JPS60168394A - Production of l-lysine - Google Patents

Production of l-lysine

Info

Publication number
JPS60168394A
JPS60168394A JP2577884A JP2577884A JPS60168394A JP S60168394 A JPS60168394 A JP S60168394A JP 2577884 A JP2577884 A JP 2577884A JP 2577884 A JP2577884 A JP 2577884A JP S60168394 A JPS60168394 A JP S60168394A
Authority
JP
Japan
Prior art keywords
fermentation
lysine
microorganisms
phase
secretion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2577884A
Other languages
Japanese (ja)
Inventor
Shunichi Matsumoto
俊一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2577884A priority Critical patent/JPS60168394A/en
Publication of JPS60168394A publication Critical patent/JPS60168394A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To improve the production efficiency in the production of L-lysine by fermentation, by using obly the microorganisms essentially of the secretion phase. CONSTITUTION:An L-lysine-producing microbial strain [e.g. Corynebacterium glutamicum (ATCC-21513)] is cultured in a medium added with sugars (e.g. glucose, blackstrap molasses, etc.) and a nitrogen source (e.g. ammonium sulfate, urea, etc.) at about 6-9pH and about 15-37 deg.C under aeration. After the completion of fermentation, the microorganisms are separated from the medium, and the produced L-lysine is collected. In the above process, only the microorganisms essentially of the secretion phase (i.e. the cells proliferated separately and finished its proliferation phase, or the cells separated from the conventional L- lysine fermentation system after the completion of fermentation) is used as the microbial strain.

Description

【発明の詳細な説明】 本発明は発酵法によってL−リジンを製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing L-lysine by fermentation.

一般に、発酵系においては、微生物(菌体)が発酵原料
(例えば、糖)を資化し、分裂によって増殖する増殖フ
ェーズと、増殖した菌体がさらに発酵原料を資化し、細
胞内での代謝作用を通じて菌体外にL−リジンを排出す
る分泌フェーズとに大別できる。
In general, in a fermentation system, there is a growth phase in which microorganisms (bacterial cells) assimilate fermentation raw materials (e.g. sugar) and multiply by division, and a second phase in which the proliferated bacterial cells further assimilate fermentation raw materials and undergo metabolic effects within the cells. It can be roughly divided into a secretion phase in which L-lysine is excreted from the bacterial body through the secretion phase.

このうち増殖フェーズは、発酵初期に位置し、ここでは
単−細胞当りの割合からすると資化のために菌体内に取
り込んだ原木ミ(糖の大部分が菌体増殖による菌体形成
に使用される。
Among these, the growth phase is located in the early stage of fermentation, and in terms of the proportion per single cell, most of the raw wood (sugar) taken into the bacterial body for assimilation is used for bacterial cell formation by bacterial cell proliferation. Ru.

一方、分泌フェーズは、発酵後期に位置し、ここでは、
菌体内に取り込まれた原料糖が菌体形成よりも菌体外へ
のし−りンノの分泌に使用されている。
On the other hand, the secretion phase is located in the later stages of fermentation, where:
The raw sugar taken into the bacterial body is used for secretion of phosphorus outside the bacterial body rather than for bacterial cell formation.

図1を参照してより具体的に説明する。図1は従来法に
おいてグルコースを原木9IとしたL−りンノの発酵生
産系中のグルコース量、L−リジン量、菌体量の各々を
、経時的に測定した結果をグラフによって示したもので
ある。図1中(5)の領域は増殖フェーズであり、消費
されたグルコースが主として菌体形成に用いられており
、図1においては培養開始後約20時間までの領域に相
当する。。
This will be explained in more detail with reference to FIG. Figure 1 is a graph showing the results of measuring the amount of glucose, amount of L-lysine, and amount of bacterial cells over time in a fermentation production system of L-phosphorus using glucose as log 9I using the conventional method. be. The region (5) in FIG. 1 is the growth phase, in which consumed glucose is mainly used for bacterial cell formation, and in FIG. 1 corresponds to the region up to about 20 hours after the start of culture. .

一方、図1中回の領域は分泌フェーズであり、もはや菌
体の増殖はほぼ終了し飽和状態となり、消費されたグル
コースの大部分がL−りンノの生成蓄積に用いられる。
On the other hand, the region in the middle of FIG. 1 is in the secretion phase, where the bacterial cell growth has almost finished and reached a saturated state, and most of the consumed glucose is used to produce and accumulate L-phosphorus.

この分泌フェースは図1においては培養開始後約35時
間以降の領域に相当する。
In FIG. 1, this secretion phase corresponds to the region approximately 35 hours after the start of culture.

しかるに、従来法においては、増殖フェーズ、分泌フェ
ーズが一旦終了すると、用いられた菌体は、発酵系内に
生成蓄積したし一リジンの分離採取前後に廃棄処理され
るのが通常であった。それは、増殖フェーズ、分泌フェ
ーズの各時間およびL−リジン生産蓄積量は菌体それ自
体の代謝能力によって一意的に定まり、たとえ発酵時間
を長くしてモ分泌フェーズにおけるし一リジン生成蓄積
量を増大せしめることが不可能であったためである。
However, in conventional methods, once the growth phase and secretion phase are completed, the used bacterial cells are usually discarded before or after the separation and collection of lysine produced and accumulated in the fermentation system. The duration of the growth phase, the secretion phase, and the accumulated amount of L-lysine produced are uniquely determined by the metabolic ability of the bacterial cell itself. This was because it was impossible to force them to do so.

つまり、従来より発酵法によってL−リジンを製造する
際、L−リジンの生成蓄積量を増大せしめるために、微
生物、添加物、発酵条件等において種々の検討、改良が
なされているが、いかなる改良も菌体の代謝能力以上に
L−リジンの生産性を向上させることはほとんど不可能
であると従来考えられていた。従って、新たに発酵を行
なう場合にはその都度新たな菌体を使用し、増殖フェー
ズ、分泌フェーズをくり返していたのである。
In other words, when producing L-lysine by fermentation methods, various studies and improvements have been made in microorganisms, additives, fermentation conditions, etc. in order to increase the amount of L-lysine produced and accumulated, but no improvements have been made. It was previously thought that it was almost impossible to improve L-lysine productivity beyond the metabolic ability of bacterial cells. Therefore, each time a new fermentation was carried out, a new bacterial cell was used, and the growth phase and secretion phase were repeated.

しかるに本発明者は、菌体の代謝能力以ににL−リジン
の生産性を向上せしめることを目的として鋭意研究を行
なった結果、本発明に到達した。
However, the present inventor conducted extensive research with the aim of improving the productivity of L-lysine beyond the metabolic ability of bacterial cells, and as a result, the present invention was achieved.

すなイ)ち、本発明は、L−リジンを生成蓄積せしめる
能力のある微生物を通気発酵せしめることにより系内に
生成蓄積したし一リジンを分離採取する方法において、
前記微生物として、実質的に分泌フェーズにあるものの
みを用いることを特徴とする発酵法によるし一リジンの
製造法である。
In other words, the present invention provides a method for separating and collecting lysine produced and accumulated in a system by subjecting microorganisms capable of producing and accumulating L-lysine to aeration fermentation,
This is a method for producing lysine by a fermentation method, characterized in that only microorganisms that are substantially in the secretion phase are used as the microorganisms.

本発明の主たるねらいは、増殖フェーズにある発酵を避
けて分泌フェーズの発酵を持続させるにある。
The main aim of the present invention is to avoid fermentation in the growth phase and to sustain fermentation in the secretion phase.

かかる検討は■、−グルタミン酸の発酵法についてはな
されていた(特公昭38−25292号)が、L−リレ
ンの発酵法においてはなされておらず、本発明によって
はじめて達成できたものであ゛る。
Such studies have been carried out on the fermentation method of (1)-glutamic acid (Japanese Patent Publication No. 38-25292), but not on the fermentation method of L-rylene, and this study has been achieved for the first time by the present invention. .

本発明では、まず、L−リジンを生成蓄積せしめる能力
のある微生物で、実質的に分泌フェーズ3− にあるもののみを、発酵系中で通気攪拌する。
In the present invention, first, only microorganisms capable of producing and accumulating L-lysine, which are substantially in the secretion phase 3-, are aerated and stirred in the fermentation system.

本発明において、L−リジンを生成蓄積せしめる能力の
ある微生物としては、アルカリ土類金属、アシネトバク
タ−属、ニジエリシア属、ブレビバクテリウム属、バシ
ルス属、コリネバクテリウム属、フラボバクテリウム属
、7−スロパクター属、シクロバクテリウム属、ンクロ
コソカス属又はシュードモナス属に属する微生物が挙げ
られる。代表的な例としては、コリネバクテリウム・グ
ルタミクム(ATCC−21513,ATCC−130
32) 、ブレビバクテリウムQラクトフェルメンタム
(ATCC−13869)、プレヒバクテリウム・ブラ
バム(ATCC−13826)、コリネバクテリウム・
アセトアミドフイラム(ATCC−21476) 、シ
クロバクテリウム・アンモニアフイラム(ATCC−1
5354)等が挙げられる。これらの微生物は天然の土
壌中から得られたものであってもよく、さらには、各種
アミノ酸要求性変異株(特公昭3.6−6499号)、
その他の栄養要求性変異株(特公昭48−28677号
)、5−2−アミノエチル−L−ンスティンなどのりジ
ンア4 − ナログ耐性変異株(特公昭48−28078号)、又は
ペニシリンG又はポリミキシン耐性株(米国特許第36
87810号明細書)等を用いることも可能である。
In the present invention, microorganisms capable of producing and accumulating L-lysine include alkaline earth metals, Acinetobacter genus, Nigierisia spp., Brevibacterium spp., Bacillus spp., Corynebacterium spp., Flavobacterium spp. Examples include microorganisms belonging to the genus Thropacter, Cyclobacterium, Ncrochosoccus, or Pseudomonas. A typical example is Corynebacterium glutamicum (ATCC-21513, ATCC-130
32), Brevibacterium Q lactofermentum (ATCC-13869), Prehybacterium bravum (ATCC-13826), Corynebacterium
Acetamidephilum (ATCC-21476), Cyclobacterium ammoniaphyllum (ATCC-1)
5354), etc. These microorganisms may be obtained from natural soil, and may also include various amino acid-requiring mutant strains (Japanese Patent Publication No. 3.6-6499),
Other auxotrophic mutants (Japanese Patent Publication No. 48-28677), 5-2-aminoethyl-L-instine and other Norizin 4-nalog resistant mutants (Japanese Patent Publication No. 48-28078), or penicillin G or polymyxin resistant Stock (U.S. Patent No. 36
87810) etc. can also be used.

本発明においては、これらの微生物が実質的に分泌フェ
ーズにあるもののみを用いる。
In the present invention, only those microorganisms that are substantially in the secretion phase are used.

本発明において、分泌フェーズとは、微生物の単位体積
当りの菌体量が、発酵系中における菌体量の最大値(す
なわち菌体増殖が飽和状態となった時の菌体量)の80
重量%以上である領域をいう。
In the present invention, the secretion phase means that the amount of bacterial cells per unit volume of microorganisms is 80% of the maximum amount of bacterial cells in the fermentation system (i.e., the amount of bacterial cells when bacterial cell growth reaches a saturated state).
Refers to the area in which the weight percentage is greater than or equal to % by weight.

本発明において発酵系lこ用いる実質的に分泌フェーズ
にある微生物としては、予め別に増殖させて増殖フェー
ズの終了したものをそのまま用いてもよいし、通常のし
一リジン発酵が終了した後発酵系より分離した菌体を再
び用いてもよい。
In the present invention, the microorganisms that are substantially in the secretion phase used in the fermentation system may be grown separately in advance and used as they are after the growth phase has been completed. More isolated bacterial cells may be used again.

本発明の発酵系には、通常の発酵と同じように原料糖と
窒素源を添加する必要がある。
In the fermentation system of the present invention, it is necessary to add raw material sugar and a nitrogen source in the same way as in normal fermentation.

本発明において、原料糖としては、通常発酵に使用され
得るものであればいかなるものも使用可能であり、特に
グルコース、エタノール、酢酸等の天然品又は合成化学
品の他に廃糖蜜やセルロース分解液、デノプノ分解液等
のものが好ましく用いられる。窒素源としては硫安、尿
素能の窒素原子含存の可溶性無機塩が好ましく用いられ
る。
In the present invention, any raw sugar that can be used in normal fermentation can be used, and in particular, in addition to natural products or synthetic chemicals such as glucose, ethanol, and acetic acid, blackstrap molasses and cellulose decomposition liquid can be used. , Denopnolysis solution, etc. are preferably used. As the nitrogen source, soluble inorganic salts containing nitrogen atoms such as ammonium sulfate and urea are preferably used.

本発明において通気攪拌する方法は常法が採用できる。In the present invention, a conventional method can be used for aeration and stirring.

発酵は、pHを6〜9に、温度を15〜37℃に保ちつ
つ行なう。
Fermentation is carried out while maintaining the pH at 6-9 and the temperature at 15-37°C.

かくして発酵終了後、発酵系中の微生物と生成物である
L−リジンを分離する。分離方法は通常の濾過法、遠心
分離法、吸着分離法等の方法が使用される。
After completion of the fermentation, the microorganisms in the fermentation system and the product L-lysine are separated. As the separation method, conventional methods such as filtration method, centrifugation method, adsorption separation method, etc. are used.

分離して得た微生物は新たな発酵+W用することができ
、この再使用によって本発明の効果が発揮できる。発酵
系は、−横方式でもよく、又、多段式の多槽方式でもよ
い。
The microorganisms obtained by separation can be used for new fermentation +W, and the effects of the present invention can be exhibited by this reuse. The fermentation system may be a horizontal type or a multi-stage, multi-tank type.

本発明によれば、増殖フェーズを終了し、分泌フェーズ
に入った生産菌を発酵系に保持し、分泌フェーズに保っ
たまま、反応生成物を発酵系から取り出し、必要に応じ
た量の原料糖などを発酵系に投入する方法が採用可能で
あり、すなわち、従来回分式でしか行イつれていなかっ
たし一リジンの発酵を、連続式で行なうことも可能とな
ったのである。しかも、本発明方法を発酵系に採用する
ことにより、発酵生産速度で示される発酵生産性と単位
原料糖当りで示される対糖発酵収率が著しく改善され得
る。
According to the present invention, the producing bacteria that have completed the growth phase and entered the secretion phase are retained in the fermentation system, and the reaction product is taken out from the fermentation system while being maintained in the secretion phase, and the amount of raw sugar is adjusted as needed. In other words, it has become possible to carry out the fermentation of one lysine in a continuous manner, which had previously only been done in a batch manner. Moreover, by applying the method of the present invention to a fermentation system, the fermentation productivity, which is expressed as the fermentation production rate, and the fermentation yield relative to sugar, which is expressed per unit raw material sugar, can be significantly improved.

以下実施例によって本発明を具体的に説明する。EXAMPLES The present invention will be specifically explained below with reference to Examples.

実施例1 1#8Eニジヤーフアメノターを発酵槽に用い下記培地
組成による培地液を120℃、20分間の蒸熱殺菌した
Example 1 Using a 1#8E Nija Farmer as a fermenter, a medium solution having the following medium composition was sterilized by steaming at 120° C. for 20 minutes.

培地組成 グルコース(別殺菌) 100 f (NH11+2S
O4501KH2PO,L2y Mg5O,、’yH,
00,5yFeSO4・7H2057H2O5q・4〜
5I]205〜ポリペプトンS 159 ヒオチン 1
50μfチアミノ塩綾表 250711 をイオン交換水で11とする。
Medium composition Glucose (separately sterilized) 100 f (NH11+2S
O4501KH2PO, L2y Mg5O,,'yH,
00,5yFeSO4・7H2057H2O5q・4~
5I] 205 ~ Polypeptone S 159 Hyothine 1
Dilute 50 μf thiamino salt 250711 to 11 with ion exchange water.

−7= 別にブイヨン培地(3%ブイヨン)で培養したし一リジ
ン産生菌の種菌、コリネバクテリウム・グルタミクム(
ATCC−21513)を培地液に加え30℃、p H
6,9で通気培養を行なった。
-7 = Inoculum of monolysine-producing bacteria, Corynebacterium glutamicum (
ATCC-21513) was added to the culture medium at 30°C, pH
Aerated culture was performed in 6 and 9.

通気培養開始後40時間の培養液を、無菌的な方法によ
l) ?濾過した。濾過機は、平均孔径03μ、空孔率
75%のポリメチルメタアクリレ−1・を主材とした高
分子中空糸膜で内径370μ、膜厚85μ、有効面積0
.5−であった。この濾過プロセスにより、菌体以外の
大部分の可溶性無機塩および有機物、タン白質、糖類を
系外に取り除いた。残った菌体は、単位体積当りの菌体
量が増殖飽和時の菌体量の83%であり、分泌フェーズ
にあった。
40 hours after the start of aerated culture, the culture solution is aseptically grown. Filtered. The filtration machine is a polymer hollow fiber membrane mainly made of polymethyl methacrylate-1 with an average pore diameter of 03μ and a porosity of 75%, an inner diameter of 370μ, a membrane thickness of 85μ, and an effective area of 0.
.. It was 5-. Through this filtration process, most of the soluble inorganic salts and organic substances, proteins, and sugars other than the bacterial cells were removed from the system. The remaining bacterial cells had an amount per unit volume of 83% of the amount at the time of saturation of growth, and were in the secretion phase.

濾過プロセスと同時に同量の前記無菌培養液を加え、分
泌フェーズにおけるし一リジンの発酵を行なった。
Simultaneously with the filtration process, the same amount of the sterile culture solution was added to carry out the fermentation of lysine in the secretion phase.

この発酵により798gのグルコースが22時間で消費
し、L−リジンが塩酸塩基準で395fim+、た。L
−リジンの対糖収率は39.5 / 79.8= 49
.5%であり、L−リジン生成速度は39.58− g L−リジン/l・22時間即ら1.80g L−リ
ジノ/e・時間になった。550mμにおける発酵液の
憩停尤営幻i (0、D 、 550)は発酵初期で3
02、発酵終了時36.6であった3、結果を表1にま
とめtこ。
Through this fermentation, 798 g of glucose was consumed in 22 hours, and L-lysine was 395 fim+ on a hydrochloride basis. L
-The yield of lysine based on sugar is 39.5 / 79.8 = 49
.. 5%, and the L-lysine production rate was 39.58-g L-lysine/l·22 hours, or 1.80 g L-lysine/e·hr. At 550 mμ, the fermentation liquid's rest stop value i (0, D, 550) is 3 at the early stage of fermentation.
02. At the end of fermentation, the temperature was 36.6. The results are summarized in Table 1.

比較例1 実施例1と同様の培地液、菌株を用いて、同様の条件で
通気培養(発酵)を行なった。通気培養開始後44時間
後に、発酵系で消費したグルコースは93. Oyであ
り発酵によって生成したし一リジンはL−リジン塩酸塩
として379gであった。
Comparative Example 1 Aeration culture (fermentation) was carried out under the same conditions as in Example 1 using the same culture medium and strain. 44 hours after the start of aerated culture, the glucose consumed in the fermentation system was 93. The amount of lysine produced by fermentation was 379 g as L-lysine hydrochloride.

この通常発酵法によって得られるし一リジンの対糖収率
は407%−37,9/ 93.0であった。又、L−
リジン生成速度は37.9yL−リジン/e・44時間
即ち0.86g L−リジン/l呻時間であった。
The yield of lysine based on sugar obtained by this conventional fermentation method was 407%-37.9/93.0. Also, L-
The lysine production rate was 37.9 yL-lysine/e.times.44 hours, or 0.86 g L-lysine/l.

この最終時の生成菌体量は550mμの透過光で測定し
た菌体光学密度(0、D 、 550)は320であっ
た。結果を表1にまとめた。
The amount of bacterial cells produced at the final stage was 320 as measured by optical density (0, D, 550) using transmitted light of 550 mμ. The results are summarized in Table 1.

表 1 実施例2 実施例1において発酵終了後の菌体を実施例1と同様の
1過プロセスによって枦取し、それに再び実施例jと同
様に無菌培養液を加えて発酵を行なうことを4回くり返
した。結果を表2に示す。
Table 1 Example 2 In Example 1, the bacterial cells after completion of fermentation were harvested by the same one-pass process as in Example 1, and a sterile culture solution was added thereto again in the same manner as in Example J to carry out fermentation. Repeatedly. The results are shown in Table 2.

改良された本発明による発酵法ではくり返し発酵を行な
っても生産菌の効率は極めて良好であり、再現性のある
結果を与えることが確認された。
It was confirmed that the improved fermentation method of the present invention has extremely good production efficiency even when repeated fermentations are performed, and provides reproducible results.

(不貞以下空白) 表 2 実施例3 実施例21こおいて各発酵の終了時に新しい培養液を加
える代りに、連続的に0.05 l/hrで培養液を添
加すると 同時に生成物を0.05 (1/hrで取り
出すことによる連続化法による発酵を行なった。表3に
連続化による改良発酵法の結果を示す。
(Blank below) Table 2 Example 3 Instead of adding fresh culture solution at the end of each fermentation in Example 21, the culture solution was added continuously at 0.05 l/hr and at the same time the product was added at 0.05 l/hr. 05 (fermentation was carried out by a continuous method by taking out at a rate of 1/hr. Table 3 shows the results of the improved fermentation method by continuous fermentation.

表 3Table 3

【図面の簡単な説明】[Brief explanation of drawings]

図1は従来法における発酵生産系中のグルコース量、L
 −i :、;7里、菌体量の各々を経時的lこ測定し
た結果をグラフによって示したものである。 (ハ)、増殖フェーズ (B)1分泌フェース 特許出願人 東 し 株 式 会 杼 口 1 栢山呑藺(hrs)
Figure 1 shows the amount of glucose, L, in the fermentation production system in the conventional method.
-i:,;7ri, The results of measuring the amount of bacterial cells over time are shown in graphs. (C), Proliferation Phase (B) 1 Secretion Phase Patent Applicant Higashi Shi Co., Ltd. Shed 1 Kayayama Donai (hrs)

Claims (1)

【特許請求の範囲】[Claims] L−リジンを生成蓄積せしめる能力のある微生物を通気
発酵せしめることにより系内に生成蓄積しjコL−リジ
ンを分離採取する方法において、前記微生物として、実
質的に分泌フェーズにあるもののみを用いることを特徴
とする発酵法によるし一リジンの製造法。
In a method for producing and accumulating L-lysine in a system by aeration fermentation of microorganisms capable of producing and accumulating L-lysine, and separating and collecting L-lysine, only microorganisms that are substantially in the secretion phase are used as the microorganisms. A method for producing lysine by a fermentation method characterized by the following.
JP2577884A 1984-02-14 1984-02-14 Production of l-lysine Pending JPS60168394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2577884A JPS60168394A (en) 1984-02-14 1984-02-14 Production of l-lysine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2577884A JPS60168394A (en) 1984-02-14 1984-02-14 Production of l-lysine

Publications (1)

Publication Number Publication Date
JPS60168394A true JPS60168394A (en) 1985-08-31

Family

ID=12175297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2577884A Pending JPS60168394A (en) 1984-02-14 1984-02-14 Production of l-lysine

Country Status (1)

Country Link
JP (1) JPS60168394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0139592A2 (en) * 1983-10-27 1985-05-02 Les Produits Organiques Du Santerre Orsan Process and apparatus for the production of aminoacids by fermentation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0139592A2 (en) * 1983-10-27 1985-05-02 Les Produits Organiques Du Santerre Orsan Process and apparatus for the production of aminoacids by fermentation

Similar Documents

Publication Publication Date Title
DE3139397A1 (en) METHOD FOR PRODUCING AMINO ACIDS ON A FERMENTATIVE WAY
US4786598A (en) Process for the biotechnological preparation of poly-d-(-)-3-hydroxybutyric acid
FR2644178A1 (en) MICROORGANISM OF THE SPECIES BACILLUS COAGULANS AND METHOD USING THE MICROORGANISM TO PRODUCE OPTICALLY PURE L (+) LACTIC ACID
US5064762A (en) Increasing the inositol yield from almond hulls
SU1435159A3 (en) Method of producing l-carnitine
JP3008565B2 (en) Method for producing L-glutamic acid by fermentation method
DE3320495A1 (en) MICROBIOLOGICALLY PRODUCED D-2-HYDROXY-4-METHYLPENTANIC ACID DEHYDROGENASE, METHOD FOR THEIR DETERMINATION AND THEIR USE
JPH01277495A (en) Biological conversion of l-thirosine and l-phenylalanin to 2, 5-dihydroxyphenyl acetic acid
JPS60168394A (en) Production of l-lysine
JP4055228B2 (en) Method for producing erythritol
JPS6257313B2 (en)
JPS60180598A (en) Production of l-threonine
DE3135803A1 (en) "FERMENTATIVE METHOD FOR PRODUCING L-ISOLEUCIN"
SU904325A1 (en) Method of producing l-treonin
EP0760862A1 (en) Microorganism-containing composition and method for the production of xylitol
CH654851A5 (en) FERMENTATIVE PRODUCTION OF L-LEUCINE.
JPH11221092A (en) Production of erythritol
JPH1042860A (en) Production of inositol and acquirement of hexachlorocyclohexane-resistant strain
JPS6131094A (en) Preparation of l-lysine
US2537148A (en) Process for the production of riboflavin by fermentation
JPS6236677B2 (en)
JP2000078996A (en) Production of pyruvic acid
JPS5953035B2 (en) Method for producing itaconic acid by fermentation method
WO1991003546A1 (en) Arginine-rich yeast
JPH09154590A (en) Production of erythritol