JPS60180586A - Preparation of material containing enzyme immobilized with pva gel - Google Patents

Preparation of material containing enzyme immobilized with pva gel

Info

Publication number
JPS60180586A
JPS60180586A JP59034167A JP3416784A JPS60180586A JP S60180586 A JPS60180586 A JP S60180586A JP 59034167 A JP59034167 A JP 59034167A JP 3416784 A JP3416784 A JP 3416784A JP S60180586 A JPS60180586 A JP S60180586A
Authority
JP
Japan
Prior art keywords
enzyme
bacterial cells
immobilized
production method
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59034167A
Other languages
Japanese (ja)
Inventor
Fumihiro Ishimura
文宏 石村
Koji Murata
光司 村田
Jiyoukiyuu Gen
丞烋 玄
Yoshito Ikada
義人 筏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO MATERIARU YUNIBAASU KK
Toyo Jozo KK
Original Assignee
BIO MATERIARU YUNIBAASU KK
Toyo Jozo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO MATERIARU YUNIBAASU KK, Toyo Jozo KK filed Critical BIO MATERIARU YUNIBAASU KK
Priority to JP59034167A priority Critical patent/JPS60180586A/en
Publication of JPS60180586A publication Critical patent/JPS60180586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

PURPOSE:To produce a material containing immobilized enzyme having high strength to endure the industrial use, by freezing a mixture of a specific aqueous solution of PVA, an enzyme-containing composition and boric acid in a vessel, and drying the formed mixture. CONSTITUTION:An aqueous solution of a polyvinyl alcohol having a saponification degree of >=95mol% and an average polymerization degree of >=1,000 is mixed homogeneously with an enzyme-containing material and boron or borax. The mixture is frozen in a vessel having an arbitrary form at <=-6 deg.C, and the obtained formed product is dried spontaneously or under aeration. The concentration of the aqueous solution of polyvinyl alcohol is 5-30W/W%, preferably 10-20W/W%. When the concentration is low, the mechanical strength of the obtained material containing immobilized enzyme becomes poor, and when the concentration is too high, the preparation is difficult because of the solubility of the polyvinyl alcohol. The enzyme-containing material means an enzymatic agent or an enzyme-producing microbial cell.

Description

【発明の詳細な説明】 本発明はポリビニルアルコール(PVA)ゲルによる固
定化酵素または菌体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing immobilized enzymes or bacterial cells using polyvinyl alcohol (PVA) gel.

近年、微生物あるいはこれによシ産生される酵素の利用
に関する技術が著しく進歩すると共に、酵素反応を有効
に利用するために酵素または菌体の固定化法が数多く提
案され、多くの発明がなされているが、工業化に成功し
た技術は極〈僅かである。その理由としては、生産物の
製造コストの問題の他に、酵素または菌体を固定化する
際、過激な条件を必要とするとか、多官能性試薬を使用
することなどにより固定化した酵素または菌体の酵素活
性が低下する生物活性発現に問題があること、得られた
固定化酵素または菌体の強度が低いため工業的に耐えら
れなかったり、あるいは基質の液圧によシ変形して目詰
シを起したシして、固定化酵素または菌体の物理的耐久
性に問題があること、有害なモノマー、架橋化試薬など
を固定化に使用するため、固定化酵素または菌体あるい
は生成物の安全性についての問題があるなど、種々の欠
点によるものであった。
In recent years, technology related to the use of microorganisms and the enzymes produced by them has made significant progress, and many methods for immobilizing enzymes or microbial cells have been proposed and many inventions have been made in order to effectively utilize enzymatic reactions. However, very few technologies have been successfully commercialized. The reasons for this include, in addition to the production cost of the product, the immobilization of enzymes or bacterial cells requires extreme conditions, or the use of polyfunctional reagents. There is a problem in the expression of biological activity due to a decrease in the enzyme activity of the bacterial cells, the strength of the obtained immobilized enzyme or bacterial cells is so low that they cannot withstand industrial use, or they are deformed by the liquid pressure of the substrate. Immobilized enzymes or bacterial cells may cause clogging, problems with the physical durability of the immobilized enzymes or bacterial cells, and harmful monomers, cross-linking reagents, etc. are used for immobilization. This was due to various drawbacks, including problems with product safety.

従来、PvAを用いる酵素または菌体の固定化法として
は、種々の方法が知られている。
Conventionally, various methods have been known for immobilizing enzymes or bacterial cells using PvA.

例えば、PVAと酵素とを溶解した水溶液を低温ゲル化
させることによる酵素の固定化法が提案されている(特
開昭50−52276号公報)。
For example, an enzyme immobilization method has been proposed in which an aqueous solution containing PVA and an enzyme is gelled at a low temperature (Japanese Patent Laid-Open No. 50-52276).

この方法によシ得られるゲルは弾性を示さず、機械的な
強度は極めて低い。また、固化、融解後に風乾する場合
は、軟弱なものしか得られず、さらにまた、風乾する代
りに減圧脱水を試みても、たとえ長時間を費し脱水して
も、殆んど弾性を示さない脆いゲルしか得られるに過ぎ
ず、工業的に利用可能な方法とは言えない。
The gel obtained by this method exhibits no elasticity and has extremely low mechanical strength. In addition, if air-drying is performed after solidification and thawing, only a soft material is obtained, and furthermore, even if vacuum dehydration is attempted instead of air-drying, even if it takes a long time to dehydrate, the product shows almost no elasticity. However, only a brittle gel can be obtained, and this cannot be said to be an industrially applicable method.

酵素または菌体とPVA水溶液にホウ酸またはポウ砂の
水溶液を加えて即座にゲル化させることによる酵素また
は菌体を固定化する方法(特公昭55−51552号公
報4、特開昭54−135295号公報)が提案されて
いるが、生成するゲルは軟弱で、成型し難い。
A method of immobilizing enzymes or bacterial cells by adding an aqueous solution of boric acid or porcelain to an aqueous solution of enzymes or bacterial cells and immediately gelling them (Japanese Patent Publication No. 55-51552-4, Japanese Patent Application Laid-open No. 135295-1982) However, the gel produced is soft and difficult to mold.

PVA、テトラエチルシリフートおよび菌体を含む懸濁
液に酸を加え風乾することによる固定化法(特公昭55
−11311号公報)も提案されたが、やはりこの膜も
軟弱である。この場合、酸を加えた後、凍結・乾燥して
も、生成する膜の機械的強度はかえって低下し、殆んど
成型不能であった。
An immobilization method in which acid is added to a suspension containing PVA, tetraethyl silifute, and bacterial cells and air-dried (Special Publication No. 55
11311) has also been proposed, but this film is also weak. In this case, even if the membrane was freeze-dried after adding an acid, the mechanical strength of the resulting membrane actually decreased, and it was almost impossible to form the membrane.

PVA水溶液と生菌体と粘土鉱物の3者を含む懸濁水溶
液を一6℃〜+40℃で乾燥させて所定含水率に達する
まで脱水することにより、生成するゲル中に生菌体を固
定化する方法(特開昭57−138390号公報]が提
案されているが、このゲル化は低温ゲル化ではなく、得
られた固定化菌体はまだ軟弱で脆く、工業的に利用可能
な強度にまで達していない。しかも多量の粘土鉱物を含
有するため体積当シの菌体活性が低下し、それだけ酵素
反応における反応容器の体積が増大するという欠点があ
った。
A suspended aqueous solution containing a PVA aqueous solution, viable bacterial cells, and clay minerals is dried at -6°C to +40°C until a predetermined moisture content is reached, and the viable bacterial cells are immobilized in the resulting gel. A method has been proposed (Japanese Unexamined Patent Publication No. 57-138390), but this gelation is not low-temperature gelation, and the obtained immobilized bacterial cells are still soft and brittle, and cannot be strong enough to be used industrially. Moreover, since it contains a large amount of clay minerals, the bacterial cell activity per volume decreases, and the volume of the reaction vessel for the enzymatic reaction increases accordingly.

PVA水溶液と生菌体と粘土鉱物の3者を含む懸濁水溶
液を凍結、成型後、融解させることなく真空乾燥、いわ
ゆる凍結乾燥することにより生成するゲル中に生菌体を
固定化する方法(特開昭57−141291号、同昭5
7−198088号公報)が提案されている。同様にP
VA水溶液と生菌体とを含む懸濁水溶液を凍結、成型後
、融解させることなく真空乾燥、いわゆる、凍結乾燥す
ることによシ生成するゲル中に生菌体を固定化する方法
(特開昭57−141292号、同昭57−19808
8号公報)が提案されている。
A method of immobilizing live bacteria in a gel produced by freezing and molding an aqueous suspension containing a PVA aqueous solution, live bacteria, and clay minerals, and then vacuum drying without thawing, so-called freeze-drying ( Japanese Patent Publication No. 57-141291, 1972
7-198088) has been proposed. Similarly, P
A method of immobilizing live bacteria in a gel produced by freezing and molding an aqueous suspension containing a VA aqueous solution and live bacteria, and then vacuum drying without thawing, so-called lyophilization. No. 57-141292, No. 57-19808
Publication No. 8) has been proposed.

これらの固定化菌体は比較的強固であるが、体積の犬な
るものしか得られず、多量の粘土鉱物を含有させるとさ
らに体積が増加するため、単位体積当シの菌体活性が低
下するだけでなく、酵素反応に利用する場合の固定化菌
体の反応体積が著しく増加する。工業的には反応体積を
大きくすることは極めて不利であシ、シかも凍結乾燥に
併なう設備費およびエネルギー費の負担が大きくなると
いう欠点があった。
These immobilized bacterial cells are relatively strong, but only a small amount of volume can be obtained, and when a large amount of clay minerals are added, the volume increases further, resulting in a decrease in bacterial cell activity per unit volume. In addition, the reaction volume of immobilized bacterial cells when used in enzyme reactions increases significantly. Industrially, increasing the reaction volume is extremely disadvantageous, and also has the drawback of increasing equipment costs and energy costs associated with freeze-drying.

本発明者らは、かかる従来技術の欠点を解消すべく種″
′々研究しん結果、PVA水溶液と酵素または菌体とホ
ウ酸またはその水溶液の3者を5〜7.5のpHで均一
に混合し、その混合物を凍結して低温ゲル化し、得られ
た成形物を自然乾燥または通風乾燥すると非常に強固な
固定化酵素または菌体が得られることを見い出した。
The present inventors have devised a method to overcome the drawbacks of the prior art.
As a result of extensive research, we have found that a PVA aqueous solution, enzymes or bacterial cells, and boric acid or its aqueous solution are uniformly mixed at a pH of 5 to 7.5, and the mixture is frozen to form a low-temperature gel. We have found that very strong immobilized enzymes or bacterial cells can be obtained by air drying or ventilation drying.

一般に、PvAのゲル化は、ホウ酸、ホウ砂、テトラア
ルキルシリケート、有機ケイ素などの試薬を用いる複合
ゲル化と、凍結による低温ゲル化が知られているが、こ
れらはいずれ−も軟弱な固定化菌体しか得られなかった
。本発明者らは、ホウ酸またはホウ砂を用いてpvA&
複合ゲル化させ、次いで凍結による低温ゲル化を行い、
さらに単な名乾燥工程においても乾燥ゲル化が進行する
ことを見い出し、3種類のゲル化により工業的使用に耐
え得る強度を有する固定化酵素、菌体を得られることを
知った。
In general, PvA gelation is known to be carried out by composite gelation using reagents such as boric acid, borax, tetraalkyl silicate, and organosilicon, and by low-temperature gelation by freezing, but both of these methods are based on weak fixation. Only sterilized bacterial cells were obtained. We used boric acid or borax to
Composite gelation is performed, followed by low-temperature gelation by freezing,
Furthermore, they discovered that dry gelation progresses even in a simple drying process, and learned that by performing three types of gelation, immobilized enzymes and bacterial cells with strength that can withstand industrial use can be obtained.

さらにまた、ホウ酸またはホウ砂によるPVAの複合ゲ
ル化は、それらのPVAに対する量的関係および混合時
のpH条件によシ、最終的に得られた固定化物の強度に
大きく影響を与えるだけでなく、成形の容易性にも影響
することを知った。
Furthermore, the composite gelation of PVA with boric acid or borax, depending on their quantitative relationship to PVA and the pH conditions during mixing, only greatly affects the strength of the final immobilized product. I learned that this also affects the ease of molding.

本発明は上記の知見に基いて完成されたものであシ、け
ん化度が95モルチ以上で、平均重合度が1ooo以上
のPVA水溶液と酵素含有物とホウ酸またはホウ砂とを
均一に混合し、その混合物を任意の形状の容器内で一6
℃以下の温度で凍結し、次いで得られた成形物を自然乾
燥または通風乾燥することを特徴とする強固な固定化酵
素含有物の製造法であって、その目的とするところは工
業的な使用に耐え得る強固な固定化酵素または菌体の前
雉な製造法を提供することにある。
The present invention was completed based on the above findings, and consists of uniformly mixing a PVA aqueous solution with a saponification degree of 95 molti or more and an average polymerization degree of 100 or more, an enzyme-containing material, and boric acid or borax. , the mixture in a container of any shape.
A method for producing a strong immobilized enzyme-containing product, which is characterized by freezing at a temperature below ℃ and then air drying or ventilation drying the obtained molded product, and its purpose is for industrial use. The purpose of the present invention is to provide a method for producing strong immobilized enzymes or bacterial cells that can withstand harsh conditions.

本発明に用いるPVAは、そのけん化度は95モルチ以
上、好ましくは9゛7モルチ以上のものが使用される。
The PVA used in the present invention has a saponification degree of 95 molt or more, preferably 9.7 molt or more.

これより低いけん化度、例えば85モルチ以下では、軟
弱な固定化酵素含有物が得られるに過ぎない。重合度は
粘度平均で1000以上、好ましくは1500以上のも
のが使用される。PVAの重合度が低下すると共に、得
られる固定化酵素含有物の機械的強度も低下するため、
通常市販されている重合度1700〜2600程度の高
重合度品を用いるのが良い。
If the degree of saponification is lower than this, for example below 85 mol, only a weak immobilized enzyme-containing material is obtained. The degree of polymerization used is one having an average viscosity of 1000 or more, preferably 1500 or more. As the degree of polymerization of PVA decreases, the mechanical strength of the obtained immobilized enzyme-containing product also decreases.
It is preferable to use products with a high polymerization degree of about 1,700 to 2,600, which are usually commercially available.

本発明では、先ずpVAの水溶液が調製されるのである
が、濃度としては5〜30W/W チ、好ましくは10
〜20 W/W%で用いられるのがよい。濃度が低く過
ぎると、得られる固定化酵素含有物の機械的強度が低下
し、逆に濃度を前記よシ高くすると、PVAの溶解性に
よシ調製が困難となる。
In the present invention, an aqueous solution of pVA is first prepared, and the concentration is 5 to 30 W/W, preferably 10
It is preferable to use it at ~20 W/W%. If the concentration is too low, the mechanical strength of the obtained immobilized enzyme-containing product will decrease, and if the concentration is too high, the solubility of PVA will make it difficult to prepare.

本発明に用いる酵素含有物は酵素剤または酵素生産菌体
を意味する。それらはそれ自体で使用してもよく、また
水性媒体、例えば水、適当な緩衝液などに溶解した溶液
あるいは懸濁した懸濁液として使用してもよい。
The enzyme-containing substance used in the present invention means an enzyme agent or an enzyme-producing bacterial cell. They may be used as such or as solutions or suspensions in aqueous media such as water, suitable buffers and the like.

上記酵素剤は部分的に精製されていても、また充分に精
製されていてもよく、いずれの純度の度合の酵素でもよ
い。また該酵素は無機または有機担体と物理的に吸着さ
れている形態であるか、あるいは該担体と混合されてい
る形態であってもよい。ここに担体とは酵素又は菌体を
不活化させない水に不溶性の無機又は有機物質であって
場合によっては、酵素又は菌体と物理的に吸着する物質
である。例えばケインウ土、シリカゲル、アルミナ、活
性炭、セファレックス、アガロス、セルローズなどの公
知の有機高分子ポリマーなどがある。
The enzyme agent may be partially purified or fully purified, and the enzyme may be of any degree of purity. Further, the enzyme may be in a form in which it is physically adsorbed on an inorganic or organic carrier, or in a form in which it is mixed with the carrier. Here, the carrier is a water-insoluble inorganic or organic substance that does not inactivate the enzyme or the bacterial cells, and in some cases, a substance that physically adsorbs the enzyme or the bacterial cells. Examples include known organic polymers such as cane earth, silica gel, alumina, activated carbon, Sephalex, agarose, and cellulose.

本発明の酵素含有物には、酵素剤としては(a)酵素;
(b)酵素と無機もし7〈は有機担体との混合物:(C
)酵素と無機もしくは有機担体との結合物;前記(bl
または(clの懸濁液;(d)酵素液;(0)酵素液と
無機もしくは有機担体との混合物;(f)酵素液と無機
もしくは有機担体との結合物:および前記(elまたは
(f)の懸濁液が含まれる。一方酵素生産菌体としては
生菌体、乾燥菌体、破壊菌体、(g)該菌体麺と無機も
しくは有機担体との混合物:(h)該菌体孫と無機もし
くは有機担体との結合物;生菌体、乾燥菌体、破壊菌体
の懸濁液;および上記(glまたは(hlのWA濁液が
含まれる。上記酵素としては公知の酵素、例えばグルコ
ース・イソメラーゼ、フマラーゼ、アスパルターゼ、ア
ミラーゼ、グルコアミラーゼ、トリプシン、キモトリプ
シン、ペプシン、パパイン、パンクレアチン、アミノア
シラーゼ、ペニシリンアシラーゼ、セファロスポリンア
シラーゼ、ヌクレアーゼ、リボヌクレアーゼ、フィチン
、カタラーゼ、ガラクトシターゼ、ATP−デアミナー
ゼ、L−グルタミン酸脱水素酵素、ホスファターゼ、チ
ロシナーゼ、インベルターゼ、フラボキナーゼ、ストレ
プトキナーゼ、アビラーゼ、ATP−クレアチンリン酸
転移酵素、ペクチナーゼ、カルポキシペプチターゼ、L
−アスパラギナーゼ、マルターゼ、ラクターゼ、ウレア
ーゼ、タンナーゼ、リパーゼ、メリピアーゼ、アルドラ
ーゼ、セルラーゼ、アントシアナーゼ、ナリンジナーゼ
、ヘスペリジナーゼ、D−アミノ酸、オキシダーゼ、グ
ルコースオキシダーゼ、L−フェニルアラニ/アンモニ
アリアーゼ、L−アスパラギン酸とL−フェニルアラニ
ンメチルエステルとからアスパルテームを合成する酵素
、などが挙げられる。上記以外に酵素〕・ンドプツク、
丸尾文治、田宮信雄監修、1982年12月1日、朝食
書店発行に記載されている公知の酵素も勿論挙げること
ができる。
The enzyme-containing material of the present invention includes (a) an enzyme;
(b) Mixture of enzyme and inorganic carrier: (C
) A combination of an enzyme and an inorganic or organic carrier;
or a suspension of (cl; (d) an enzyme solution; (0) a mixture of an enzyme solution and an inorganic or organic carrier; (f) a combination of an enzyme solution and an inorganic or organic carrier; and the above (el or (f) ).On the other hand, the enzyme-producing bacterial cells include live bacterial cells, dried bacterial cells, destroyed bacterial cells, (g) a mixture of the bacterial cells and an inorganic or organic carrier, and (h) the bacterial cells. A combination of microorganisms and an inorganic or organic carrier; suspensions of live microbial cells, dried microbial cells, and destroyed microbial cells; and WA suspensions of the above (gl or (hl) are included. The above enzymes include known enzymes, For example, glucose isomerase, fumarase, aspartase, amylase, glucoamylase, trypsin, chymotrypsin, pepsin, papain, pancreatin, aminoacylase, penicillin acylase, cephalosporin acylase, nuclease, ribonuclease, phytin, catalase, galactosidase, ATP -Deaminase, L-glutamate dehydrogenase, phosphatase, tyrosinase, invertase, flavokinase, streptokinase, avirase, ATP-creatine phosphotransferase, pectinase, carpoxypeptidase, L
- Asparaginase, maltase, lactase, urease, tannase, lipase, melipiase, aldolase, cellulase, anthocyanase, naringinase, hesperidinase, D-amino acids, oxidase, glucose oxidase, L-phenylalan/ammonium lyase, L-aspartic acid and L- Examples include enzymes that synthesize aspartame from phenylalanine methyl ester. In addition to the above, enzymes]
Of course, it is also possible to mention the known enzymes described in the issue published by Shokusen Shoten, December 1, 1982, supervised by Bunji Maruo and Nobuo Tamiya.

上記酵素生産菌体は前記酵素を生産する微生物であれば
、細菌でも、放線菌、糸状菌であってもよく、酵母であ
ってもよい。上記菌体は酵素活性を有していれば、生菌
体、乾燥菌体でもよく、部分的にあるいは完全に破壊し
た菌体でもよい。またこれらの菌体は無機または有機の
水溶性担体と物理的に吸着されている形態であるか、あ
るいは該担体と混合されている形態であってもよい。
The enzyme-producing microbial cells may be bacteria, actinomycetes, filamentous fungi, or yeast as long as they produce the enzymes. The above-mentioned microbial cells may be live microbial cells, dried microbial cells, or partially or completely destroyed microbial cells as long as they have enzymatic activity. Furthermore, these bacterial cells may be in a form in which they are physically adsorbed on an inorganic or organic water-soluble carrier, or in a form in which they are mixed with the carrier.

本発明で用いるホウ酸またはホウ砂はそれ自体固体の状
態でも使用してもよいし、水性媒体、例えば水、適当な
緩衝液などに溶解した溶液の下の使用量では複合ゲル化
が充分に進行せず、極めて高い流動性をもち、成形に不
適当であるのに対し、使用量が多過ぎるとゲル化が進行
し過ぎ、次の低温ゲル化および乾燥ゲル化が進行し難く
々す、最終的に得られる固定化含有物が機械的に脆いも
のしか得られない。上記のPVA水溶液の濃度によシ異
なるが、好ましくは1〜4重量%を用いるのがよい。
The boric acid or borax used in the present invention may be used in a solid state per se, or the amount used in a solution dissolved in an aqueous medium, such as water or a suitable buffer, is sufficient to form a composite gel. It does not progress, has extremely high fluidity, and is unsuitable for molding. On the other hand, if too much is used, gelation progresses too much, making it difficult for subsequent low-temperature gelation and dry gelation to proceed. The final immobilized content can only be mechanically brittle. Although it depends on the concentration of the above PVA aqueous solution, it is preferable to use 1 to 4% by weight.

PVA水溶液と酵素含有物とホウ酸またはホウ砂の3者
を混合するに当っては、5.5〜7.5のpilの範囲
、好ましくは6〜7のpHの範囲で行われる。3者の添
加によシ上記p■からはずれる場合には、適当な酸ま次
はアルカリで上記p■の範囲内に調節して均一に混合す
ればよい。上記のpH範囲より低い側のpHが低過、ぎ
ると酵素および菌体の活性に打撃を与えるばかシでなく
、複合ゲル化が進行せず、成形に適する粘度も得られな
いため、最終の固定化酵素含有物の強度が著しく劣る。
The PVA aqueous solution, the enzyme-containing material, and boric acid or borax are mixed at a pil of 5.5 to 7.5, preferably at a pH of 6 to 7. If the addition of the three substances deviates from the above p (2), the above p (2) may be adjusted with an appropriate acid or alkali and mixed uniformly. If the pH on the lower side of the above pH range is too low, it will not only damage the activity of enzymes and bacterial cells, but also prevent the composite gelation from proceeding and the viscosity suitable for molding. The strength of the enzyme-containing material is significantly inferior.

また逆にpnが高過ぎると、複合ゲル化が進行し過ぎる
ために、成形が困難となるばかりでなく、最終の固定化
酵素含有物の強度も極端に弱くなる。
On the other hand, if pn is too high, composite gelation progresses too much, which not only makes molding difficult, but also extremely weakens the strength of the final immobilized enzyme-containing product.

上記の本発明における混合条件で混合された混合物は、
均一な状態になった後、任意の形状の容器内で成形され
、−6℃以下で冷却して凍結させて低温ゲル化を進行さ
せる。この低温ゲル化は最終の固定化酵素含有物の機械
的強度乞大きく左右し、この工程を省略すれば満足な機
械的強度の固定化酵素含有物が得られないし、冷却が不
充分であると固定化酵素含有物の機械的強度が劣るから
、この低温ゲル化を十分に進行させるためには、通常−
20℃前後で冷却するのが好ましい。冷却時間は一20
℃前後の場合、5時間以上費やすのが好ましい。
The mixture mixed under the above mixing conditions in the present invention is
After becoming uniform, it is molded in a container of any shape, and cooled and frozen at -6° C. or below to proceed with low-temperature gelation. This low-temperature gelation greatly affects the mechanical strength of the final immobilized enzyme-containing product, and if this step is omitted, an immobilized enzyme-containing product with satisfactory mechanical strength will not be obtained, and if cooling is insufficient, Since the mechanical strength of the immobilized enzyme-containing material is poor, it is usually necessary to -
Preferably, it is cooled to around 20°C. Cooling time is -20
If the temperature is around 0.9°C, it is preferable to spend 5 hours or more.

このようにして低温ゲル化によシ得られた成形物はホウ
酸またはホウ砂による複合ゲル化および凍結工程による
低温ゲル化によシ充分にゲル化が進行するが、さらに上
記成形物の自然乾燥または通風乾燥によりさらに乾燥ゲ
ル化が進行し、工業的使用に充分耐える機械的強度を有
する固定化酵素含有物を得ることができる。上記の自然
乾燥および通風乾燥は真空凍結乾燥よシその設備費、エ
ネルギー費は極めて安価であシ、工業上有利な乾燥方法
である。上記の乾燥温度は酵素活性を失活させないよう
な温度で行われるべきであるから、通常は室温ないし3
0〜40℃の条件下で行うのがよい。勿論、耐熱性酵素
、例えば60℃の加熱下でも安定な酵素の場合には、6
0℃程度で通風乾燥してもよいことに言うまでもない。
The molded product thus obtained by low-temperature gelation is sufficiently gelled by composite gelation using boric acid or borax and low-temperature gelation by the freezing process. Drying or ventilation drying further progresses dry gelation, and it is possible to obtain an immobilized enzyme-containing material having sufficient mechanical strength to withstand industrial use. The above-mentioned natural drying and ventilation drying are industrially advantageous drying methods because their equipment costs and energy costs are extremely low compared to vacuum freeze drying. The above-mentioned drying temperature should be a temperature that does not deactivate the enzyme activity, so it is usually room temperature to 3 ℃.
It is preferable to carry out the reaction under conditions of 0 to 40°C. Of course, in the case of thermostable enzymes, such as enzymes that are stable even under heating at 60°C,
Needless to say, ventilation drying may be performed at about 0°C.

室温で放置するような自然乾燥の場合は、固定化酵素含
有物の含水率により相違はあるが、通常48時間前後で
充分乾燥した状態の固定化酵素含有物を得ることができ
る。
In the case of natural drying such as leaving at room temperature, a sufficiently dried immobilized enzyme-containing material can usually be obtained in about 48 hours, although this varies depending on the moisture content of the immobilized enzyme-containing material.

このようにして得られた固定化酵素含有物は、複合ゲル
化、低温ゲル化および乾燥ゲル化によシ工業的使用に耐
える機械的強度を有し、含水率が15〜30%のものが
得られる。
The thus obtained immobilized enzyme-containing material has mechanical strength that can withstand industrial use by complex gelation, low-temperature gelation, and dry gelation, and has a water content of 15 to 30%. can get.

次に実施例、参考例、および比較例を挙げて本発明を具
体的に説明する。尚、得られ九固定化菌体の強度は次の
試験法により測定したものでおる。
Next, the present invention will be specifically explained with reference to Examples, Reference Examples, and Comparative Examples. The strength of the obtained nine-immobilized bacterial cells was measured by the following test method.

〈強度試験法〉 L型試験管に被験する固定化菌体300叩と水10mを
入れ、70℃の恒温浴中にて振と、うし、90分後66
0 nm の波長における透過率を測定することによっ
て固定化菌体の崩壊状態を調べた。崩壊の少ない固定化
菌体はど透過率が高くなる。
<Strength test method> Pour 300 immobilized bacterial cells to be tested and 10 m of water into an L-shaped test tube, shake in a constant temperature bath at 70°C, and rinse for 90 minutes.
The state of disintegration of the immobilized bacterial cells was investigated by measuring the transmittance at a wavelength of 0 nm. Immobilized bacterial cells with less disintegration have a higher permeability.

実施例1〜3 市販PVA(けん化度99.45モルチ、重合度170
0)20(lを水800gに溶かし、20 W/W %
のPVA水溶液を調製した。
Examples 1 to 3 Commercially available PVA (saponification degree 99.45 molti, polymerization degree 170
0) Dissolve 20 (l in 800 g of water, 20 W/W%
A PVA aqueous solution was prepared.

10 (l ml容ビーカーに上記PVA水溶液8.0
gとグルコースイソメラーゼを産生ずるストレプトマイ
セス・アルプスY−T−N[L51 FERM−PNα
463)の湿潤菌体(含水率85チ、特開昭52−74
80号公報に記載の方法で培養して得た)10gを分注
し、各々にpH′f:5.6(実施例1)、6.5(実
施例2ンおよび7.0(実施例3′)に調節した0、 
25 W/W %ホウ配水(pH6,5および7.0は
IN水酸化ナトリウム水溶液で調節した1 20 m7
!を加えた後、室温で5分間均一に混合して複合ゲル化
し7h0得られた混合物を各々2×2酵角の成形用溝に
注射器で注入して成形した後、−20℃で24時間凍結
して低温ゲル化した。得られた成形物を20〜25℃で
48時間放置し、自然乾燥して各々固定化菌体を得た。
10 (8.0% of the above PVA aqueous solution in a ml beaker)
Streptomyces alpus Y-T-N [L51 FERM-PNα, which produces g and glucose isomerase
463) moist bacterial cells (moisture content: 85 cm, JP-A-52-74)
80 (obtained by culturing according to the method described in Publication No. 3′) adjusted to 0,
25 W/W % diluted water (pH 6,5 and 7.0 adjusted with IN aqueous sodium hydroxide solution 1 20 m7
! After adding, the mixture was uniformly mixed for 5 minutes at room temperature to form a composite gel, and the resulting mixture was injected with a syringe into the molding groove of 2 x 2 squares to be molded, and then frozen at -20°C for 24 hours. and gelatinized at low temperature. The obtained molded products were left to stand at 20 to 25° C. for 48 hours and air-dried to obtain immobilized bacterial cells.

各固定化菌体の製造時における成形時の成形の難易度を
観察すると共に、強度試験を行い、90分後の溶解の可
否の観察と透過率とを測定した。その結果は第1表の通
シであって、本発明の固定化菌”体は、その製造時、成
形が容易であり、後記の参考例1〜3および比較例1〜
2の固定化菌体よシ極めて高い強度を有し、しかも90
分後においても溶解せず、工業的使用に耐える製品であ
ることが観察された。
In addition to observing the difficulty of molding during the production of each immobilized bacterial cell, a strength test was conducted, and the possibility of dissolution after 90 minutes was observed and the transmittance was measured. The results are shown in Table 1, and the immobilized bacterial bodies of the present invention are easy to mold during production, and are shown in Reference Examples 1 to 3 and Comparative Examples 1 to 3 described later.
It has extremely high strength compared to the immobilized bacterial cells of No. 2, and has a strength of 90%
It was observed that the product did not dissolve even after a few minutes and was suitable for industrial use.

参考例1〜2 実施例1〜3において、pHを各々7.85(参考例1
)および8.0(参考例2)に調節して、各々固定化菌
体を製造した。各固定化菌体の製造時における成形時の
成形の難易度、90分後の溶解の可否および透過率の測
定の結果は第1表の通りであって、参考例1および2の
場合は、成形がし難く、しかも実施例1〜3の製品よシ
極めて強度が弱い製品しか得られず、特に参考例2の場
合には、グルコースの異性化反応の酵素源として使用で
きないものである。
Reference Examples 1 to 2 In Examples 1 to 3, the pH was set to 7.85 (Reference Example 1).
) and 8.0 (Reference Example 2) to produce immobilized bacterial cells. The difficulty of molding during the production of each immobilized bacterial cell, the possibility of dissolution after 90 minutes, and the measurement results of transmittance are as shown in Table 1. In the case of Reference Examples 1 and 2, The product is difficult to mold and has extremely weak strength compared to the products of Examples 1 to 3. Particularly in the case of Reference Example 2, it cannot be used as an enzyme source for the glucose isomerization reaction.

比較例1 100d容ビーカーに実施例1〜3で用いた2 0 W
/W チPVA水溶液8F、ストレプトマイセス・アル
プスYT−NIL5の湿潤菌体10gと0.25W/W
%ホウ酸水+IN水酸化ナトリウム水溶液でpi 6.
5に調節した)20−を加えた後、室温で5分間均一に
混合して複合ゲル化した。得られた混合物を2X2mm
角の成形用溝に注射器で注入して成形した。得られた成
形物を20〜25℃で48時間放置する自然乾燥して固
定化菌体を得た。得られた固定化菌体の含水率は23チ
であった。
Comparative Example 1 20 W used in Examples 1 to 3 in a 100 d beaker
/W ChiPVA aqueous solution 8F, Streptomyces alpus YT-NIL5 wet bacterial cells 10g and 0.25W/W
% boric acid solution + IN sodium hydroxide solution 6.
After adding 20- (adjusted to 5), the mixture was uniformly mixed at room temperature for 5 minutes to form a composite gel. The resulting mixture is 2x2mm
It was injected into the corner molding groove with a syringe and molded. The obtained molded product was left to stand at 20 to 25°C for 48 hours to air dry to obtain immobilized bacterial cells. The moisture content of the obtained immobilized bacterial cells was 23%.

得られた固定化車体の製造時における成形時の成形の難
易度、90分後の溶解の可否および透過率の測定の結果
は第1表の通りであって、低温ゲル化を欠いた上記固定
化菌体は非常に強度が低いばかシでなく、完全に溶解し
てしまうために、グルコースの異性化反応の酵素源とし
て使用できないものである。
The results of the measurement of the difficulty of molding during the production of the obtained immobilized car body, the possibility of dissolution after 90 minutes, and the transmittance are as shown in Table 1. The transformed bacterial cells have very low strength and are completely dissolved, so they cannot be used as an enzyme source for the glucose isomerization reaction.

比較例2 比較例1で得た成形物t−−20℃で24時間凍結して
低温ゲル化して固定化菌体を得た。得られた固定化菌体
の含、水率は92%であった。
Comparative Example 2 The molded product obtained in Comparative Example 1 was frozen at -20°C for 24 hours to form a low-temperature gel to obtain immobilized bacterial cells. The water content of the obtained immobilized bacterial cells was 92%.

得られた固定化菌体の製造時における成形時の成形の難
易度、90分後の溶解の可否および透過率の測定の結果
は第1表の通シであって、乾燥ゲル化を欠いた上記固定
化菌体は非常に強度が低いばかりでなく、完全に溶解し
てしまうためK、グルコースの異性化反応の酵素源とし
て使用できないものである。
The results of the measurement of the difficulty of molding during the production of the obtained immobilized bacterial cells, the possibility of dissolution after 90 minutes, and the transmittance are as shown in Table 1, and there was no dry gelation. The above-mentioned immobilized bacterial cells not only have very low strength but also completely dissolve, so they cannot be used as an enzyme source for the isomerization reaction of K and glucose.

(以下余白) 第 1 表 十:完全に溶解、−;溶解せず 実施例4〜7 10〇−容ビーカーに実施例1〜3で用いた20W/W
%PVA水溶液4.0gとストレプトマイセス・アルプ
スYT−N[L4の湿潤菌体1゜gを分注し、各々に0
.04(実施例4)、0.08(実施例5)、0.15
(実施例6)および0.25(実施例7)のw/w %
濃度のホウ酸水(IN水酸化ナトリウム水溶液でJ)H
6,OK調節した)20−を加えた後、室温で5分間均
一に混合して複合ゲル化した。得られた混合物を各々2
×2−角の成形用溝に注射器で注入して成形した後、−
20℃で24時間凍結して低温ゲル化した。
(Margins below) 1st Table 10: Completely dissolved, -: Not dissolved Examples 4 to 7 20 W/W used in Examples 1 to 3 in a 100-capacity beaker
%PVA aqueous solution and 1°g of wet bacterial cells of Streptomyces alpus YT-N [L4], and
.. 04 (Example 4), 0.08 (Example 5), 0.15
(Example 6) and 0.25 (Example 7) w/w %
concentration of boric acid (J in sodium hydroxide solution)
After adding 6, OK adjusted) 20-, the mixture was uniformly mixed for 5 minutes at room temperature to form a composite gel. 2 of each of the resulting mixtures
×2- After injection into the corner molding groove with a syringe and molding, -
It was frozen at 20°C for 24 hours to form a low-temperature gel.

得られた成形物を20〜25℃で48時間放置する自然
乾燥して各々固定化菌体を得た。
The obtained molded products were left to stand at 20 to 25° C. for 48 hours to air dry to obtain immobilized bacterial cells.

各固定化菌体の製造時における成形時の成形の難易度を
観察すると共に、強度試験を行い、90分後の溶解の可
否の観察と透過率とを測定した。その結果は第2表の通
、りであって、本発明の固定化菌体は、その製造時、成
形が容易であシ、後記の参考例4〜9および比較例3の
一定化菌体より極めて高い強度を有し、しかも90分後
においても溶解せず、工業的使用に耐える製品であるこ
とが観察された。
In addition to observing the degree of difficulty in molding during the production of each immobilized bacterial cell, a strength test was conducted, and the possibility of dissolution after 90 minutes was observed and the transmittance was measured. The results are shown in Table 2. The immobilized bacterial cells of the present invention are easy to mold during production, and the fixed bacterial cells of Reference Examples 4 to 9 and Comparative Example 3 described later are It was observed that the product had extremely high strength, did not dissolve even after 90 minutes, and was durable for industrial use.

参考例3〜5 実施例4〜7において、ホウ酸水の濃度を各々0.01
+参考例4)、0,4(参考例5)および1.0(参考
例61 w/w %に変えて、各々固定化菌体を製造し
た。
Reference Examples 3 to 5 In Examples 4 to 7, the concentration of boric acid water was 0.01, respectively.
+Reference Example 4), 0.4 (Reference Example 5), and 1.0 (Reference Example 61 w/w%) to produce immobilized bacterial cells.

各固定化酵素の製造時における成形時の成形の難易度、
90分後の溶解の可否および透過率の測定の結果は第2
表の通シであって、参考例3の場合(ホウ酸量がPVA
量の0.25チ)は、実施例4〜7の固定化菌体よシ強
度が低く、ホウ酸量が少な過ぎることによシ充分な複合
ゲル化が進行していないことを示している。また参考例
4(ホウ酸量がPVA1の10%)および参考例5(ホ
ウ酸量がPVA量の25チ)の場合は、ホウ酸量が増加
するに従い、実施例4〜7の固定化菌体より強度が著し
く低下し、ホウ酸量が多過ぎることにより複合ゲルが進
行し過ぎてゲルが非常に脆くなることを示している。
The difficulty of molding during the production of each immobilized enzyme,
The results of measurement of dissolution and transmittance after 90 minutes are shown in the second
As shown in the table, in the case of Reference Example 3 (the amount of boric acid is PVA
The amount of 0.25 cm) was lower than that of the immobilized bacterial cells of Examples 4 to 7, indicating that sufficient composite gelation was not progressing due to the too small amount of boric acid. . In addition, in the case of Reference Example 4 (boric acid amount is 10% of PVA1) and Reference Example 5 (boric acid amount is 25% of PVA amount), as the boric acid amount increases, the immobilized bacteria of Examples 4 to 7 The strength was significantly lower than that of the body, indicating that too much boric acid caused the composite gel to progress too much, making the gel extremely brittle.

比較例3 実施例4〜7において、ホウ酸水の代シに水を使用して
固定化菌体を製造した。
Comparative Example 3 In Examples 4 to 7, immobilized bacterial cells were produced using water in place of the boric acid solution.

得られた固定化酵素の製造時における成形時の成形の難
易度、90分後の溶解の可否および透過率の測定の結果
は第2表の通りであって、ホウ酸による複合ゲル化を行
わないことにより極めて機械的強度の弱いものしか得ら
れないことを示し゛〔いる。
The results of the measurement of the difficulty of molding, whether or not it dissolves after 90 minutes, and the transmittance during the production of the obtained immobilized enzyme are shown in Table 2. Composite gelation with boric acid was performed. It is shown that by not having this material, only a material with extremely weak mechanical strength can be obtained.

第 2 表 実施例8 実施例1〜3において、ホウ酸水の代ルに0.25W/
W%ホウ砂水溶液を用いて含水率2゜チの固定化酵素を
得た。
Table 2 Example 8 In Examples 1 to 3, 0.25 W/
An immobilized enzyme with a water content of 2° was obtained using a W% borax aqueous solution.

上記固定化酵素はその製造時の成形の際、成形し易く、
90分間振とり後においても溶解せず、透過率が80チ
であって、工業的使用に耐える製品であることが観察さ
れた。
The above-mentioned immobilized enzyme is easy to mold during molding during its production;
It was observed that the product did not dissolve even after shaking for 90 minutes and had a transmittance of 80 degrees, indicating that it was a product that could withstand industrial use.

代理人 三 宅 正 夫 仙1名Representative: Masao Miyake, Sen 1 person

Claims (14)

【特許請求の範囲】[Claims] (1)けん化度が95モルチ以上で、平均重合度が10
00以上のポリビニルアルコール水溶液と酵素含有物と
ホウ酸またはホウ砂とを均一に混合し、その混合物を任
意の形状の容器内で一6℃以下の温度で凍結し、次いで
得られた成形物を自然乾燥または通風乾燥することを特
徴とする強固な固定化酵素含有物の製造法。
(1) The degree of saponification is 95 molti or more, and the average degree of polymerization is 10
00 or higher polyvinyl alcohol aqueous solution, enzyme-containing material, and boric acid or borax are uniformly mixed, the mixture is frozen at a temperature of -6°C or less in a container of any shape, and then the obtained molded product is A method for producing a strong immobilized enzyme-containing product characterized by air drying or ventilation drying.
(2) ポリビニルアルコール水溶液が5〜30w/w
 %の範囲の濃度である特許請求の範囲第1項記載の製
造法。
(2) Polyvinyl alcohol aqueous solution is 5 to 30 w/w
%.
(3)酵素含有物が酵素剤または酵素生産菌体である特
許請求の範囲第1項記載の製造法。
(3) The production method according to claim 1, wherein the enzyme-containing substance is an enzyme preparation or an enzyme-producing bacterial cell.
(4)酵素剤が(a)酵素、(b)酵素と無機もしくは
有機担体との混合物または(C)酵素と無機もしくは有
機担体との結合物である特許請求の範囲第3項記載の製
造法。
(4) The production method according to claim 3, wherein the enzyme agent is (a) an enzyme, (b) a mixture of an enzyme and an inorganic or organic carrier, or (C) a combination of an enzyme and an inorganic or organic carrier. .
(5)酵素剤が前記(b)または(C)の懸濁液である
特許請求の範囲第3項記載の製造法。
(5) The production method according to claim 3, wherein the enzyme preparation is a suspension of the above (b) or (C).
(6) 酵素剤が(a)酵素液、(el酵素液と無機も
しくは有機担体との混合物または(f)酵素液と無機も
しくは有機担体との結合物である特許請求の範囲第3項
記載の製造法。
(6) The enzyme agent according to claim 3, wherein the enzyme agent is (a) an enzyme solution, a mixture of an enzyme solution and an inorganic or organic carrier, or (f) a combination of an enzyme solution and an inorganic or organic carrier. Manufacturing method.
(7)酵素剤が前記(elまたは(f)の懸濁液である
特許請求の範囲第3項記載の製造法。
(7) The production method according to claim 3, wherein the enzyme preparation is a suspension of (el or (f)).
(8)酵素生産菌体が生菌体、乾燥菌体、破壊菌体、(
gl該菌体頻と無機もしくは有機担体との混合物、(h
)該菌体種と無機もしくは有機担体との結合物である特
許請求の範囲第3項記載の製造′法。
(8) Enzyme-producing bacterial cells may be live bacterial cells, dried bacterial cells, destroyed bacterial cells, (
gl A mixture of the bacterial cells and an inorganic or organic carrier, (h
3.) The production method according to claim 3, wherein the bacterial species is combined with an inorganic or organic carrier.
(9)酵素生産菌体が生菌体、乾燥菌体、破壊菌体の懸
濁液、上記(g)または(h)の懸濁液である特許請求
の範囲第3項記載の製造法。
(9) The production method according to claim 3, wherein the enzyme-producing microbial cells are live microbial cells, dried microbial cells, a suspension of destroyed microbial cells, or a suspension of the above (g) or (h).
(10)ホウ酸またはホウ砂を該ポリビニルアルコール
に対し0.5〜7重量−の範囲で使用する特許請求の範
囲第1項記載の製造法。
(10) The manufacturing method according to claim 1, wherein boric acid or borax is used in an amount of 0.5 to 7 by weight based on the polyvinyl alcohol.
(11) ホウ酸またはホウ砂がそれ自体またはその水
溶液である特許請求の範囲第10項記載の製造法。
(11) The production method according to claim 10, wherein boric acid or borax is itself or an aqueous solution thereof.
(12)混合を5.5〜7.5の範囲のpHの条件下で
行う特許請求の範囲第1項記載の製造法。
(12) The manufacturing method according to claim 1, wherein the mixing is carried out under conditions of a pH in the range of 5.5 to 7.5.
(13)自然乾燥または通風乾燥を酵素の失活しない温
度で行なう特許請求の範囲第1項記載の製造法。
(13) The manufacturing method according to claim 1, wherein the natural drying or ventilation drying is carried out at a temperature that does not deactivate the enzyme.
(14)自然乾燥または通風乾燥を固定化酵素含有物の
含水率が15〜30%の範囲になるまで行なう特許請求
の範囲第11項記載の製造法。
(14) The production method according to claim 11, wherein natural drying or ventilation drying is performed until the moisture content of the immobilized enzyme-containing product falls within the range of 15 to 30%.
JP59034167A 1984-02-27 1984-02-27 Preparation of material containing enzyme immobilized with pva gel Pending JPS60180586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59034167A JPS60180586A (en) 1984-02-27 1984-02-27 Preparation of material containing enzyme immobilized with pva gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59034167A JPS60180586A (en) 1984-02-27 1984-02-27 Preparation of material containing enzyme immobilized with pva gel

Publications (1)

Publication Number Publication Date
JPS60180586A true JPS60180586A (en) 1985-09-14

Family

ID=12406645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59034167A Pending JPS60180586A (en) 1984-02-27 1984-02-27 Preparation of material containing enzyme immobilized with pva gel

Country Status (1)

Country Link
JP (1) JPS60180586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834264A (en) * 2017-04-19 2017-06-13 深圳大学 A kind of use for laboratory bacteria adhension method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834264A (en) * 2017-04-19 2017-06-13 深圳大学 A kind of use for laboratory bacteria adhension method

Similar Documents

Publication Publication Date Title
KR920009499B1 (en) Process for preparation of porous matters containing an enzyme immobilized by means of pva-gel
US3962038A (en) Preparation of water-insoluble enzymes
Ramakrishna et al. Microbial fermentations with immobilized cells
US4148689A (en) Immobilization of microorganisms in a hydrophilic complex gel
Danial et al. Characteristics of immobilized urease on grafted alginate bead systems
JPS6321474B2 (en)
EP0502035B1 (en) Immobilization of enzymes by cross-linking with a cross-linking agent and a polymer containing 1-amino ethylene moieties
Vorlop et al. [22] Entrapment of microbial cells in chitosan
CA1119539A (en) Preparation of immobilized enzymes or microorganisms
JPS63177791A (en) Production of immobilized enzyme or immobilized microorganism
US5916789A (en) Immobilized enzyme
Suzuki et al. Application of a microporous glass-ceramics with a skeleton of CaTi4 (PO4) 6 to carriers for immobilization of enzymes
JP2683524B2 (en) Immobilization carrier
JPS60180586A (en) Preparation of material containing enzyme immobilized with pva gel
Park et al. Production of cephalosporin C by immobilized Cephalosporium acremonium in polyethyleneimine-modified barium alginate
JPS5974984A (en) Preparation of immobilized enzyme or microorganism
Berger et al. Stable ionotropic gel for cell immobilization using high molecular weight pectic acid
Banerjee et al. Characteristics of yeast β-galactosidase immobilized on calcium alginate gels
JP3266607B2 (en) Biocatalyst immobilized gel
US5846762A (en) Structurally stable gel bead containing entrapped enzyme and method for manufacture thereof
JP3055963B2 (en) Polymer gel for biocatalyst-immobilized moldings
JPS60180587A (en) Preparation of porous material containing enzyme immobilized with pva gel
JPS6098985A (en) Preparation of immobilized mold of microorganism for enzyme
Klein et al. Polymers for the immobilization of whole cells and their application in biotechnology
Karube et al. Bacteriolysis by immobilized enzymes