JPS6017976A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS6017976A
JPS6017976A JP58124813A JP12481383A JPS6017976A JP S6017976 A JPS6017976 A JP S6017976A JP 58124813 A JP58124813 A JP 58124813A JP 12481383 A JP12481383 A JP 12481383A JP S6017976 A JPS6017976 A JP S6017976A
Authority
JP
Japan
Prior art keywords
layer
type
emitting device
type inp
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58124813A
Other languages
Japanese (ja)
Other versions
JPH0437599B2 (en
Inventor
Hajime Imai
元 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58124813A priority Critical patent/JPS6017976A/en
Publication of JPS6017976A publication Critical patent/JPS6017976A/en
Publication of JPH0437599B2 publication Critical patent/JPH0437599B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To oscillate monochromatic lights of different wavelengths by matching the period of a diffraction grating to the band gap energy of an active layer, thereby forming a plurality of stripes at the prescribed interval. CONSTITUTION:An InGaAsP [Eg(x)] active layer 2 formed on an N type InP substrate is formed to distribute its band gap energy in x direction, and an interfering pattern 4 is formed and exposed on a P type InGaAs photoguide layer 3 formed thereon. The spread of the period of this pattern 4 is synchronized with Eg(x) of the layer 2. Then, a buried hetero strip 6 is formed. Thereafter, a P type InP layer 7, an N type InP layer 8, a P type InP layer 9 are grown, a P type GaAP layer 10 is eventually formed, the N type side substrate is polished in the prescribed thickness, a P type electrode metal layer 11 is then formed. Subsequently, a mesa etching for isolating one laser is performed, an N type side is then formed, and cleaved in an array shape. Thus, a light emitting device which can produce a laser light having excellent monochromatic property over many wavelength can be formed.

Description

【発明の詳細な説明】 発明の技術分野 本発明は半導体発光装置に関するものであシ、特に単色
性に優れたレーデ光を多波長にわたって得ることが出来
る半導体発光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device capable of obtaining Lede light with excellent monochromaticity over multiple wavelengths.

技術の背景 レーザーは普通の光と異なり波長と位相(空間と時間)
がそろっているいわゆるコヒーレントな光である。レー
ザー光の持つ特徴は可干渉性、単光性、指向性及び大強
度等である。とのような特徴を有するレーザー光で特に
m色性に優れているレーザーとしてDFB (Dist
ributed FeedBack )及びDBR(D
lgtributed BraggReflectio
n )レーデ−がある。
Technical Background Lasers differ from ordinary light in that they have different wavelengths and phases (space and time).
This is so-called coherent light. Characteristics of laser light include coherence, monochromaticity, directivity, and high intensity. DFB (Dist
rebutted FeedBack ) and DBR (D
lgtributed BraggReflectio
n) There is a lede.

従来技術と問題点 従来、単色性に優れAレーデである上記DFB及びDB
Rを発光する装置は、基板上に形成された活性層に近接
して設けられた光ガイド層に回折格子を形成したものが
あったが例えば1.2〜1.55μmの範囲で単色性に
優れているレーデアレイ発光装置がなかった〇 このようなレーザアレイを形成するには回折格子の周期
をウェハの面内でかえることと、活性層の組成をそれに
対応して変化させることが必要であるが、従来技術であ
るtpg 、 VPE成長法及び干渉光学系を用いると
難しく、このような多波長の単色性レーザアレイが実現
できなかった。
Conventional technology and problems Conventionally, the above-mentioned DFB and DB which have excellent monochromaticity and are A lede
Some devices that emit R light have a diffraction grating formed on a light guide layer provided close to an active layer formed on a substrate, but it is monochromatic in the range of 1.2 to 1.55 μm, for example. There was no superior laser array light emitting device. To form such a laser array, it is necessary to change the period of the diffraction grating within the plane of the wafer and to change the composition of the active layer accordingly. However, it is difficult to use conventional techniques such as TPG, VPE growth method, and interference optical system, and it has not been possible to realize such a multi-wavelength monochromatic laser array.

発明の目的 以上の欠点を鑑み本発明は単色性に優れたレーザ光を多
波長にわたって得ることが出来る半導体装置を提供する
ことを目的とする。
In view of the drawbacks that exceed the objectives of the invention, an object of the present invention is to provide a semiconductor device that can obtain laser light with excellent monochromaticity over multiple wavelengths.

発明の構成 本発明の目的は基板上に種々のバンドギャップエネルギ
ーを有する活性層と、該活性層に近接して設けられ且つ
該活性層のバンドキャップエネルギと回折格子の周期が
同期せしめられた光ガイド層とを具備する半導体レーザ
アレイが一定間隔に少なくとも2つ以上のストライプ構
造を有することを特徴とする半導体発光装置によって達
成される0 発明の実施例 以下本発明の実施例を図面に基づいて説明する。
Structure of the Invention The object of the present invention is to provide an active layer having various band gap energies on a substrate, and a light beam provided in close proximity to the active layer and in which the band gap energy of the active layer and the period of a diffraction grating are synchronized. This is achieved by a semiconductor light emitting device characterized in that a semiconductor laser array including a guide layer has at least two or more striped structures at regular intervals. explain.

第1図ないし第4図は本発明の1実施例を説明するため
の概略斜視図である。
1 to 4 are schematic perspective views for explaining one embodiment of the present invention.

第1図に示すように約0.2μmの厚さのn型インジウ
ムリン基板1上に例えばモレキ二うビームエビタキシャ
ル(MBg)法等によって約0.1μmの厚さのインジ
ウムガリウム砒素リン(以下InGaAgPと記す) 
(Eg(x) )活性層をそのバンドギャップエネルギ
をX方向に分布せしめるように形成し、次に該In]a
AsP活性層上にo、iないし0.2μmの厚さにp型
インジウムガリウム砒素リン(以下p−InGaAsP
と記す) (Kg’ > Eg(x) )光ガイド層を
厚さ0.2〜0.3μmにMBg法によって連続成長さ
せる。
As shown in FIG. 1, on an n-type indium phosphide substrate 1 with a thickness of about 0.2 μm, indium gallium arsenide phosphide (hereinafter referred to as (written as InGaAgP)
(Eg(x)) An active layer is formed so that its bandgap energy is distributed in the X direction, and then the In]a
P-type indium gallium arsenide phosphide (hereinafter p-InGaAsP
) (Kg'> Eg(x)) A light guide layer is continuously grown to a thickness of 0.2 to 0.3 μm by the MBg method.

次に第2図に示すようにp−InGaAs光ガイド層3
上に例えばホトレジストを塗布しレーザ光を用いて干渉
パターン4を形成し露出する。この干渉ツヤターン4を
形成する際基板を傾けることによって第2図に示しだよ
うなパターンを得ることが出彷零浪ル;この干渉・母タ
ーン40周期(/l)の広4g:エネルギバンド幅相当
波長 m:任意の整数次にSIO□膜(図示せず)をマ
スクとしてBr2−CH30Hを用いてエツチングしB
H8(埋込みヘテロストライプ)6を形成する(第3図
)。
Next, as shown in FIG.
For example, a photoresist is applied thereon, and an interference pattern 4 is formed and exposed using a laser beam. When forming this interference glossy turn 4, it is possible to obtain a pattern as shown in Fig. 2 by tilting the substrate. Equivalent wavelength m: Any integer. Then, etching is performed using Br2-CH30H using the SIO□ film (not shown) as a mask.
H8 (embedded hetero stripe) 6 is formed (FIG. 3).

次に液相エピタキシャル成長により厚さ1μ。Next, it was grown to a thickness of 1μ by liquid phase epitaxial growth.

のp型InP層7、厚さI Jimのn型InP層、p
mInP層9を連続するように成長し最後にp型InG
aAsP層10を形成しn側基板を研磨し100μm厚
にした後、P電極金属T l/P t/A u層11を
形成し、n、ル−ザーを分離するメサエッチングをし、
ツーー2n側電極AuGe/Ni を形成した後、アレ
イ状にへき開する(第4図)。
p-type InP layer 7, thickness I Jim, n-type InP layer 7, p
The mInP layer 9 is grown continuously, and finally the p-type InG
After forming an aAsP layer 10 and polishing the n-side substrate to a thickness of 100 μm, a P electrode metal Tl/Pt/Au layer 11 is formed, and mesa etching is performed to separate the n and losers.
After forming the AuGe/Ni electrode on the 2-2n side, it is cleaved into an array (FIG. 4).

このようにして本発明に係る新規な発光装置が形成され
る。なお第4図においてり、、L、及びL3の長さはそ
れぞれ200〜300μm/1ヶ(但し1ケは1ストラ
イプを意味する)、100μm及び200〜300μm
である。第4図に示した発光装置は、回折格子の周期と
活性層のノ々ンドギャップエネルギとを適合せしめて、
一定間隔で複数のストライプブが形成されているので異
なる枝木発明ではInP基板を用いたがGaAs基板等
も用いることが可能である。
In this way, a novel light emitting device according to the present invention is formed. In Fig. 4, the lengths of L, L, and L3 are 200 to 300 μm/1 piece (however, 1 piece means 1 stripe), 100 μm, and 200 to 300 μm, respectively.
It is. The light emitting device shown in FIG.
Since a plurality of stripes are formed at regular intervals, an InP substrate is used in the different branch inventions, but a GaAs substrate or the like may also be used.

また」1記実施例において形成した干渉・臂ターン(第
2図)はより精度よく行うためにはEB露露光分用いて
第5図のようにステップ状にするのが好ましい。第2図
においてaは同一周期の領域を示す。
Further, in order to perform the interference/arm turn (FIG. 2) formed in Example 1 with higher precision, it is preferable to use the EB exposure to form a step shape as shown in FIG. 5. In FIG. 2, a indicates a region with the same period.

発明の詳細 な説明したように本発明によれば単色性に優れたレーザ
光を多波長にわたって得ることが出来る0
As described in detail, according to the present invention, laser light with excellent monochromaticity can be obtained over multiple wavelengths.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の1実施例を説明するため
の概略斜視図であり、第5図は第2図に示した構造の他
の実施例を示す。 1− n型InP基板、2− InGaAsP (Eg
(x))活性層、3− InGaAsP (Bg’ )
 gg(x))光ガイド層、4・・・干渉ノ’?ターン
、5・・・回折格子、6・・・ストライプ、7.9・p
型InP層、8−p型InP層、10 ・P−InGa
AsP層、11−・・金属電極。 餓 憾 第4図 351−
1 to 4 are schematic perspective views for explaining one embodiment of the present invention, and FIG. 5 shows another embodiment of the structure shown in FIG. 2. 1- n-type InP substrate, 2- InGaAsP (Eg
(x)) Active layer, 3-InGaAsP (Bg')
gg(x)) Light guide layer, 4...interference no'? Turn, 5... Diffraction grating, 6... Stripe, 7.9・p
type InP layer, 8-p type InP layer, 10 ・P-InGa
AsP layer, 11--metal electrode. Hunger Figure 4 351-

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に稲々のバンドギャップエネルイーを有する
活性層と、該活性層に近接して設けられ且つ該活性層の
バンドキャッグエネルギと回折格子の周期が同期せしめ
られた光ガイド層とを具備する半導体レーザアレイが一
定間隔に少なくとも2つ以上のストライプ構造を有する
ととを特徴とする半導体発光装置。
1. An active layer having a typical bandgap energy on a substrate, and a light guide layer provided close to the active layer and having the bandgap energy of the active layer and the period of the diffraction grating synchronized. 1. A semiconductor light emitting device, wherein a semiconductor laser array includes at least two striped structures at regular intervals.
JP58124813A 1983-07-11 1983-07-11 Semiconductor light emitting device Granted JPS6017976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58124813A JPS6017976A (en) 1983-07-11 1983-07-11 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58124813A JPS6017976A (en) 1983-07-11 1983-07-11 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS6017976A true JPS6017976A (en) 1985-01-29
JPH0437599B2 JPH0437599B2 (en) 1992-06-19

Family

ID=14894751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58124813A Granted JPS6017976A (en) 1983-07-11 1983-07-11 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS6017976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2758914A1 (en) * 1997-01-27 1998-07-31 Fujitsu Ltd Diffraction grating mfr. technique using irradiation of substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062783A (en) * 1973-10-05 1975-05-28
JPS5289080A (en) * 1976-01-20 1977-07-26 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS57124489A (en) * 1981-01-27 1982-08-03 Nippon Telegr & Teleph Corp <Ntt> Two wavelength semiconductor light emitting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062783A (en) * 1973-10-05 1975-05-28
JPS5289080A (en) * 1976-01-20 1977-07-26 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS57124489A (en) * 1981-01-27 1982-08-03 Nippon Telegr & Teleph Corp <Ntt> Two wavelength semiconductor light emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2758914A1 (en) * 1997-01-27 1998-07-31 Fujitsu Ltd Diffraction grating mfr. technique using irradiation of substrate

Also Published As

Publication number Publication date
JPH0437599B2 (en) 1992-06-19

Similar Documents

Publication Publication Date Title
US6465269B2 (en) Semiconductor optical device and method of manufacturing the same
US4577321A (en) Integrated quantum well lasers for wavelength division multiplexing
US4637122A (en) Integrated quantum well lasers for wavelength division multiplexing
JPH08107251A (en) Manufacture of reflection digital tuning laser
JPS6461081A (en) Distributed-feedback type semiconductor laser and manufacture thereof
JPH02205092A (en) Semiconductor device laser and its manufacture
US5602866A (en) Semiconductor laser
JPH06310806A (en) Semiconductor laser and manufacture thereof
US4701995A (en) Method of making a nonplanar buried-heterostructure distributed-feedback laser
JPS6017976A (en) Semiconductor light emitting device
JPH0724324B2 (en) Semiconductor laser chip and manufacturing method thereof
JPS63213383A (en) Semiconductor laser
JPS6342876B2 (en)
JPS63148692A (en) Multiple wave length distribution bragg reflection type semiconductor laser array
WO2023012925A1 (en) Semiconductor optical device and method for producing same
JPS59127892A (en) Semiconductor laser and manufacture thereof
JPH02252284A (en) Semiconductor laser array and manufacture thereof
JP2552504B2 (en) Semiconductor laser array device
Dutta et al. 1.3 μm InGaAsP index-guided multirib waveguide laser array
JPS59126693A (en) Distributed feedback type semiconductor laser and manufacture thereof
JPH0642583B2 (en) Semiconductor laser device
JPS58158988A (en) Distributed feedback type semiconductor laser
JPH01175281A (en) Semiconductor laser array device
JP2810518B2 (en) Semiconductor laser device and method of manufacturing the same
JPH02281681A (en) Semiconductor laser