 、コリネバクテリウム・アセトアシドフ
イラム(ATCC−21270)、iクロバクテリウム
・アンモニアフイラム(FERM−2331)等が挙げ
られる。
In the present invention, examples of microorganisms capable of producing L-threonine (gm-tt) include the genus Nizielisia, the genus Brevibacterium, the genus Aerobacter, the genus Serratia, and the genus Corynebacterium Iti. When attempting to produce L-threonine, wild strains hardly produce L-threonine outside their cells, so a method is used in which the wild strains are artificially mutated to give them the ability to produce L-threonine. Conventionally known artificial mutant strains having monothreonino-producing ability include the genus Brevibacterium (Japanese Patent Publication No. 45-26708) and the genus Enerina (Japanese Patent Publication No. 45-26708), which are resistant to α-anoβ-bitroxyvaleric acid. Microorganisms of the genus Corynebacterium (Japanese Patent Publication No. 47-34956) are mentioned, and representative examples include Corynebacterium spp.
Glutamate (ATCC-21660), Brevibaczolium-lactofermentum (FERM-p 41)
82), Brevibacterium brabum (FERM-
p 211), Corynebacterium acetoacidophyllum (ATCC-21270), and Clobacterium ammoniaphyllum (FERM-2331).

本発明においては、これらの微生物が実質的に分泌フェ
ーズにあるもののみを用いる。
In the present invention, only those microorganisms that are substantially in the secretion phase are used.

本発明において、分泌フェーズとは、微生物の単位体積
当りの菌体量が、発酵系中における菌体量の最大値(す
なわち菌体増殖が飽和状態となった時の菌体量)の80
重量%以」二である領域をいう。
In the present invention, the secretion phase means that the amount of bacterial cells per unit volume of microorganisms is 80% of the maximum amount of bacterial cells in the fermentation system (i.e., the amount of bacterial cells when bacterial cell growth reaches a saturated state).
% by weight or more.

本発明において発酵系に用いる実質的に分泌フェーズに
ある微生物としては、予め別に増殖させて増殖フェーズ
の終了したものをそのまま用いてもよいし、通常のし一
スレオニン発酵が終了した後発酵系より分離した菌体を
再び用いてもよい。
In the present invention, the microorganisms that are substantially in the secretion phase used in the fermentation system may be grown separately in advance and used as they are after the growth phase has been completed, or they may be used as they are in the fermentation system after the normal threonine fermentation is completed. The isolated bacterial cells may be used again.

本発明の発酵系には、通常の発酵と同じように原料糖と
窒素源を添加する必要がある。
In the fermentation system of the present invention, it is necessary to add raw material sugar and a nitrogen source in the same way as in normal fermentation.

本発明において、原料糖としては、通常発酵に使用され
得るものであればいかなるものも使用可能であり、特に
グルコース、エタノール、酢酸等の天然品又は合成化学
品の他に廃糖蜜やセルロース分解液、デンプン分解液等
のものが好ましく用いられる。窒素源としては硫安、尿
素他の窒素片子含肩の可溶性無機塩が好ましく用いられ
る。
In the present invention, any raw sugar that can be used in normal fermentation can be used, and in particular, in addition to natural products or synthetic chemicals such as glucose, ethanol, and acetic acid, blackstrap molasses and cellulose decomposition liquid can be used. , starch decomposition liquid, etc. are preferably used. As the nitrogen source, soluble inorganic salts containing nitrogen molecules such as ammonium sulfate and urea are preferably used.

本発明において通気攪拌する方法は常法が採用できる。In the present invention, a conventional method can be used for aeration and stirring.

発酵は、pHを6〜9に、温度を15〜37℃に保ちつ
つ行なう。
Fermentation is carried out while maintaining the pH at 6-9 and the temperature at 15-37°C.

かくして発酵終了後、発酵系中の微生物と生成物である
し一スレオニンを0分離する。分離方法は通常の濾過法
、遠心分離法、吸着分離法等の方法が使用される。
After completion of the fermentation, the microorganisms in the fermentation system and the product 1-threonine are separated. As the separation method, conventional methods such as filtration method, centrifugation method, adsorption separation method, etc. are used.

分離して得た微生物は新たな発酵に再使用することがで
き、この再使用によって本発明の効果が発揮できる。発
酵系は、−検力式でもよく、又、多段式の多槽方式でも
よい。
The microorganisms obtained by separation can be reused for new fermentation, and the effects of the present invention can be exerted by this reuse. The fermentation system may be a -potency type or a multi-stage, multi-tank type.

本発明によれば、増殖フェーズを終了し、分泌フェーズ
に入った生産菌を発酵系に保持し、′ン泌フェーズに保
ったまま、反応生成物を発酵光力〉ら取り出し、必要に
応じた量の原料糖などを発酵系に投入する方法が採用可
能であり、すな1)も、従来回分式でしか行なわれてい
なかつtこL−スレオニンの発酵を、連続式で行なうこ
とも可能となったのである。しかも、本発明方法を発酵
系に採用することにより、発酵生産速度で示さiする発
fig /iE産性と単位原料糖当りで示される対糖発
酵収率力(著しく改善され得る。
According to the present invention, the producing bacteria that have completed the growth phase and entered the secretion phase are retained in the fermentation system, and the reaction product is taken out from the fermentation light source while being maintained in the secretion phase, and the reaction product is extracted as necessary. It is possible to adopt a method in which a certain amount of raw material sugar, etc. is input into the fermentation system, and in 1), it is also possible to perform the fermentation of L-threonine, which has conventionally only been carried out in a batch manner, in a continuous manner. It has become. Moreover, by employing the method of the present invention in a fermentation system, the production rate (i) expressed by the fermentation production rate and the fermentation yield for sugar (expressed per unit raw material sugar) can be significantly improved.

以下実施例によって本発明を具体曲に説明する。The present invention will be explained in detail below by way of examples.

実施例1 1β容ミニジヤーフアメノターを発B’l II +こ
JIIL)下記培地組成による培地液を120℃、20
分間の蒸熱殺菌した。
Example 1 A 1β-volume mini-diaphragm was produced. A medium solution with the following medium composition was heated at 120°C for 20 minutes.
Sterilized by steaming for a minute.

培地組成 グルコース(別殺菌) 100f (NH4)2504
 、 45fKH2PO4’ 1.2 y MgSO4
・7H200,5fFe so4117 H2O5”f
 Mn CRz ” ’1〜5H205qポリペブトノ
S 151 ビオチン 150μfチアミン塩酸塩 2
50μ! をイオノ交換水で14とする。
Medium composition Glucose (separately sterilized) 100f (NH4) 2504
, 45fKH2PO4' 1.2 y MgSO4
・7H200,5fFe so4117 H2O5”f
Mn CRz ” '1~5H205q Polypebutono S 151 Biotin 150μf Thiamine Hydrochloride 2
50μ! to 14 with ion-exchanged water.

別にブイヨン培地(3%ブイヨン)で培養したし一スレ
オニン産生菌の種菌、ブレビバクテリウム・ラクトファ
メンタム(FERM−p4182)を培地液Cζ加え3
0℃、pH6,9で通気培養を行なった。
Separately, Brevibacterium lactofamentum (FERM-p4182), an inoculum of monothreonine-producing bacteria cultured in a broth medium (3% broth), was added to the medium solution Cζ.
Aerated culture was performed at 0°C and pH 6.9.

通気培養開始後72時間の培養液を、無菌的な方法によ
り濾過した。濾過機は、平均孔径0.3μ、空孔率75
%のポリメチルメタアクリレートを主材とした高分子中
空糸膜で内径370μ、膜厚85μ、首効面積0.5 
hl”であった。この濾過プロセスにより、菌体以外の
大部分の可溶性無機塩および有機物、タノ白質、糖類を
系外に取り除いた。残った菌体は、単位体積当りの菌体
量が増殖飽和時の菌体量の92%であり、分泌フェーズ
にあった。
The culture solution obtained 72 hours after the start of aerated culture was filtered using an aseptic method. The filter has an average pore diameter of 0.3μ and a porosity of 75.
% polymethyl methacrylate as the main material, inner diameter 370μ, membrane thickness 85μ, effective neck area 0.5
Through this filtration process, most of the soluble inorganic salts and organic matter, white matter, and sugars other than the bacterial cells were removed from the system. The amount of bacterial cells was 92% of the amount at saturation and was in the secretion phase.

濾過プロセスと同時に同量の前記無菌培養液を加え、分
泌フェーズにおけるし一スレオニンの発酵を行なった。
Simultaneously with the filtration process, the same amount of the above-mentioned sterile culture solution was added to carry out the fermentation of threonine in the secretion phase.

この発酵により95.0gのグルコースが35時間で消
費し、L−スレ副ニンが一一一一−18,5ttl1M
した。L−スレオニンの対糖収率は8.5/95、0 
= 8.9%であり、L−スレオニン生成速度は8.’
5fL−スンオニン/e・35時間即ち0.24fL−
スレオニン/l・時間になった。
Through this fermentation, 95.0g of glucose was consumed in 35 hours, and L-threanine was 1111-18.5ttl1M.
did. The yield of L-threonine based on sugar is 8.5/95, 0
= 8.9%, and the L-threonine production rate was 8.9%. '
5fL-Sunonin/e・35 hours or 0.24fL-
It became threonine/l/hour.

550mμにおける発酵液の菌体光学密度(0,D−5
50)は発酵初期で29.5 、発酵終了時32.1で
あった。結果を表1にまとめた。
Bacterial cell optical density of fermentation liquid at 550 mμ (0, D-5
50) was 29.5 at the beginning of fermentation and 32.1 at the end of fermentation. The results are summarized in Table 1.

比較例1 実施例1と同様の培地液、菌株を用いて、同様の条件で
通気培養(発酵)を行なった。通気培養開始後72時間
後に、発酵系で消費したグルコースは96.0 g/ 
lであり発酵によって生成したし一スレオニノは5.1
1 / nであった。この通常発酵法によって得られる
し一スレオニンの対糖収率は5.1 / 96.0 =
 5.3%であった。又、L−スレオニン化成速度は5
.1f L−スレオニノ/1−72時間即ち0.07f
L−スレ堝二ノ/lV・時間であった。
Comparative Example 1 Aeration culture (fermentation) was carried out under the same conditions as in Example 1 using the same culture medium and strain. 72 hours after the start of aerated culture, the glucose consumed in the fermentation system was 96.0 g/
l and one threonino produced by fermentation is 5.1
It was 1/n. The yield of monothreonine based on sugar obtained by this conventional fermentation method is 5.1 / 96.0 =
It was 5.3%. In addition, the L-threonine conversion rate is 5
.. 1f L-threonino/1-72 hours or 0.07f
The L-thread was 1V/hour.

この最終時の生成菌体量は550mμの透過光で測定し
た菌体光学密度(0、’D 、 560 )で30.5
であった。結果を表1にまとめた。
The amount of bacterial cells produced at this final stage is 30.5 as the optical density of bacterial cells (0, 'D, 560) measured using transmitted light of 550 mμ.
Met. The results are summarized in Table 1.

表 1 実施例2 実施例1において発酵終了後の菌体を実施例1と同様の
濾過プロセスによって戸数し、それに再び実施例1と同
様に無菌培養液を加えて発酵を行なうことを4回くり返
した。結果を表2に示す。
Table 1 Example 2 In Example 1, the bacterial cells after completion of fermentation were counted by the same filtration process as in Example 1, and sterile culture solution was added thereto again in the same manner as in Example 1, and fermentation was repeated 4 times. Ta. The results are shown in Table 2.

改良された本発明による発酵法ではくり返し発酵を行な
っても生産菌の効率は極めて良好であり、再現性のある
結果を与えることが確認された。
It was confirmed that the improved fermentation method of the present invention has extremely good production efficiency even when repeated fermentations are performed, and provides reproducible results.

(本頁以下空白) 表 2 実施例3 実施例2においで各発酵の終了時に新しい培養液を加え
る代りに、連続的に0.25 (1/hrで培養液を添
加すると同時に生成物を0.25β/hrで取り出すこ
とによる連続化法による発酵を行なった。
(Blank below on this page) Table 2 Example 3 Instead of adding fresh culture solution at the end of each fermentation in Example 2, the product was continuously added at 0.25 (1/hr) and at the same time Fermentation was carried out using a continuous method with withdrawal at a rate of .25β/hr.

表3に連続化による改良発酵法の結果を示す。 −表 
Table 3 shows the results of the improved fermentation method using continuous fermentation. −Table
3

【図面の簡単な説明】 図1は従来法における発酵生産系中のグルコース量、L
−スレオニノ量、菌体量の各々を経時的に測定した結果
をグラフによって示したものである。 (ハ):増殖フェーズ 0:分泌フェーズ 特許出願人 東 し 株 式 会 壮 図 1 を酸9+朋(hrs)
[Brief explanation of the drawings] Figure 1 shows the amount of glucose, L, in the fermentation production system in the conventional method.
- This is a graph showing the results of measuring the amount of threonino and the amount of bacterial cells over time. (c): Proliferation phase 0: Secretion phase Patent applicant Toshi Co., Ltd. Sozu 1 acid 9 + Tomo (hrs)

Claims (1)

【特許請求の範囲】[Claims] L−スレオニンを生成蓄積せしめる能力のある微生物を
通気発酵せしめることにより系内に生成蓄積したし一ス
レオニンを分離採取する方法において、前記微生物とし
て、実質的、に分泌フェーズにあるもののみを用いるこ
とを特徴とする発酵法によるし一スレオニノの製造法。
In a method for separating and collecting L-threonine produced and accumulated in a system by subjecting microorganisms capable of producing and accumulating L-threonine to aerated fermentation, only microorganisms that are substantially in the secretion phase are used as the microorganisms. A method for producing shiichithreonino using a fermentation method characterized by:
JP3418784A 1984-02-27 1984-02-27 Production of l-threonine Pending JPS60180598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3418784A JPS60180598A (en) 1984-02-27 1984-02-27 Production of l-threonine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3418784A JPS60180598A (en) 1984-02-27 1984-02-27 Production of l-threonine

Publications (1)

Publication Number Publication Date
JPS60180598A true JPS60180598A (en) 1985-09-14

Family

ID=12407189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3418784A Pending JPS60180598A (en) 1984-02-27 1984-02-27 Production of l-threonine

Country Status (1)

Country Link
JP (1) JPS60180598A (en)

Similar Documents

Publication Publication Date Title
DE3139397A1 (en) METHOD FOR PRODUCING AMINO ACIDS ON A FERMENTATIVE WAY
SU1435159A3 (en) Method of producing l-carnitine
JP3008565B2 (en) Method for producing L-glutamic acid by fermentation method
CN103693779B (en) A kind for the treatment of process of lysine fermentation liquor Waste water concentrating liquid and the method for fermentative production Methionin
JPH11501822A (en) Process for producing clavulanic acid and / or its salt
US4104124A (en) Process for the production of single cell protein and amino acids
JPS60180598A (en) Production of l-threonine
US3939042A (en) Process for the production of L-glutamic acid
CA1301690C (en) PROCESS FOR THE FERMENTATIVE PREPARATION OF L-AMINO ACIDS FROM .alpha.-KETO CARBOXYLIC ACIDS
JPS60168394A (en) Production of l-lysine
US4659661A (en) Process for the preparation of fermentation broth for coenzyme B12 and other corrinoid production
US5200326A (en) Method for the fermentative production of L-amino acids from α-keto acids
CH653053A5 (en) METHOD FOR PRODUCING L-ISOLEUCIN BY A MICROBIOLOGICAL WAY.
SU904325A1 (en) Method of producing l-treonin
DE2616673C2 (en) Microbiological process for the production of L (+) - tartaric acid and its salts
JPS6131094A (en) Preparation of l-lysine
JPS59179036A (en) Preparation of protein supplement feed from green grass
FR2486097A1 (en) PROCESS FOR THE PREPARATION OF A SEED FOR THE PRODUCTION IN PARTICULAR OF CITRIC ACID AND SEMEN OBTAINED BY SAID PROCESS
DE3719332C2 (en) Process for the preparation of L-isoleucine
JP2655618B2 (en) Method for producing microbial flocculant NOC-1
JPS63295A (en) Production of nicotinamide adenine dinucleotide
KR870001812B1 (en) Process for preparing l-glutamic acid
SU553283A1 (en) Alcohol dehydrogenase production method
RU2099416C1 (en) Method of baker's yeast producing
SU506614A1 (en) The method of obtaining biomass