JPS6017928A - Manufacture of complementary dielectric isolation substrate - Google Patents

Manufacture of complementary dielectric isolation substrate

Info

Publication number
JPS6017928A
JPS6017928A JP58125832A JP12583283A JPS6017928A JP S6017928 A JPS6017928 A JP S6017928A JP 58125832 A JP58125832 A JP 58125832A JP 12583283 A JP12583283 A JP 12583283A JP S6017928 A JPS6017928 A JP S6017928A
Authority
JP
Japan
Prior art keywords
conductivity
type
single crystal
island
islands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58125832A
Other languages
Japanese (ja)
Inventor
Shigeharu Yamamura
山村 重治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58125832A priority Critical patent/JPS6017928A/en
Publication of JPS6017928A publication Critical patent/JPS6017928A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76297Dielectric isolation using EPIC techniques, i.e. epitaxial passivated integrated circuit

Abstract

PURPOSE:To improve the dielectric strength and high frequency characteristic of a complementary dielectric isolation substrate by forming a high density buried layer having the same conductive type as that of an island formed of one conductive type in a single crystal near a dielectric film, thereby readily forming a complementary semiconductor element and preventing the influence of a polycrystalline substrate potential. CONSTITUTION:A p type conductive type single cystal island 20 which includes a p type high density buried layer removed by etching at the p type conductive type single crystal to the surface of an island to be electrically insulated by an insulating oxidized film 9, an island 21 having an n type conductive type single crystal including an n type high density buried layer in a p type conductive type single crystal including a p type high density buried layer, and an isolated substrate 23 having a plurality of islands 22 including only n type conductive type single crystal are provided. Thus, the influence of the polycrystalline substrate potential of a dielectric isolation substrate can be prevented by connecting the isolation substrate to the lowest potential of a circuit in case that an insulating oxidized film boundary is p<+> type and to the highest potential of the circuit in case that the insulating oxidized film boundary is n<+> type, thereby readily forming a vertical complementary semiconductor element to provide excellent electric characteristics and high dielecric strength.

Description

【発明の詳細な説明】 本発明は特に高耐圧化、高周波7時性に優れ、かつ相補
形半導体素子により集積回路を構成するために必要な誘
電体分離基板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a method for manufacturing a dielectric isolation substrate which is excellent in high voltage resistance and high frequency resistance and is necessary for constructing an integrated circuit using complementary semiconductor elements.

一般にモノリシック集積回路は、トランジスタ、抵抗、
コンデンザ等多数の構成素子を互いに電気的に絶縁分離
する必要がある。 ′ 現在この分離方式の代表的なものとして、PN分離方式
と誘電体分離方式とがある。後者の方式は絶縁材料とし
て通常酸化膜を使用するので、PN分離方式に比べ寄性
容量が少なく、高周波特性に優れ、高耐圧化も容易であ
る等の特長がある。
Monolithic integrated circuits typically include transistors, resistors,
It is necessary to electrically isolate a large number of components, such as capacitors, from each other. 'Currently, representative separation methods include the PN separation method and the dielectric separation method. Since the latter method usually uses an oxide film as an insulating material, it has features such as less parasitic capacitance than the PN isolation method, excellent high-frequency characteristics, and ease of increasing the breakdown voltage.

従来、最も代表的な誘電体分離基板の製造方法を第1図
(a)〜(d)に示し、1「次説明する。
The most typical conventional method for manufacturing a dielectric isolation substrate is shown in FIGS. 1(a) to 1(d), and will be explained next.

先ず、第1図(a)に示ず学−導電性の単結晶シリコン
基板1の片側の面に選択エツチング法によって、第1図
(b)に示すように分離溝2を形成し、さらにその」二
に絶縁用の酸化膜3を被着させる。次いで、第1図(C
)に示すように酸化膜3上にシリコン塩化物等の気相反
応によって多結晶シリコン層4を形成し、これを支持体
層5とし、破線で示した位置丑で研磨することにより、
第1図(d)に示すように、互いに絶縁用の酸化膜3で
絶縁分離された単一導電性の114結晶シリコンの島6
を有する誘電体分離基板7が得られる。上述した従来の
誘電体分離基板の最も欠点とするところは、第1図(d
)に示した単結晶シリコンの島が全て単一導電WEであ
るため、相補形半導体素子が容易に得られず、どうして
もバーチカル形とラテラル形の2種類の半導体素子で回
路を構成せざる得ないことにある。
First, as shown in FIG. 1(b), a separation groove 2 is formed on one side of a conductive single crystal silicon substrate 1 (not shown in FIG. 1(a)) by selective etching, and then the separation trench 2 is formed as shown in FIG. ''Secondly, an insulating oxide film 3 is deposited. Next, Figure 1 (C
), a polycrystalline silicon layer 4 is formed on the oxide film 3 by a gas phase reaction of silicon chloride, etc., this is used as a support layer 5, and by polishing at the positions indicated by broken lines,
As shown in FIG. 1(d), islands 6 of single-conductivity 114-crystalline silicon are isolated from each other by an oxide film 3 for insulation.
A dielectric isolation substrate 7 having the following properties is obtained. The biggest drawback of the conventional dielectric isolation substrate mentioned above is shown in Figure 1 (d).
) Since all the single-crystal silicon islands shown in ) are single-conducting WE, complementary semiconductor elements cannot be easily obtained, and the circuit must be constructed with two types of semiconductor elements: vertical type and lateral type. There is a particular thing.

このうち、特にラテラル形の電気的特性が劣り、特に誘
電体分離方式の特長である寄性容量が少なく、高周波特
性に優れた利点がまったく失なわれ半導体集積回路の周
波数特性は高周波特注に劣るラテラル形半導体素子の特
性で決定されてしまい、高耐圧化のためにも素子寸法が
大きくなるという欠点があった。ここで、バーチカル形
の相補形半導体素子を単一導電性の誘電体分離基板に形
成する方法として、公知の技術である熱拡散法等で異種
の導電性のウェルを形成する方法1もあるが、高耐圧化
のためにはウェルの深さを、素子耐圧に比例して深くす
る必要があり、拡散、酸化時間に長時間を要し、それに
伴なう横方向拡散の影響で半導体素子表面の表面濃度が
低下し、表面反転層が形成され、素子耐圧が低下すると
いう欠点があった。又、誘電体分離基板の多結晶基板電
位の影響を受けて、絶縁用の酸化膜界面の単結晶が空乏
化あるいは反転し、素子制圧が低下するという欠点があ
った。
Among these, the electrical characteristics of the lateral type are particularly poor, and the advantages of the dielectric isolation method, which is low parasitic capacitance and excellent high frequency characteristics, are completely lost, and the frequency characteristics of semiconductor integrated circuits are inferior to high frequency custom-made circuits. This is determined by the characteristics of the lateral type semiconductor element, and has the disadvantage that the element size becomes large in order to achieve a high breakdown voltage. Here, as a method for forming vertical complementary semiconductor elements on a dielectric isolation substrate of single conductivity, there is a method 1 in which wells of different conductivity are formed using a known technique such as thermal diffusion method. In order to achieve high breakdown voltage, it is necessary to increase the depth of the well in proportion to the device breakdown voltage, which requires a long time for diffusion and oxidation, and the accompanying lateral diffusion causes damage to the semiconductor device surface. This has disadvantages in that the surface concentration of is reduced, a surface inversion layer is formed, and the device breakdown voltage is reduced. Furthermore, under the influence of the polycrystalline substrate potential of the dielectric isolation substrate, the single crystal at the interface of the insulating oxide film becomes depleted or reversed, resulting in a reduction in device pressure.

本発明は誘電体分離基板のうち、単一導電性の単結晶シ
リコンの島を、1種類の導電性よりなる島と、i ff
t類の導電性のなかに異種の導電性で高濃度埋込層を含
む異種の導電性を持つ2種類の導電性よりなる島と、1
種類の導電性のなかに異種の導電性を持つ2種類の導電
性よりなる島とし、かつ誘電体膜近傍の単結晶を1種類
の導電性よりなる島の導電形と同一導電性を持つ高濃度
埋込層とすることにより、上記欠点を除去し、相補形半
導体素子を容易に形成でき、かつ多結晶基板電位の影響
を防止できる相補形誘電体分離基板を提供するものであ
る。
The present invention replaces an island of monocrystalline silicon with single conductivity in a dielectric isolation substrate with an island of one type of conductivity, i ff
An island consisting of two types of conductivity with different types of conductivity including a high-concentration buried layer among the T-type conductivity, and 1
The single crystal near the dielectric film is made of a high-density island with the same conductivity as the island of one type of conductivity. The present invention provides a complementary dielectric isolation substrate that eliminates the above-mentioned drawbacks by forming a concentration buried layer, allows complementary semiconductor devices to be easily formed, and prevents the influence of the polycrystalline substrate potential.

すなわち、本発明は単一導電性の島で誘電体膜近傍の多
結晶をその島の単結晶と同一導電性で高濃度埋込層とし
た複数個の単結晶の島を持つ誘電体分離基板を用い、2
種類の導電性を持つ島とすべき領域の多結晶を誘電体分
離基板表面より半導体素子のバルク耐圧を満たす深さま
で選択エツチング法等により除去し、このエツチングさ
れた島のなかでトランジスタを形成する島には残存させ
た単結晶の上に、除去した単結晶と異種の導電性を持つ
高濃度埋込層を熱拡散法、イオン注入法等で形成し、さ
らに、高濃度埋込層を形成した島も含め、エツチングさ
れた島の単結晶及び高濃度埋込層の上にエピタキシャル
成長装置等を用い、除去した単結晶と異種の導電性を持
つ不純物を含ませながら単結晶を成長させた後、最初の
単一導電性の誘電体分離基板表面まで研磨又はエツチン
グにより除去することにより、互いに誘電体膜により絶
縁された複数個の半導体単結晶の島を有し、その島の単
結晶の導電形は1種類の導電性よりなる島と、1種類の
導電性のなかに異種の導電性で高濃度埋込層を含む異種
の導電性持つ2種類の導電性よりなる島と、1種類の導
電性のなかに異種の導電性を持つ29類の導電性よりな
る島が存在し、かつ誘電体膜近傍の単結晶を1種類の導
電性よりなる島の導電形と同一導電性を持つ高濃度埋込
層からなる誘電体分肉11基板を得ることを特徴とする
相補形誘電体分所f基板の製造方法である。
That is, the present invention provides a dielectric isolation substrate having a plurality of single-crystal islands in which the polycrystal near the dielectric film is a highly concentrated buried layer with the same conductivity as the single crystal of the island. using 2
The polycrystalline in the region to be made into an island with a certain type of conductivity is removed by selective etching from the surface of the dielectric isolation substrate to a depth that satisfies the bulk breakdown voltage of the semiconductor element, and a transistor is formed in this etched island. On the island, a highly concentrated buried layer with conductivity different from that of the removed single crystal is formed on the remaining single crystal using thermal diffusion, ion implantation, etc., and then a highly concentrated buried layer is formed. After growing a single crystal on the single crystal and high concentration buried layer of the etched island, including the etched island, using an epitaxial growth device, etc., and incorporating impurities with conductivity different from that of the removed single crystal. , by removing by polishing or etching down to the surface of the first single conductive dielectric isolation substrate, it has a plurality of semiconductor single crystal islands insulated from each other by a dielectric film, and the conductivity of the single crystal of the island is removed. The shape is an island made of one type of conductivity, an island made of two types of conductivity with one type of conductivity, including a high concentration buried layer with a different type of conductivity, and an island made of one type of conductivity. There are islands of 29 types of conductivity that have different types of conductivity, and the single crystal near the dielectric film is a highly conductive island with the same conductivity as the island of one type of conductivity. This is a method of manufacturing a complementary dielectric partial f substrate characterized by obtaining a dielectric partial 11 substrate consisting of a concentration buried layer.

次に本発明の実施例について図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第2図(a)〜(e)は本発明の実施例を示す相補形誘
電体分離基板の製造方法を示す断面図で、第3図は本発
明による相補形誘電体分離基板を用いて製作された半導
体集積回路素子の一例を示す断面図である。
2(a) to (e) are cross-sectional views showing a method of manufacturing a complementary dielectric isolation substrate according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view showing a method of manufacturing a complementary dielectric isolation substrate according to an embodiment of the present invention. FIG. 3 is a cross-sectional view showing an example of a semiconductor integrated circuit element manufactured by the semiconductor integrated circuit device.

先ず、第2図(a)に公知の技術で製造された多結晶シ
リコン層8のなかに、絶縁用の酸化膜9で互いに絶縁さ
れた単一導電性で高濃度埋込層10を含む複数個の単結
晶シリコンの島11を有する誘電体分離基板12を示す
。ただし、第1図(d)に示す公知の技術で製造された
誘電体分離基板と異なる点は、誘電体分離基板の多結晶
基板電位の影響を防止するため、単結晶シリコンの島と
同一導電性で高濃度埋込層を絶縁用の酸化膜を被着する
前に熱拡散法又はイオン注入法等により形成することに
ある。
First, in a polycrystalline silicon layer 8 manufactured by a known technique, as shown in FIG. A dielectric isolation substrate 12 is shown having islands 11 of single crystal silicon. However, the difference from the dielectric isolation substrate manufactured using the known technology shown in FIG. 1(d) is that in order to prevent the effect of the polycrystalline substrate potential on the dielectric isolation substrate, The method is to form a high-concentration buried layer using a thermal diffusion method, an ion implantation method, or the like before depositing an insulating oxide film.

ここで説明を容易にするため、単一導電性の複数個の単
結晶シリコンの島11としてp形溝電性を持ち、異種の
導電性としてn形溝電性の場合に関して説明を行なう。
To simplify the explanation, a case will be described in which a plurality of monocrystalline silicon islands 11 having a single conductivity have p-type groove conductivity, and different types of conductivity have n-type groove conductivity.

次に第2図(b)に示すように、n形溝電性とする必要
のあるp形溝電性の島を酸化膜13によりマスクして選
択エツチング法等で溝14を形成する。溝14の深さは
その深さと、後に行なうエピタキシャル成長層との比抵
抗で決まるバルク耐圧が後述する相補形誘電体分離基板
23を用いて、公知のプレーナー技術等で製作する半導
体素子に要求されるバルク耐圧を満たす深さとする。
Next, as shown in FIG. 2(b), the islands of p-type groove conductivity which are required to have n-type groove conductivity are masked with an oxide film 13, and grooves 14 are formed by selective etching or the like. The depth of the trench 14 is determined by the depth and the specific resistance of the epitaxial growth layer that will be formed later.The bulk breakdown voltage is required for a semiconductor device manufactured by a known planar technique using a complementary dielectric isolation substrate 23, which will be described later. The depth shall be sufficient to satisfy the bulk pressure resistance.

さらに、このエツチングされた島のなかでトランジスタ
を形成する島には第2図(c)に示すように酸化膜15
をマスクにしてP、As、Sb等の熱拡散法、イオン注
入法等によりn最高濃度埋込層16を形成する。ここで
、p領域を全てn最高濃度埋込層に置換えても、差支え
はない。続いて第2図(d)に示すように酸化膜17を
マスクにしてエピタキシャル成長を行ない、n形溝電性
単結晶18を溝14が埋まるまで成長させる。このとき
、酸化膜17の上には多結晶シリコン層19が同時に成
長する。続いて第2図(e)に示すように最初のp形溝
電性の単結晶の島1.1の表面まで研磨・ポリッシュ又
はエツチングで除去することにより、互いに絶縁用の酸
化膜9で電気的に絶縁され、かつp最高濃度埋込層を含
むp形溝電性単結晶の島20と、p最高濃度埋込層を含
むp形溝電性単結晶のなかにそれぞれn最高濃度埋込層
を含むn形溝電性単結晶を持つ島21と、n形溝電性単
結晶のみを持つ島22を複数個有する相補形誘電体分離
基板23を得る。本発明によれば誘電体分離基板の多結
晶基板電位の影響を、前述説明の如く絶縁用の酸化膜界
面がpの場合は誘電体分離基板を回路の最低電位に接続
することにより、又後述の如く、絶縁用酸化膜界面がn
+の場合は回路の最高電位に接続することにより防止可
能となり、バーチカル形で相補形の半導体素子が容易に
構成でき、電気的特性が優れ、高耐圧化を図る上でも特
性が安定し、素子寸法がラテラル形と比較して、小さく
できる等の特長をもつ優れた集積回路装置を構成できる
Furthermore, among the etched islands, an oxide film 15 is formed on the island where the transistor is to be formed, as shown in FIG. 2(c).
A buried layer 16 with the highest n concentration is formed by thermal diffusion of P, As, Sb, etc., ion implantation, etc. using as a mask. Here, there is no problem even if all the p regions are replaced with the n highest concentration buried layer. Subsequently, as shown in FIG. 2(d), epitaxial growth is performed using the oxide film 17 as a mask, and an n-type groove conductive single crystal 18 is grown until the groove 14 is filled. At this time, a polycrystalline silicon layer 19 is simultaneously grown on the oxide film 17. Next, as shown in FIG. 2(e), the surface of the first p-type groove electrically conductive single crystal island 1.1 is removed by polishing, polishing, or etching, and electrically isolated from each other by the insulating oxide film 9. an island 20 of a p-type groove-conducting single crystal that is insulated from the top and including a p-maximum concentration buried layer; A complementary dielectric isolation substrate 23 having a plurality of islands 21 having an n-type groove conductive single crystal and a plurality of islands 22 having only an n-type groove conductive single crystal is obtained. According to the present invention, the influence of the polycrystalline substrate potential of the dielectric isolation substrate can be suppressed by connecting the dielectric isolation substrate to the lowest potential of the circuit when the insulating oxide film interface is p as described above, or as described below. As shown in the figure, the insulating oxide film interface is n
In the case of +, it can be prevented by connecting it to the highest potential of the circuit, making it easy to construct a vertical complementary type semiconductor element, with excellent electrical characteristics, stable characteristics even when aiming for high voltage resistance, and high voltage resistance. It is possible to construct an excellent integrated circuit device having features such as being smaller in size than a lateral type.

なお、上記実施例において、単結晶基板としてシリコン
、単一導電性の単結晶の島としてp形溝電性、選択エツ
チング法として■溝構造、絶縁分離用膜及びマスク材と
して酸化膜、n形溝電性にするための不純物としてP+
AS+Sbについて説明したが、単結晶基板としてGe
 + GaAs等、単一導電性の単結晶の島としてn形
溝電性、選択エツチング法としてU溝構造、絶縁分離用
膜及びマスク材として窒化膜、p形溝電性にするだめの
不純物としてB、In等を用いた相補形誘電体分離基板
でも差支えないことは勿論である。
In the above embodiments, silicon is used as the single crystal substrate, p-type groove conductivity is used as the single-conductivity single crystal island, ■ groove structure is used as the selective etching method, oxide film is used as the isolation film and mask material, and n-type groove structure is used as the selective etching method. P+ as an impurity to make groove conductivity
Although AS+Sb was explained, Ge as a single crystal substrate
+ N-type trench conductivity as a single crystal island of single conductivity such as GaAs, U-groove structure as a selective etching method, nitride film as an insulating isolation film and mask material, and impurity to make p-type trench conductivity. Of course, a complementary dielectric isolation substrate using B, In, etc. may also be used.

次に第3図は本発明による相補形誘電体分離基板23を
用いて、公知のプレーナー技術等で製作された半導体集
積回路素子のうち、相補形のバーチカル形PNP l−
ランジスタ24とバーチカル形NPN )ランジスタ2
5及びバーチカル形PNE)Nサイリスタ26を示す。
Next, FIG. 3 shows a complementary vertical type PNP l- among semiconductor integrated circuit devices manufactured by known planar technology using the complementary dielectric isolation substrate 23 according to the present invention.
Ransistor 24 and vertical NPN) Ransistor 2
5 and vertical type PNE)N thyristor 26 are shown.

図において、27は酸化膜等の表面絶縁膜を、28〜3
3はそれぞれ半導体集積回路素子のコレクタ電極、ベー
ス電(愼、エミッタ電極、アノード電極、ゲート電極、
カソード電極を示す。なお、第2図の構成要素と同一の
各要素は同一数字、同一記号で図示している。図からも
明らかなように、本発明による相補形誘電体分離基板を
用いるとバーチカル形で相補形の半導体集積回路が容易
に構成できる。
In the figure, 27 indicates a surface insulating film such as an oxide film, and 28 to 3
3 are the collector electrode, base electrode, emitter electrode, anode electrode, gate electrode, and base electrode of the semiconductor integrated circuit element, respectively.
The cathode electrode is shown. Note that the same elements as those in FIG. 2 are indicated by the same numbers and symbols. As is clear from the figure, by using the complementary dielectric isolation substrate according to the present invention, a vertical complementary semiconductor integrated circuit can be easily constructed.

以上説明した如く、本発明による相補形誘電体分離基板
は誘電体外IC基板のうち単結晶の島を、1種類の導電
性よりなる島と、1種類の導電性のなかに異種の導電性
で高濃度埋込層を含む異種の導電性を持つ2種類の導電
性よりなる島と、1種類の導電性のなかに異種の導電性
を持つ2種類の導電性よりなる島とし、かつ誘電体膜近
傍の単結晶を、1種類の導電性よりなる島の導電形と同
一導電性を持つ高濃度埋込層とすることにより、多結晶
基板電位の影響を防止し、バーチカル形で相補形の半導
体素子が容易に形成でき、電気的特性が優れ、高面1圧
化においても素子寸法が小さく、信頼性も優れた半導体
集積回路を構成できる効果を有するものである。
As explained above, the complementary dielectric separation substrate according to the present invention has a single crystal island in a non-dielectric IC substrate, an island having one type of conductivity, and an island having a different type of conductivity within one type of conductivity. An island consisting of two types of conductivity having different types of conductivity including a highly concentrated buried layer, and an island consisting of two types of conductivity having different types of conductivity within one type of conductivity, and a dielectric By making the single crystal near the membrane a highly concentrated buried layer with the same conductivity as the island, which is made of one type of conductivity, the influence of the polycrystalline substrate potential can be prevented, and a complementary type can be formed in the vertical type. This has the effect that a semiconductor element can be easily formed, has excellent electrical characteristics, has a small element size even in the case of high surface area and one pressure, and can constitute a semiconductor integrated circuit with excellent reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は従来の単一導電性単結晶の島を
持つ誘電体分離基板の製造方法を示す断面図、第2図(
a)〜(e)は本発明の相補形導電性単結晶の島を持つ
相補Tヒ誘電体分離基板の製造方法を示す断面図、第3
図は本発明による相補形誘電体分離基板を用いて製作さ
れだ半導体集積回路素子の断面図である。 ■・・・単結晶シリコン、2・・・分離溝、3,9.2
7・・・絶縁用の酸化膜、4..8.19・・・多結晶
シリコン層、5・・・支持体層、6,11・・・単一導
電性単結晶の島、7,12・・・誘電体分離基板、10
・・・単−導電性高濃度埋込層、13゜15 、17・
・・マスク用酸化膜、14°・°溝、16− n最高張
度埋込層、18・・・n形導電性単結晶、20・・・p
最高濃度埋込層を含むp形導電性単結晶の島、21・・
・p最高濃度埋込層を含むp形導電性単結晶のなかにn
最高濃度埋込層を含むn形導電性単結晶を持つ島、22
・・・p最高濃度埋込層を含むp形導電性単結晶のなか
にn形導電性単結晶のみを持つ島、23・・・相補形誘
電体分離基板、24・・・バーチカル形PNP l−ラ
ンジスタ、25・・・バーチカル形NPN )ランジス
タ、26・・・バーチカル形PNPNサイリスタ、28
・・・コレクタ電極、29・・・ベース電極、30・・
・エミッタ電極、31・・・アノード電極、32・・・
ゲート電極、33・・・カソード電極特許出願人 日本
電気株式会社 ゛・−Fノr゛: (Q) (b) (C) 第2図 (d、) (e)
Figures 1 (a) to (d) are cross-sectional views showing a conventional method for manufacturing a dielectric isolation substrate having single conductive single crystal islands, and Figure 2 (
a) to (e) are cross-sectional views showing a method for manufacturing a complementary T dielectric isolation substrate having complementary conductive single crystal islands according to the present invention;
The figure is a cross-sectional view of a semiconductor integrated circuit device manufactured using a complementary dielectric isolation substrate according to the present invention. ■...Single crystal silicon, 2...Isolation groove, 3,9.2
7... Oxide film for insulation, 4. .. 8.19... Polycrystalline silicon layer, 5... Support layer, 6, 11... Single conductive single crystal island, 7, 12... Dielectric separation substrate, 10
... Single conductive high concentration buried layer, 13゜15, 17.
...Mask oxide film, 14°/° groove, 16-n highest tension buried layer, 18...n-type conductive single crystal, 20...p
Island of p-type conductive single crystal containing highest concentration buried layer, 21...
・In the p-type conductive single crystal including the buried layer with the highest concentration of p,
Island with n-type conductive single crystal containing highest concentration buried layer, 22
...An island having only an n-type conductive single crystal in a p-type conductive single crystal including a buried layer with the highest p concentration, 23...Complementary dielectric isolation substrate, 24...Vertical type PNP l - Ransistor, 25...Vertical type NPN) Ransistor, 26... Vertical type PNPN thyristor, 28
...Collector electrode, 29...Base electrode, 30...
・Emitter electrode, 31... Anode electrode, 32...
Gate electrode, 33...Cathode electrode Patent applicant NEC Corporation゛・-Fnor゛: (Q) (b) (C) Fig. 2 (d,) (e)

Claims (1)

【特許請求の範囲】[Claims] (1)共通の半導体基板」二に誘電体膜により互いに絶
縁された腹数個の半導体Qi結晶の島を有し、その島の
単結晶の導電形は1種類の導電性よりなる島と、i f
iri類の導電性のなかに異種の導電性で高濃度押込層
を含む異種の導電性を持つ2種類の導電性よりなる島と
、1種類の導電性のなかに異種の導電性を持つ2種類の
導電性よりなる島が存在し、かつ誘電体膜近傍の単結晶
を、1種類の導電性よりなる島の導電形と同一導電性を
持つ高濃度埋込層とした相補形誘電体分離基板を形成す
る方法において、単一導電性の島で誘電体膜近傍の単結
晶を高濃度埋込層とした誘電体分離基板を用い、2種類
の導電性を持つ島とすべき領域の単結晶を誘電体分離基
板表面より半導体素子のバルク配圧を満たす深さ捷で選
択エツチング法等により除去し、このエツチングされた
島のなかでトランジスタを形成する島には残存させた単
結晶の上に、除去した単結晶と異種の導電性を持つ高濃
度押込層を熱拡散法、イオン注入法等で形成し、さらに
、高濃度埋込層を形成した島も含め、エツチングされた
島の単結晶及び高濃度埋込層の上にエピタキシャル成長
装置等を用い、除去した単結晶と異種の導電性を持つ不
純物を含ませながら単結晶を成長させた後、最初の単一
導電性の誘電体分離基板表面−まで研磨又はエツチング
により除去することにより互いに誘電体膜により絶縁さ
れた腹数個の半導体単結晶の島を有し、その島の単結晶
の導電形は1種類の導電性よりなる島と、1種類の導電
性のなかに異種の導電性で高濃度埋込層を含む異種の導
電性を持つ2種類の導電性よりなる島と、1種類の導電
性のなかに異種の導電性を持つ2種類の導電性よりなる
島が存在し、かつ誘電体膜近傍の単結晶を1種類の導電
性よりなる島の導電形と同一導電性を持つ高濃度埋込層
とした誘電体分離基板を得ることを特徴とする相補形誘
電体分離基板の製造方法。
(1) A common semiconductor substrate, which has several islands of semiconductor Qi crystals insulated from each other by dielectric films, and the conductivity type of the single crystal of the island is one type; If
There are islands of two types of conductivity that have different types of conductivity, including a high-concentration indented layer, and two islands that have different types of conductivity within one type of conductivity. Complementary dielectric separation in which there are islands with different types of conductivity, and the single crystal near the dielectric film is a highly concentrated buried layer with the same conductivity as the island with one type of conductivity. In the method of forming the substrate, a dielectric isolation substrate is used in which islands of single conductivity are formed as a highly concentrated buried layer of single crystal near the dielectric film, and a single conductive island is formed in a region that is to be an island with two types of conductivity. The crystal is removed from the surface of the dielectric isolation substrate by selective etching at a depth that satisfies the bulk pressure distribution of the semiconductor element, and among the etched islands, the islands where transistors will be formed are etched on top of the remaining single crystal. Next, a highly concentrated indented layer with a conductivity different from that of the removed single crystal is formed by thermal diffusion, ion implantation, etc., and the etched islands, including the islands on which the highly concentrated buried layer is formed, are then etched. After growing a single crystal using an epitaxial growth device or the like on the crystal and high-concentration buried layer while adding impurities with conductivity different from the removed single crystal, the first single-conductivity dielectric separation is performed. It has several semiconductor single crystal islands that are insulated from each other by a dielectric film by polishing or etching to the surface of the substrate, and the conductivity type of the single crystal of the island is an island that has one type of conductivity. , an island consisting of two types of conductivity with different types of conductivity including a high-concentration buried layer with different types of conductivity within one type of conductivity, and an island with different types of conductivity within one type of conductivity. Dielectric separation in which there are islands with two types of conductivity, and the single crystal near the dielectric film is a highly concentrated buried layer with the same conductivity as the island with one type of conductivity. 1. A method of manufacturing a complementary dielectric isolation substrate, comprising: obtaining a substrate.
JP58125832A 1983-07-11 1983-07-11 Manufacture of complementary dielectric isolation substrate Pending JPS6017928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58125832A JPS6017928A (en) 1983-07-11 1983-07-11 Manufacture of complementary dielectric isolation substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58125832A JPS6017928A (en) 1983-07-11 1983-07-11 Manufacture of complementary dielectric isolation substrate

Publications (1)

Publication Number Publication Date
JPS6017928A true JPS6017928A (en) 1985-01-29

Family

ID=14920037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58125832A Pending JPS6017928A (en) 1983-07-11 1983-07-11 Manufacture of complementary dielectric isolation substrate

Country Status (1)

Country Link
JP (1) JPS6017928A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001075A (en) * 1989-04-03 1991-03-19 Motorola Fabrication of dielectrically isolated semiconductor device
US7806393B2 (en) 2007-10-31 2010-10-05 Smc Kabushiki Kaisha Clamp apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001075A (en) * 1989-04-03 1991-03-19 Motorola Fabrication of dielectrically isolated semiconductor device
US7806393B2 (en) 2007-10-31 2010-10-05 Smc Kabushiki Kaisha Clamp apparatus

Similar Documents

Publication Publication Date Title
US5323055A (en) Semiconductor device with buried conductor and interconnection layer
JP2000196103A (en) Soi element and its manufacture
JP3014012B2 (en) Method for manufacturing semiconductor device
US4393573A (en) Method of manufacturing semiconductor device provided with complementary semiconductor elements
US4051506A (en) Complementary semiconductor device
JPH06334030A (en) Semiconductor device and its manufacture
JPS6159852A (en) Manufacture of semiconductor device
US4193836A (en) Method for making semiconductor structure
US4430793A (en) Method of manufacturing a semiconductor device utilizing selective introduction of a dopant thru a deposited semiconductor contact layer
US4050979A (en) Process for thinning silicon with special application to producing silicon on insulator
EP0118102B1 (en) Method for manufacturing a semiconductor device
KR890003146B1 (en) Manufacture of semiconductor device
JPS58218168A (en) Bidirectional transistor
JPS6017928A (en) Manufacture of complementary dielectric isolation substrate
JPH0897225A (en) Semiconductor device and its manufacture
JPS6352464B2 (en)
JPS59186341A (en) Manufacture of complementary dielectric isolation substrate
JPS59186340A (en) Manufacture of complementary type dielectric isolation substrate
JPH0450747B2 (en)
JPS59218748A (en) Manufacture of complementary dielectric isolation substrate
JPS5828731B2 (en) All silicon materials available.
JP3043370B2 (en) Manufacturing method of dielectric isolation substrate
JPS61182240A (en) Manufacture of semiconductor device
JPS632143B2 (en)
JPS604591B2 (en) Semiconductor integrated circuit device