JPS60178939A - Fuel injection control device in reformed gas engine - Google Patents

Fuel injection control device in reformed gas engine

Info

Publication number
JPS60178939A
JPS60178939A JP3571984A JP3571984A JPS60178939A JP S60178939 A JPS60178939 A JP S60178939A JP 3571984 A JP3571984 A JP 3571984A JP 3571984 A JP3571984 A JP 3571984A JP S60178939 A JPS60178939 A JP S60178939A
Authority
JP
Japan
Prior art keywords
gas
pressure
engine
valve
gas injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3571984A
Other languages
Japanese (ja)
Inventor
Toshio Hirota
広田 寿男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3571984A priority Critical patent/JPS60178939A/en
Publication of JPS60178939A publication Critical patent/JPS60178939A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the air excessive rate of an engine with a higher degree of accuracy, by providing a pressure compensating coefficient computing means for computing the pressure compensating coefficient of the engine in accordance with a true gas pressure, and a gas injection amount compensating means for compensating the basic gas injection amount of the engine. CONSTITUTION:There is provided a gas pressure sensor E between a reformer A for reforming liquid fuel into gas and a gas injection valve C. A basic fuel injection amount computing means F computes a basic gas injection amount in accordance with the operating condition of the engine. Further there are provided a pressure compensating coefficient computing means I for computing a pressure compensating coefficient in accordance with a true gas pressure which is computed by a means for computing the pressure of a fuel injection valve section H and a gas injection amount computing means J for computing the basic gas injection amount in accordance with the pressure compensating coefficient and a drive output means K for delivering a drive pulse signal to the gas injection valve C. With this arrangement the amount of gas fuel injection may be controlled with a high degree of accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は液体燃料の改質により得られる改質ガスをエ
ンジンに供給するようにした改質ガスエンジンの燃料噴
射制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a fuel injection control device for a reformed gas engine that supplies reformed gas obtained by reforming liquid fuel to the engine.

従来技術 アルコール等の液体燃料は触媒を介して加熱することに
より、水素、−酸化炭素を主体とした可燃性のガスに改
質することができ、アルコール等をそのまま燃焼させた
場合よりも熱効率や排気特性の向上が図れることから、
この改質ガスを単独で、あるいは未改質の液体燃料と併
用する形で使用する改質ガスエンジンが注目されている
Conventional technology By heating liquid fuel such as alcohol through a catalyst, it can be reformed into a flammable gas consisting mainly of hydrogen and carbon oxide, resulting in higher thermal efficiency and better efficiency than when alcohol etc. are directly combusted. Since the exhaust characteristics can be improved,
Reformed gas engines that use this reformed gas alone or in combination with unreformed liquid fuel are attracting attention.

この改質カスエンジンにおいては、エンジンの排気熱の
回収を図るために、熱源として排気ガスを利用する改質
器が一般に採用されており、排気バイパス諸の調節によ
る改質器の崗度制御や液体燃料供給量の制御により、改
質反応を運転状態に応じて制御するようにしているが、
応答性等の点から当然のことながらガス噴射弁に一定圧
力の改質ガスを安定的に供給することは不可能である。
In this reforming waste engine, a reformer that uses exhaust gas as a heat source is generally adopted in order to recover engine exhaust heat, and the efficiency of the reformer can be controlled by adjusting exhaust bypass. By controlling the amount of liquid fuel supplied, the reforming reaction is controlled according to the operating conditions.
Naturally, it is impossible to stably supply reformed gas at a constant pressure to the gas injection valve from the viewpoint of responsiveness and the like.

そこで、このような圧力変動に対処して所期の燃料噴射
量を確保するために、従来、LP!j開昭52−11、
3426号公報に記載のように圧力レギュレータによっ
て発生した改質ガスを予め一定圧力に調圧する方法も採
られていたが、暖機時などの改質性能の低い運転領域で
改質ガスを有効に利用できなくなってしまう等の問題が
あり、近年では改質ガスの流路に圧力センサを設け、そ
の検出圧力に応じてガス噴射弁のガス噴#Umを補正す
る方法が考えられている(例えば特願昭58−7030
9号)。
Therefore, in order to deal with such pressure fluctuations and ensure the desired fuel injection amount, conventionally, LP! j Kaisho 52-11,
As described in Publication No. 3426, a method was adopted in which the pressure of the reformed gas generated by a pressure regulator was adjusted to a constant pressure in advance, but it was not possible to effectively control the reformed gas in operating regions with low reforming performance such as during warm-up. In recent years, a method has been considered in which a pressure sensor is installed in the reformed gas flow path and the gas injection #Um of the gas injection valve is corrected according to the detected pressure (for example, Patent application 1986-7030
No. 9).

しかし、このように検出圧力によりガス噴射量を補正す
る方法においても、上記ガス圧力センサがガス噴:j?
l弁の直前に設けられていない限りは、ガス圧力センサ
下流側での配管等の圧力損失が存在し、ガス噴射弁で計
量される改質ガスの真の圧力を測定しているとは言えな
いので、高精度VC2気過剰率を制御しようとした際に
、比較的大きな誤差の要因となってしまう。とりわけ、
上記ガス噴射弁と改質器との間には、通常エンジン停止
時のガス漏洩を防止すべくガス遮断弁が設けられており
、該ガス遮断弁が閉弁している暖機中のガス圧力変化を
上記ガス圧力センサを用いて監視するには、上記カス圧
力センサはガス遮断弁の上流側に配設しなければならな
い。このことから必然的にガス圧力センサの取付位置が
ツJス噴射弁から離れてしまい、しかも上記ガス遮断弁
に、よる圧力損失も重なって、大きな誤差を生′じてし
まうのである。
However, even in this method of correcting the gas injection amount based on the detected pressure, the gas pressure sensor detects the gas injection: j?
Unless it is installed immediately before the gas pressure sensor, there will be pressure loss in the piping downstream of the gas pressure sensor, and even though it is measuring the true pressure of the reformed gas metered by the gas injection valve, Therefore, when attempting to control the VC2 air excess rate with high accuracy, it becomes a relatively large source of error. Above all,
A gas cutoff valve is usually provided between the gas injection valve and the reformer to prevent gas leakage when the engine is stopped, and the gas pressure during warm-up when the gas cutoff valve is closed is In order to monitor changes using the gas pressure sensor, the gas pressure sensor must be placed upstream of the gas cutoff valve. As a result, the mounting position of the gas pressure sensor is inevitably located away from the jet injection valve, and the pressure loss caused by the gas cutoff valve is also added, resulting in a large error.

発明の目的 この発明は上記のような従来の問題に鑑みてなされたも
ので、その目的とするところは、圧力センサ下流の配管
やガス遮断弁における圧力損失の影響を排除して、改質
ガスの圧力変動に対する噴射量の補正を更に精度良く行
えるようにすることにある。
Purpose of the Invention The present invention was made in view of the above-mentioned conventional problems, and its purpose is to eliminate the influence of pressure loss in the piping downstream of the pressure sensor and the gas cutoff valve, and to reduce the amount of reformed gas. The object of the present invention is to enable more accurate correction of the injection amount in response to pressure fluctuations.

発明の構成 この発明に係る改質ガスエンジンの燃料噴射制御装U拍
は、第1図に示すように、液体燃料を水素に富むガスに
改質する改質器Aと、エンジンBの吸気系に臨設され、
かつエンジン回転に同期した駆動パルス信号により間欠
的に開閉されるガス噴射弁Cと、上記改質器Aと上記ガ
ス噴射弁Cとの間に弁装されたガス遮断弁りと、上記ガ
ス遮断弁Dの上流側に設けられたガス圧力センサEと、
アクセル操作量a、吸入空気流蔗す、エンジン回転数c
等のエンジン運転状態に応じて、エンジン1回転当りあ
るいは噴射1回当りのガス基本噴射量を演算する基本1
賞射隋演算手段Fと、上記ガス基本噴射量とエンジン回
転数とから単位時間当りのガス流量を演算するガス流曾
演算手段Gと、上記ガスIN、量に基づいてガス圧力セ
ンサE下流の配肯やガス遮断弁りでの圧力損失を演算し
、上記ガス圧力センサEの検出ガス圧力をその圧力→葬
失たけ補正してガス噴射弁Cにおける真のガス圧力をめ
る噴射弁部圧力演算手段Hと、この真のガス圧力に基づ
き圧力補正係数を演算する圧力補正係数演算手段工と、
上記圧力補正係数によって上記ガス基本噴射量を補正す
るガス噴射型補正手段Jと、この補正されたガス噴射量
に対応して上記ガス噴射弁Cに駆動パルス信号を出力す
る駆動出力手段にとを備えた構成であって、ガス圧力セ
ンサEで検出されたガス圧力とガス噴射弁Cにおける真
のガス圧力との差を上述のようにガス流量から推定し、
これにより検出されたガス圧力を補正すること(でよっ
て、ガス噴射量を重滋流損゛として一層高精悶に制御す
ることができるのである。
Structure of the Invention The fuel injection control system for a reformed gas engine according to the present invention, as shown in FIG. It was set up in
and a gas injection valve C that is intermittently opened and closed by a drive pulse signal synchronized with engine rotation, a gas cutoff valve installed between the reformer A and the gas injection valve C, and the gas cutoff valve. a gas pressure sensor E provided upstream of the valve D;
Accelerator operation amount a, intake air flow, engine speed c
Basic 1 to calculate the basic gas injection amount per engine revolution or per injection according to the engine operating conditions such as
a gas flow calculation means F, a gas flow calculation means G for calculating the gas flow rate per unit time from the basic gas injection amount and the engine rotational speed, and a gas flow calculation means G for calculating the gas flow rate per unit time from the gas basic injection amount and the engine rotational speed; Calculate the pressure loss at the gas injection valve and gas cutoff valve, and correct the gas pressure detected by the gas pressure sensor E by the amount of pressure → loss to determine the true gas pressure at the gas injection valve C. Injection valve pressure a calculation means H; a pressure correction coefficient calculation means H for calculating a pressure correction coefficient based on this true gas pressure;
a gas injection type correction means J that corrects the basic gas injection amount using the pressure correction coefficient; and a drive output means that outputs a drive pulse signal to the gas injection valve C in accordance with the corrected gas injection amount. In this configuration, the difference between the gas pressure detected by the gas pressure sensor E and the true gas pressure at the gas injection valve C is estimated from the gas flow rate as described above,
This allows the detected gas pressure to be corrected (thereby, the gas injection amount can be controlled even more precisely as a hydraulic flow loss).

実施例 第2〜4図は、改質ガスと未改質の液体燃料を運転状態
に応じて併用するようにした改質ガスエンジンに本発明
を適用した実施例を示している。
Embodiments FIGS. 2 to 4 show an embodiment in which the present invention is applied to a reformed gas engine in which reformed gas and unreformed liquid fuel are used together depending on the operating condition.

第2図において、Jはエンジン、2はその吸気通路、3
は排気通路を示しており、上記吸気通路2には、絞弁4
の下流に電磁弁式のガス噴射弁5が臨設されているとと
もに、吸気ボート近傍に同じく電磁弁式の液体燃料噴射
弁6が臨設されている。尚、7は吸入空気蓋検出用のエ
アフローメータ、8はエアクリーナ、9はアクセル操作
量センザである。また上記排気通路3には改質器10が
設けられており、負圧式アクチュエータ11により開度
制御される排気バイパス弁12によって改質器lO内を
通流する排気量が制御されるようになっている。面、」
3は負圧源から上記アクチュエータ11へ供給する負圧
を制御する電磁弁である。
In Figure 2, J is the engine, 2 is its intake passage, 3
indicates an exhaust passage, and the intake passage 2 includes a throttle valve 4.
A solenoid valve type gas injection valve 5 is installed downstream of the intake boat, and a solenoid valve type liquid fuel injection valve 6 is also installed near the intake boat. Note that 7 is an air flow meter for detecting the intake air lid, 8 is an air cleaner, and 9 is an accelerator operation amount sensor. In addition, a reformer 10 is provided in the exhaust passage 3, and the amount of exhaust gas flowing through the reformer IO is controlled by an exhaust bypass valve 12 whose opening degree is controlled by a negative pressure actuator 11. ing. surface,"
Reference numeral 3 designates a solenoid valve that controls negative pressure supplied from a negative pressure source to the actuator 11.

14は液体燃料、例えばアルコールを貯留する燃料タン
クであって、定圧ポンプ15.流童制御用区磁弁16お
よび逆止弁17が介装された液体燃料通路18を介して
上記改質器10の燃料入口用aに接続されているととも
に、上記流量制御用電磁弁16上流で分岐した噴射用通
路]9を介して十紀液体燃料噴射弁6に接続されている
。2()はリターン燃料通路である。
14 is a fuel tank for storing liquid fuel, such as alcohol, and a constant pressure pump 15. It is connected to the fuel inlet a of the reformer 10 via a liquid fuel passage 18 in which a flow rate control solenoid valve 16 and a check valve 17 are interposed, and is connected to the fuel inlet a of the reformer 10 upstream of the flow rate control solenoid valve 16. It is connected to the liquid fuel injection valve 6 via the injection passage branched at [9]. 2() is a return fuel passage.

上記改質器10で改質されたガスが取り出されるガス出
口1.Obは、ガス冷却器21が介装されたガス通路2
2を介して上記ガス噴射弁5に接続されており、かつ上
記ガス通路22には、上記ガス冷却器21の下流にガス
圧力センサ23が、これより更に下流にガス遮断弁24
が夫々介装されている。−1=記ガス冷却器21は、エ
ンジン冷却水と改質カスとの間で熱父換を行うもので、
そのエンジン冷却水のm贋は冷却水温センサ25によっ
て検出されるようになっている。
Gas outlet 1 from which the gas reformed in the reformer 10 is taken out. Ob is a gas passage 2 in which a gas cooler 21 is interposed.
2 to the gas injection valve 5, and the gas passage 22 includes a gas pressure sensor 23 downstream of the gas cooler 21, and a gas cutoff valve 24 further downstream.
are interposed respectively. -1=The gas cooler 21 performs heat exchange between the engine cooling water and the reforming residue,
A cooling water temperature sensor 25 detects whether or not the engine cooling water is defective.

また26はエンジン1の回転数を検出するためにディス
トリビュータ27に設けられたクランク角センサ、28
は改質器10内の触媒温度を検出する触媒温度センサで
あって、コントロールユニット29ハ、これらのセンザ
類7 、9 、23 、25 、26 、あからの信号
に基づいて、ガス噴射弁52g、体燃料唄射弁6、流量
制御用′ば磁弁16等の制御を行っている。
Further, 26 is a crank angle sensor provided in the distributor 27 to detect the rotation speed of the engine 1;
is a catalyst temperature sensor that detects the catalyst temperature in the reformer 10, and the control unit 29c controls the gas injection valve 52g based on the signals from these sensors 7, 9, 23, 25, 26 and Akara. , body fuel injection valve 6, flow control valve 16, etc.

上記コントロールユニット29は、第3図に示すように
、MPU (中央演算装置)31と、このMPU31を
制御するプログラムおよび所定のデータが書き込まれた
R OM 32と、外部データの一時記憶等を行うRA
M33と、入力信号および出力信号の処理を行う工10
34とから構成されている。尚、このコントロールユニ
ット29は同時に点火時期制御。
As shown in FIG. 3, the control unit 29 includes an MPU (central processing unit) 31, a ROM 32 in which programs for controlling the MPU 31 and predetermined data are written, and temporarily stores external data. R.A.
M33 and a process 10 for processing input signals and output signals.
It is composed of 34. Incidentally, this control unit 29 also controls the ignition timing.

アイドル回転数制御等を行っており、その制御用の各種
センサやアクチュエータも接続されてAる。
It performs idle rotation speed control, etc., and various sensors and actuators for this control are also connected to A.

上記コントロールユニット29によって行われる燃料供
給量の制御を簡単に説明すると、先ず改質ガスは燃費特
性、排気特性に優れ、未改質の液体燃料は出力特性に優
れていることから、機関の運転状態に応じて夫々適切な
ガス哨射匍、液体燃料噴射量が演算され、かつこれに対
応したガス噴射弁5および液体燃料噴射弁6の開弁時間
が設定される。上記ガス噴射弁5および液体燃料噴射弁
6に対する駆動パルス信号は、夫々エンジン101回転
毎に、両者同時もしくは連続したタイミングも で出力されnで、そのON時間が上記のように設定され
た開弁時間に相当する。ここで、液体燃料噴射弁6にお
いては、定圧ポンプ15によって燃料圧力が一定に保た
れるので、燃料の重量流量が開弁時間に略正確に比例す
るが、ガス噴射弁5におりては、噴射される改質ガスの
圧力、温度が不安定であるので、後述のように補正を行
っている。
To briefly explain the control of the fuel supply amount performed by the control unit 29, first, reformed gas has excellent fuel efficiency and exhaust characteristics, and unreformed liquid fuel has excellent output characteristics, so it is possible to control engine operation. Appropriate gas injection amounts and liquid fuel injection amounts are calculated depending on the conditions, and corresponding opening times of the gas injection valves 5 and liquid fuel injection valves 6 are set. The driving pulse signals for the gas injection valve 5 and the liquid fuel injection valve 6 are outputted at the same or consecutive timing every 101 revolutions of the engine, respectively, and the ON time is set as above for the valve opening. corresponds to time. Here, in the liquid fuel injection valve 6, the fuel pressure is kept constant by the constant pressure pump 15, so the weight flow rate of the fuel is almost exactly proportional to the valve opening time, but in the gas injection valve 5, Since the pressure and temperature of the injected reformed gas are unstable, corrections are made as described below.

一方、改質器10による改質ガス生成量は、ガス噴射弁
5の噴射量に応じて流量制御用ば磁弁16により液体燃
料供給量を調整することによって制御される。また、こ
れと同時に、改質器10の触媒棉ノwを改質に最適な温
度範囲に保つように、電磁弁13を介しC排気バイパス
弁12の開度が制御されている。
On the other hand, the amount of reformed gas produced by the reformer 10 is controlled by adjusting the amount of liquid fuel supplied by a magnetic valve 16 for flow rate control according to the injection amount of the gas injection valve 5. At the same time, the opening degree of the C exhaust bypass valve 12 is controlled via the electromagnetic valve 13 so as to keep the catalyst temperature of the reformer 10 within the optimum temperature range for reforming.

第4図は、ガス噴射弁5の開弁時間を、上述した圧力、
温度に対する補正を加えて設定する際のi1i!制御子
制御示すフローチャートであって、先ず■でアクセル操
作AS、エンジン回転数N、吸入梁気流fit Qaを
、夫々アクセル操作量センサ9.クランク角センザ26
.エアフローメータ7の各出力信号から読み込み、■で
これらの条件に基づいて最適なガス基水噴射Je’ T
pG。を演算する。このガス基本噴射量T は、エンジ
ン1回転当りつまりGQ 噴射1回当りの基準圧力1幅此(例えば4ata 、Q
’C1における噴射量を示している。次に■で、上記ガ
ス基本1貢射JiT から単位時間当りのガス流量GQ Gg を、Gg−Tpo0×19としてめる。■では、
ガス圧力センサ23で実際に検出されたカス圧力稲。
FIG. 4 shows the opening time of the gas injection valve 5 at the above-mentioned pressure and
i1i when setting with temperature correction added! This is a flowchart showing control element control, and first, at (3), the accelerator operation AS, engine rotation speed N, and intake beam airflow fit Qa are detected by the accelerator operation amount sensor 9. Crank angle sensor 26
.. Read from each output signal of the air flow meter 7, and determine the optimal gas-based water injection Je'T based on these conditions in
pG. Calculate. This basic gas injection amount T is the reference pressure per one engine revolution, that is, GQ.
' indicates the injection amount at C1. Next, in (2), the gas flow rate GQ Gg per unit time is determined from the gas basic 1 contribution JiT as Gg-Tpo0×19. ■So,
The waste pressure rice actually detected by the gas pressure sensor 23.

と、冷却水嵩センサ25で検出された冷却水幅TWとを
入力する。次いで■で、)Jス1員射弁5における真の
ガス圧力pg を、Pg = PgO−K、Gg なる
関係式で演算する。ここでKGgは、ガス、a断弁24
やガス圧力センサ2.3下流の配官シてよる圧力損失を
示すもので、係数には予め実1検的に与えられている。
and the cooling water width TW detected by the cooling water volume sensor 25 are input. Next, in step 2), the true gas pressure pg at the one-member injection valve 5 is calculated using the relational expression Pg = PgO-K, Gg. Here, KGg is gas, a valve 24
This shows the pressure loss due to the gas pressure sensor 2.3 downstream of the gas pressure sensor 2.3, and the coefficient is given in advance based on actual tests.

すなわち、ガス流量Gg に応じた補正を、実際に検出
したガス圧力Pgo vC付加することによって、その
検出位置の相違に基づく誤差を除去しているのである。
That is, by adding correction according to the gas flow rate Gg to the actually detected gas pressure PgovC, errors due to differences in the detection positions are removed.

そして、上記のように補正した真のガス圧力Pg に基
づき、■で圧力補正係数Kp、を、KpG=τ−として
める。
Then, based on the true gas pressure Pg corrected as described above, the pressure correction coefficient Kp is determined as KpG=τ- in (2).

一万、ガス温度Tg は本実施例ではカス冷却器21に
通流されるエンジン冷却水の温度TV から間接的にめ
ている。つまり、ガス冷却器21はエンジン冷却水を用
いて、改質器10から送られてくる3oo’c程度の改
質ガスを100”C前後に冷却するのであるが、この冷
却後のガス温度は、冷却水温およびガス流量と相関関係
があるI−f:、の−例を第5図に示す1゜そこで、■
では予め与えられたデータテーブルから、■でめたガス
流量Gg と■で入力した冷却水温TW とに対応する
ガスQ 度T gをルックアップしてめ、■でこのガス
温&Tg273+Tg から湛度補正係g31KT、をKTG= 273 とし
てめる。
In this embodiment, the gas temperature Tg is determined indirectly from the temperature TV of the engine cooling water flowing through the waste cooler 21. In other words, the gas cooler 21 uses engine cooling water to cool the reformed gas of about 30'C sent from the reformer 10 to around 100"C, but the gas temperature after this cooling is Figure 5 shows an example of I-f, which has a correlation with cooling water temperature and gas flow rate.
Now, from the data table given in advance, look up the gas Q degree T g that corresponds to the gas flow rate Gg determined in ■ and the cooling water temperature TW input in ■, and correct the flooding from this gas temperature & Tg273 + Tg in ■ Let the relation g31KT be KTG=273.

そして、■で上記のようにめた圧力補正係数KpQ r
 温度補正係数KTGと、その他の補正分としてガス噴
射弁流量補正係数Kv およびバッテリ電圧補正Tsと
から−TIG=TpG0×KvXKpGxKT。
Then, the pressure correction coefficient KpQ r set as above in ■
From the temperature correction coefficient KTG and the gas injection valve flow rate correction coefficient Kv and battery voltage correction Ts as other corrections, -TIG=TpG0×KvXKpGxKT.

+TIl]なる関係式でガス噴射弁5の開弁時間をめる
のである。
+TIl], the opening time of the gas injection valve 5 is determined by the following relational expression.

発明の効果 以上の説明で明らかなよう[、この発明に係る改質ガス
エンジンの燃料噴射制御装置においては、ガス噴射弁の
直前にガス圧力センサを設けずとも、配管等による圧力
損失に起因した誤差を排除することができ、一層制精度
な窒気過剰率制御を実現できる。
Effects of the Invention As is clear from the above explanation, the fuel injection control device for a reformed gas engine according to the present invention does not require the provision of a gas pressure sensor immediately before the gas injection valve. Errors can be eliminated and more accurate nitrogen excess rate control can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の構成を示す機能ブロック図、第2図
はこの発明の一実施例を示す構成説明図、第3図はコン
トロールユニットの構成説明図、第4図はガス噴射層制
御のフローチャート、第5図は改質ガス温度、冷却水濡
、改實ガス流量の相関を示す図である。 ]・・エンジン、5・・ガス噴射弁、6・・液体燃料噴
射弁、7・・・エアフローメータ、9・・アクセル操作
量センサ、10 改質器、12 排気バイパス弁、14
・・燃料タック、16・・流層制御用d磁弁、2J・・
ガス冷却器、2:(ガス圧力センサ、24・・ガス遮断
弁、25・・・冷却水tWセンサ、20・・クランク用
センサ、28・・M媒温[センサ、29 コントロール
ユニット。
FIG. 1 is a functional block diagram showing the configuration of the present invention, FIG. 2 is a configuration explanatory diagram showing an embodiment of the invention, FIG. 3 is a configuration explanatory diagram of the control unit, and FIG. 4 is a diagram showing the configuration of the control unit. The flowchart, FIG. 5, is a diagram showing the correlation among reformed gas temperature, cooling water wetness, and reformed gas flow rate. ]... Engine, 5... Gas injection valve, 6... Liquid fuel injection valve, 7... Air flow meter, 9... Accelerator operation amount sensor, 10 Reformer, 12 Exhaust bypass valve, 14
...Fuel tack, 16...d magnetic valve for flow layer control, 2J...
Gas cooler, 2: (Gas pressure sensor, 24...Gas cutoff valve, 25...Cooling water TW sensor, 20...Crank sensor, 28...M medium temperature [sensor, 29 Control unit.

Claims (1)

【特許請求の範囲】[Claims] (1)液体燃料を水素に富むガスに改質する改及器と、
エンジン吸気系に臨設され、かつエンジン回転に同期し
た駆動パルス信号により間欠的に開閉されるガス噴射弁
と、上記改質器と」:記ガス噴射弁との間に介装された
ガス遮断弁と、上記ガス遮断弁の上流側に設けられたガ
ス圧力センサと、エンジンの運転状態に応じてガス基本
噴射量を演算する基本噴射量演算手段と、上記ガス基本
噴射量とエンジン回転数とから単位時間当りのガス流量
を演算するカス流量演算手段と、上記ガス流計から圧力
損失を演算し、上記ガス圧力センサの検出ガス圧力を補
正してガス噴射弁における真のガス圧力をめる噴射弁部
圧力演算手段と、この真のガス圧力に基づき圧力補正係
数を演算する圧力補正係数演算手段と、上記圧力補正係
数によって上記ガス基本噴射量を補正するガス噴射」:
補正手段と、この補正されたガス噴射量に対応して上記
ガス噴射弁に駆動パルス信号を出力する駆動出力手段と
を備えてなる改質ガスエンジンの燃料噴射制御装置。
(1) A reformer that reformes liquid fuel into hydrogen-rich gas;
A gas injection valve that is installed in the engine intake system and is intermittently opened and closed by a drive pulse signal synchronized with engine rotation, and a gas cutoff valve that is interposed between the reformer and the gas injection valve. , a gas pressure sensor provided upstream of the gas cutoff valve, a basic injection amount calculating means for calculating a basic gas injection amount according to the operating state of the engine, and a basic injection amount calculating means based on the basic gas injection amount and engine rotation speed. A gas flow rate calculation means for calculating the gas flow rate per unit time, and an injection unit that calculates the pressure loss from the gas flow meter, corrects the gas pressure detected by the gas pressure sensor, and calculates the true gas pressure at the gas injection valve. "valve pressure calculation means; pressure correction coefficient calculation means for calculating a pressure correction coefficient based on the true gas pressure; and gas injection for correcting the basic gas injection amount using the pressure correction coefficient":
A fuel injection control device for a reformed gas engine, comprising a correction means and a drive output means for outputting a drive pulse signal to the gas injection valve in accordance with the corrected gas injection amount.
JP3571984A 1984-02-27 1984-02-27 Fuel injection control device in reformed gas engine Pending JPS60178939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3571984A JPS60178939A (en) 1984-02-27 1984-02-27 Fuel injection control device in reformed gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3571984A JPS60178939A (en) 1984-02-27 1984-02-27 Fuel injection control device in reformed gas engine

Publications (1)

Publication Number Publication Date
JPS60178939A true JPS60178939A (en) 1985-09-12

Family

ID=12449661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3571984A Pending JPS60178939A (en) 1984-02-27 1984-02-27 Fuel injection control device in reformed gas engine

Country Status (1)

Country Link
JP (1) JPS60178939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10250882A1 (en) * 2002-10-31 2004-05-19 Webasto Thermosysteme Gmbh Mixture formation device for a reformer of a fuel cell system or for a heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10250882A1 (en) * 2002-10-31 2004-05-19 Webasto Thermosysteme Gmbh Mixture formation device for a reformer of a fuel cell system or for a heater
DE10250882B4 (en) * 2002-10-31 2004-12-30 Webasto Thermosysteme Gmbh Fuel cell system with reformer and upstream mixture formation system
US7318846B2 (en) 2002-10-31 2008-01-15 Enerday Gmbh Mixture formation means for a reformer of a fuel cell system or for a heater

Similar Documents

Publication Publication Date Title
US6662640B2 (en) Air amount detector for internal combustion engine
US4462376A (en) Method and apparatus for determining and controlling the exhaust gas recirculation rate in internal combustion engines
JP3115099B2 (en) Fuel consumption measurement device
JP3154038B2 (en) Apparatus for estimating intake pressure of internal combustion engine and fuel supply apparatus
JP2796432B2 (en) Compensation method of measurement error of thermal thin film air weighing device
JPH08303293A (en) Control method for internal combustion engine
JP3189143B2 (en) Fuel supply device for internal combustion engine
US4995366A (en) Method for controlling air-fuel ratio for use in internal combustion engine and apparatus for controlling the same
US7707999B2 (en) Exhaust protecting device and protecting method for internal combustion engine
US20020035868A1 (en) Intake air-flow rate detecting apparatus and detecting method of internal combustion engine
JPS60178939A (en) Fuel injection control device in reformed gas engine
JP3339270B2 (en) EGR device for diesel engine
JPS60132042A (en) Injection time controlling method of electronically controlled fuel injection engine
JP2001091370A (en) Fluid temperature estimating device
JP3277304B2 (en) Fuel supply device for internal combustion engine
JP2001153702A (en) Method for correcting measuring error of heat generating resistor type air flow measuring apparatus
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JP3324308B2 (en) Exhaust calorie calculation device
JP2591293B2 (en) Exhaust gas recirculation device failure diagnosis device
JP3627462B2 (en) Control device for internal combustion engine
JP2999260B2 (en) Fuel metering system for internal combustion engine
KR200234182Y1 (en) Engine controller
JP2703259B2 (en) Engine fuel supply
JPH09228899A (en) Egr device for diesel engine
JP2814790B2 (en) Failure diagnosis device for exhaust gas recirculation device