JPS60178669A - Manufacture of mis diode - Google Patents

Manufacture of mis diode

Info

Publication number
JPS60178669A
JPS60178669A JP59034575A JP3457584A JPS60178669A JP S60178669 A JPS60178669 A JP S60178669A JP 59034575 A JP59034575 A JP 59034575A JP 3457584 A JP3457584 A JP 3457584A JP S60178669 A JPS60178669 A JP S60178669A
Authority
JP
Japan
Prior art keywords
layer
electrode
semiconductor
manufacturing
conjugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59034575A
Other languages
Japanese (ja)
Other versions
JPH0570950B2 (en
Inventor
Satoshi Yanagiura
聡 柳浦
Makoto Tsunoda
誠 角田
Shohei Eto
江藤 昌平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59034575A priority Critical patent/JPS60178669A/en
Publication of JPS60178669A publication Critical patent/JPS60178669A/en
Publication of JPH0570950B2 publication Critical patent/JPH0570950B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To easily obtain MIS diodes of high performance and stable performance by a method wherein a conductive layer serving as an electrode is provided with a semiconductor layer, which is then provided with an insulation organic polymer layer; further, this organic polymer layer is provided with a metallic layer serving as an electrode. CONSTITUTION:The conductive material used for a conductive layer serving as the electrode includes a metal such as Au and Pt and carbon, which are generally used for an electrode, and this material is used independently or together with various kind of substrate. The semiconductor used for a semiconductor layer includes an inorganic semiconductor such as Si and an organic semiconductor such as a pi-conjugated polymer. The insulation polymer includes either one of a homopolymer such as alpha-naphthol, m-xylenol, phenol, and thiophenol and at least two kinds or more of copolymers of them. In order to provide the insulation polymer to the semiconductor layer, a monomer corresponding to the insulation polymer and the supporting electrolyte are dissolved in an organic solvent; then, using the conductive layer provided with the semiconductor layer as the action electrode, the insulation polymer layer is deposited on the semiconductor layer by electrolytic polymerization.

Description

【発明の詳細な説明】 この発l1llIVi、絶縁性布4が高分子層を設けた
M工Sダイオードの新規な1便造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a novel one-step manufacturing method for M/S diodes in which the insulating cloth 4 is provided with a polymer layer.

〔従来技術〕[Prior art]

第1図は一般的なMISダイオードの断面図で、(1)
、!61t/′iリード線、+211d電極となる金属
層、(3)は絶縁層、(41け半導体層、151 T/
′i電極となる導電層であり、金属−絶縁物一半導体(
MIS)の順に構成されたもので、従来より第2図に示
−t Si −SiO−金属構造のもの、即ちMOSダ
イオードが実用化さねている。図において、(7)は8
10層、(8)は81層である0思11すより5iOz
 −Si構造に帰因する劣化が起ると占われていたが、
現在ではこの問題の解明が進み、理想に近いMOS i
造が作られるようになり、実用性も茜まってきている。
Figure 1 is a cross-sectional view of a typical MIS diode, (1)
,! 61t/'i lead wire, +211d metal layer which becomes electrode, (3) is insulating layer, (41 semiconductor layer, 151T/'i)
It is a conductive layer that becomes an i-electrode, and is a metal-insulator-semiconductor (
Conventionally, a MOS diode having a metal structure shown in FIG. 2, that is, a MOS diode, has not been put into practical use. In the figure, (7) is 8
10 layers, (8) is 81 layers 5iOz
-It was predicted that deterioration would occur due to the Si structure, but
Nowadays, this problem has been elucidated, and MOS i
Structures have started to be made, and their practicality has also increased.

これ等の製法としては、Slの気相成長の方法VC酸素
、又は酸素を含むC02,H2Oなどのガスを導入しs
1上にSiO2を成長させる方法、およびSiH4と0
2に反応させて5iOzを製膜する方法などがある。
These manufacturing methods include the vapor phase growth method of Sl, VC oxygen, or the introduction of oxygen-containing gases such as CO2 and H2O.
Method of growing SiO2 on 1 and SiH4 and 0
There is a method of forming a film of 5iOz by reacting with 2.

有機MISダイオードも最近作らねるようになったが、
これ寺は廟機半導体の上に絶縁性の有機重分子を蒸着法
、およびプラズマ重合法などにより20〜l、JOA程
度の層を堆積し、その上に金属成極をつけたものである
。また、無機半導体の一ヒに上記の方法で有機重分子を
堆積させたM工Sダイオードも知られ、ている。
Although organic MIS diodes have recently become impossible to manufacture,
In this structure, a layer of about 20 to 100 liters of JOA is deposited on a semiconductor by depositing insulating organic heavy molecules by vapor deposition or plasma polymerization, and metal polarization is applied on top of the layer. Also known are M/S diodes in which organic heavy molecules are deposited on an inorganic semiconductor by the method described above.

しかし、従来の蒸着法、プラズマ重合法による絶縁性有
機−1分子層の堆積に、ピンホールが出来易い、層の構
造に再現性が無い、層厚のコントロールが困難である、
装置が烏価格である、操作が難しくコストが高いなどの
欠点金持ち、M工S゛ダイオードの絶縁性有機高分子層
を堆積させるには不適当な方法であった。
However, when depositing an insulating organic monomolecular layer using conventional vapor deposition methods or plasma polymerization methods, pinholes tend to form, the layer structure is not reproducible, and it is difficult to control the layer thickness.
This method has drawbacks such as expensive equipment, difficulty in operation, and high cost, and is not suitable for depositing an insulating organic polymer layer for M-S diode.

〔発明の概要〕[Summary of the invention]

この発り1け上記従来のものの欠点を除去するためにな
されたもので、電極となる導電層に半専体層全設け、こ
の半導体層Vc亀解重合法により絶縁性有機高分子層を
設け、さらにこの絶縁性有機高分子層に゛電極−となる
金属層を設けることにより容易に、高性能で、かつ性能
の安定したM工Sダイオードの製造方法を得ること全目
的とする。
This was developed in order to eliminate the drawbacks of the conventional ones mentioned above.The conductive layer that becomes the electrode is entirely provided with a semi-dedicated layer, and the semiconductor layer Vc is coated with an insulating organic polymer layer by a polymerization method. The overall object of the present invention is to provide a method for easily manufacturing a high-performance, stable-performance M/S diode by providing a metal layer serving as an electrode on this insulating organic polymer layer.

〔発明の果織例〕[Example of fruit weaving of the invention]

この発明の一実施例に係わる電極となる導′亀層に用い
る4亀材料としては、一般的に成極に用いる、例えば金
および白金等の金属およびカーボン等があり、単独およ
び各種基板と共にト1:lいる。
The four-layer material used for the conductive layer, which is an electrode according to an embodiment of the present invention, includes metals such as gold and platinum, carbon, etc., which are generally used for polarization, and can be used alone or together with various substrates. 1: There are.

この発明の一実施クリに係わる半導体層に1羽いる半ノ
1゛≠体としては、例えは81等の無機半導体および例
えばπ−共共役系骨分子のM機半棉体がある。
Examples of the half-half body present in the semiconductor layer according to one embodiment of the present invention include inorganic semiconductors such as 81, and M machine half-half bodies of, for example, π-conjugated bone molecules.

ここにおいて、π−共共役系骨分子けビロールとN−+
M換ヒビロール共重合体、ビロールのホモポリマー、N
−ftmビロールのホモポリマー、ポリチェニレン、ポ
リアニリン、ポリフラン、ポリアズレンおよびポリピリ
ジンなとの内の少なくとも一極である。
Here, π-conjugated bone molecule Kevirol and N-+
M-converted hibirol copolymer, virol homopolymer, N
- At least one of a homopolymer of ftm virol, polythenylene, polyaniline, polyfuran, polyazulene, and polypyridine.

■えは、L記π−共役系高分子の半導体@1r電極とな
る導電層に設けるには、L記π−共役系111分子に相
当するモノマーおよび支持電解・6を有機溶媒に溶かし
反応溶液とし、」〕記jJp電層を作用成極とし、例え
ば白金などの対極との間に電流毛・辿じてttL解市解
法合法り作用電極ヒに所望のπ−共役系高分子層を析出
させ、析出したπ−共役系高分子層をよく洗滌した後、
充分にアニールする。
■E. To provide a conductive layer that will become a semiconductor @1r electrode of a π-conjugated polymer in L, a monomer corresponding to 111 molecules of a π-conjugated system in L and supporting electrolyte 6 are dissolved in an organic solvent and a reaction solution is prepared. Then, a desired π-conjugated polymer layer is deposited on the working electrode according to the ttL solution method by using the electric layer as a working polarization and a current hair between it and a counter electrode such as platinum. After washing the deposited π-conjugated polymer layer thoroughly,
Anneal thoroughly.

この場合、析出したπ−共共役系外分子+14n反応時
に支持電解質の−rニオンがドーピングされP型半導体
となる。一方、このP型半導体を脱ドープし、さらにカ
チオン金ドープすることにより、n型半導体とすること
ができる。ここで、有機溶媒としてけ、支持覗解質およ
び上記モノマー全溶解させるものならよく、例えばアセ
トニトリル、ニド−ベンゼン、ニトロメタン、N、N−
シメチルホ1ルムアミド(DMF)、ジメチルスルホキ
シド(DMSO)、ジクロロメタン、テトラヒドロフラ
ン、エチルアルコールおよびメチルアルコール等の極性
溶媒が単独又fi2種以上の混合溶媒として用いられる
In this case, -r ions of the supporting electrolyte are doped during the +14n reaction with the precipitated π-conjugated non-conjugated molecules, resulting in a P-type semiconductor. On the other hand, by dedoping this P-type semiconductor and further doping it with cationic gold, it can be made into an n-type semiconductor. Here, any organic solvent may be used as long as it can completely dissolve the supporting solute and the above monomers, such as acetonitrile, nidobenzene, nitromethane, N, N-
Polar solvents such as dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), dichloromethane, tetrahydrofuran, ethyl alcohol, and methyl alcohol are used alone or as a mixed solvent of two or more fi.

支持電解質としてVi酸化′覗位および還元電位が高く
、ル解重合にそれ自身が酸化又は還元反応を受けず、か
つ溶媒中に溶解させることによって溶液に電導性を付与
することのできる物質〒あり、例えば、過塩素酸テトラ
アルキルアンモニウム塩、テトラアルキルアンモニウム
、テトラフルオロボレート塩、テトラアルキルアンモニ
ウム、ヘキサフルオロホスフェート塩、テトラアルキル
アンモニウム、パラトルエンスルホネート塩および水酸
化ナトリウム等が用いられるが、勿論2種以上を併用し
ても構わない。
As a supporting electrolyte, there is a substance that has high Vi oxidation and reduction potentials, does not itself undergo oxidation or reduction reactions during depolymerization, and can impart conductivity to the solution by dissolving it in a solvent. For example, perchloric acid tetraalkylammonium salts, tetraalkylammonium, tetrafluoroborate salts, tetraalkylammonium, hexafluorophosphate salts, tetraalkylammonium, paratoluenesulfonate salts, sodium hydroxide, etc. are used, but of course there are two types. The above may be used in combination.

この発明の一実施例に中いる絶縁性高分子としては、例
えばα−ナフトール、β−ナフトール、m−キシレノー
ル、2,6−キシレノール、°rフクロイン、p、p’
−ジアミノジフェニルメタン、4,4−テオジアニリン
、0−アミンフェノール、フェノールおよびチオフェノ
ールなどのホモポリマーならびにこれらの少なくとも2
Δ団以上のコポリマーの内のいずす1か1稙がある。上
記絶縁性篩分子を半Jひ体層に設けるにけ、上記π−共
役系高分子層を析出させた時と同様に、有機溶媒に−1
ユ記絶緩性^分子に相当するモノマーおよび支持電解質
を俗かし、半導体層を設けた導峨−を作用′電極として
、絶縁性菌分子層を屯解重合法により半導体層に析出さ
せる。この場合、ヒドロキシル基の解離を促進させる目
的で核剤として第3級−アミンを併用することもあり、
その時Irj電極間に汀一定の1圧’17J)けておき
、電流の減衰をモニターしなから過当な所で反応を止め
るのが艮い。
Examples of the insulating polymer in one embodiment of the present invention include α-naphthol, β-naphthol, m-xylenol, 2,6-xylenol, °rfuculoin, p, p'
- homopolymers such as diaminodiphenylmethane, 4,4-theodianiline, 0-aminephenol, phenol and thiophenol, and at least two thereof
There is one or more types of copolymers of Δ group or higher. In order to provide the above insulating sieve molecules in the semi-J body layer, in the same way as when depositing the above π-conjugated polymer layer, -1
Using a monomer corresponding to a slow molecule and a supporting electrolyte, and using a conductor provided with a semiconductor layer as a working electrode, an insulating bacterial molecule layer is deposited on the semiconductor layer by a catalytic polymerization method. In this case, a tertiary amine may be used as a nucleating agent in order to promote the dissociation of hydroxyl groups.
At that time, it is best to apply a constant pressure of 17 J) between the Irj electrodes, monitor the decay of the current, and then stop the reaction at an excessive point.

この発1−54の一実施例に係わる電極となる金鵬層の
金属としては、半導体層がp型の場合は、例えばインジ
ウム、ガリウム、インジウム−ガリウム合金、アルミニ
ウム、銀、スズおよびゲルマニウムなどの仕事関数の小
さい金属が、n型の場合には、例えは金、白金および銅
なとの仕事関数の大きい金属が用いられ、蒸着、スパッ
タリング″、CVD成長およびメッキなどの方法で被着
させる。
When the semiconductor layer is p-type, the metal of the metal layer that becomes the electrode according to an embodiment of this publication 1-54 may be, for example, indium, gallium, indium-gallium alloy, aluminum, silver, tin, and germanium. When the metal with a low function is n-type, a metal with a high work function such as gold, platinum, and copper is used, and is deposited by methods such as evaporation, sputtering, CVD growth, and plating.

なお、遊解1.11合法によって得られるM工Sダイオ
ードの電気的特性は、重合時にl−Hいられるモノマー
の種類に大きく依存するためモノマーを適宜選択する必
要がある。
Note that the electrical characteristics of the M/S diode obtained by the free release 1.11 method largely depend on the type of monomer that is present in l-H during polymerization, so it is necessary to appropriately select the monomer.

以下、この発りJを実施例につき史に詳しく説明するが
、これに限定するものではない。
Hereinafter, this starting point J will be explained in detail with reference to examples, but it is not limited thereto.

実施例1 3・5CmX 7cmのガラス基板上に真空蒸着法によ
って厚さ100OAのクロム層を設け、更にこの上に金
(Au)層を200OAの厚さに真空蒸着法によって設
けたもの全作用電極とした(有効作用区極+Fri積I
d 2cm X3.5cm)。
Example 1 A chromium layer with a thickness of 100 OA was provided on a 3.5 cm x 7 cm glass substrate by vacuum evaporation method, and a gold (Au) layer was further provided on this with a thickness of 200 OA by vacuum evaporation method.All working electrodes. (Effective action area + Fri product I
d 2cm x 3.5cm).

1oomtのアセトニトリル中にN−メチルビロール(
o、8g) 、テトラエチルアンモニウムバークロレイ
ト(o、’yg)を溶解させた倣を反応浴液とした。
N-Methylvirol (
o, 8g) and tetraethylammonium verchlorate (o,'yg) were dissolved therein and used as a reaction bath solution.

対極として白金(pt)α極ケ、参照′a極として5C
E(II[!!和カロメル屯電極全便[1]シ、反応浴
液中に作り月′電極と共VC浸し、窒素ガス雰囲気Fで
作用成極全陽極として対極との間に−ポ螺流(o、15
+nA)全90分聞流し、作用tM、惨上にπ−共役系
高分子層を約4000Aの厚さに析出させ、アセトニト
リルで洗浄後、空気1’p80℃で8時間アニールし、
π−共役系制分子試料(1)を得た。
Platinum (pt) α electrode as counter electrode, 5C as reference 'a electrode
E (II [!!Japan Calomel Tuan Electrode Complete Works [1] Shi, made in the reaction bath solution and immersed in VC along with the electrode, and operated in a nitrogen gas atmosphere F as a polarized total anode between the counter electrode and the - point spiral flow. (o, 15
+nA) After a total of 90 minutes of operation, a π-conjugated polymer layer was deposited to a thickness of about 4000A, and after washing with acetonitrile, it was annealed for 8 hours at 1'p80°C in air.
A π-conjugated molecule sample (1) was obtained.

loo+ntのアセトニトリルにトリエチルアミン(0
,51g) 、f )ラエチルアンモニウムパークロレ
イト(0’、7g)およびα−ナフトール(0,64g
)を溶解させた成金反応浴液とした。対極としてpt電
極を、参照電極として5OFi (飽和カメロル電極)
全使用し、反応浴液中にπ−共役系釧1分子、試料(1
1と共に浸し、窒素ガス雰囲気下で作1月電極を陽極と
して対極とのl…に一定邂圧(0,4V) i 15分
IIJ+流し、π−共役系高分子試料(11表面に絶縁
層? 2OAの厚さに析出させ、アセトニトリルで洗浄
後乾燥させ、π−共役系高分子試料引)を得た。
Loo+nt acetonitrile with triethylamine (0
, 51 g), f) laethylammonium perchlorate (0', 7 g) and α-naphthol (0,64 g)
) was dissolved in a metal forming reaction bath solution. PT electrode as counter electrode, 5OFi (saturated Camerol electrode) as reference electrode
One molecule of π-conjugated system and one sample (1 molecule) were added to the reaction bath solution.
Immerse the sample in a nitrogen gas atmosphere with a constant pressure (0.4 V) between the electrode and the counter electrode (0.4 V) for 15 minutes in a nitrogen gas atmosphere. It was deposited to a thickness of 2OA, washed with acetonitrile, and dried to obtain a π-conjugated polymer sample.

さらに、π−共役系高分子試料(U)のに、Vc真空蒸
着戻によりインジウム(工n)層を約3000Aの厚さ
で設けることにより得られたM工SダイオードをMIs
ダイオード試料(L)とする。
Furthermore, an M-S diode obtained by forming an indium (N) layer with a thickness of about 3000A on the π-conjugated polymer sample (U) by Vc vacuum evaporation was used as an MIs.
Let it be a diode sample (L).

実施例2 一1!施例1で得られたπ−共役系高分子試料(1)を
用いてこの上VC4Mu II11と同様な方法ケ用い
て絶縁Mを4OAの厚さで析出させたものをπ−共役系
尚分子試料(Ill)とする。さらにπ−共役系高分子
試料佃)の上VC島層を約3000Aの厚さで設けるこ
とによって得られたM工SダイオードをM工Sダイオー
ド試料(2)とする。
Example 2 -1! Using the π-conjugated polymer sample (1) obtained in Example 1, insulation M was deposited to a thickness of 4OA using the same method as VC4Mu II11. Let it be sample (Ill). Further, an M-type S diode obtained by providing a VC island layer with a thickness of about 3000 A on the π-conjugated polymer sample (Tsukuda) is referred to as M-type S diode sample (2).

実施例3 実施例1で得られたπ−共役系高分子試料(lHr用い
てこの上に実施例1と同様な方法を用いて絶縁W4i6
oAの厚さで析出させたものをπ−共役系高分子試料(
IV)とする。さらにπ−共役系高分子試料GV)の)
−、に工n層全約3000Aの厚さで設けることによっ
て得られたMISダイオードをMISダイオード試料(
31とする。
Example 3 The π-conjugated polymer sample obtained in Example 1 (using lHr) was coated with insulating W4i6 using the same method as Example 1.
A π-conjugated polymer sample (
IV). Furthermore, the π-conjugated polymer sample GV)
MIS diode sample (
31.

比較例1 実施例1で得られたπ−共役系1妬分子試料(1)のに
、VcIn層金約3000Aの厚さで設けることによっ
て得られたショットキー・ダイオードを比較試料il+
とする。
Comparative Example 1 A Schottky diode obtained by providing a VcIn layer with a thickness of about 3000 A on the π-conjugated 1-layer molecular sample (1) obtained in Example 1 was used as a comparative sample il+.
shall be.

8J3図K MISダイオード試料(117)イし試料
+31 (1’)、第4図に比較試料(1)の断面図を
示す。図において、+9! 、 131 flリード線
、tlol Ir1In ’@、極、(Illはポリα
−ナフトール層、121uポリN−メチルビロール膜、
+141 fl Au を極、(15+ #/′iガラ
ス基板である。
Fig. 8J3 shows a cross-sectional view of the comparative sample (1). In the figure, +9! , 131 fl lead wire, tlol Ir1In'@, pole, (Ill is poly α
- naphthol layer, 121u polyN-methylpyrrole film,
+141 fl Au as the pole, (15+ #/'i glass substrate.

第5図f1M工Sダイオード試料fi+ないし試料(3
)ならびに比較試料+I+の゛電圧ff) Vcよる1
流(1)の変化を示すX−V特性図である。図中、(I
6)は比較試料の特性、071〜U9iV′i各々M工
Sダイオード試料(1)〜試料(3)の特性である。こ
れによると、この発11の一実施例により得られたMI
Sダイオードに、良好な整流特性が観測さね、しかも絶
縁層の層厚に依存する特異的質化が見られ、製造時の層
厚制御により所望の特性のMISダイオードを得ること
ができることか解る。
Fig. 5 f1M S diode sample fi+ or sample (3
) and comparison sample +I+ voltage ff) 1 according to Vc
FIG. 3 is an X-V characteristic diagram showing changes in flow (1). In the figure, (I
6) are the characteristics of the comparison sample, and 071 to U9iV'i are the characteristics of the M-S diode samples (1) to (3), respectively. According to this, the MI obtained by an example of this invention 11
Good rectifying characteristics were observed in the S diode, and a specific quality change depending on the thickness of the insulating layer was observed, indicating that MIS diodes with desired characteristics can be obtained by controlling the layer thickness during manufacturing. .

〔発明の効果〕〔Effect of the invention〕

以上説#51シたとおり、この発明は電極となる導鑞層
に半導体層を設け、この半導体層に亀解束合法により絶
縁性有機高分子層全段け、さらにこの絶縁性M機外分子
層に゛電極となる金MI4層を設けることにより容易に
、高性能で、かつ性能の安定したM工Sダイオードの製
造方法を得ることが〒きる。
As explained in Theory #51 above, the present invention provides a semiconductor layer on the conductive layer that becomes the electrode, and then applies the insulating organic polymer layer to all the layers using the tortoise flux method. By providing four layers of gold MI to serve as electrodes, it is possible to easily obtain a method for manufacturing an M-S diode with high performance and stable performance.

なお、上記絶縁性有接高分子層の層厚制御も容易であり
、例えば光センサーおよび光dL変換素子など棟々の電
子部品の製造に有用である。
The layer thickness of the insulating bound polymer layer can be easily controlled, and is useful for manufacturing various electronic components such as optical sensors and optical dL conversion elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なM工Sダイオードの断面図、第2図は
従来のMOSダイオードの断面図、第3図はこの発明の
一実施例によるM工Sダイオードの断面図、第4図は一
般的なショットキー・ダイオードの断面図、第5図はこ
の発明の一実施例のM工Sダイオードと、一般的なショ
ットキー・ダイオードを比較するための電流(1)−1
圧(V)特性図である。 図において、fil 、 +61 Viリード線、(2
)は電極となる金属層、13)は絶縁層、141は半導
体層、(61け電極となる導1層、(7)は810層、
181は81層、191 、 (+a+けり一ド線、(
10jけ工n(4i、極、(11)はポリα−ナフトー
ル層、+121にポリN−メチルビロール膜、(141
にAu電極、(15+ I′iガラス丞板、(161け
比較試料の特性、(171〜(19)は各々この発明の
一実施例によるMISダイオード試料(1)〜13+の
特性である。 なお、図中、同一符号は同一また汀相当部分倉示すO 代理人 大岩増雄 第1図 第2図 第3図 手続補正書(自発) 2、発明の名称 MISダイオードの製造方法 :3゜補正をする者 代表者片山仁へ部 5、補正の対象 明細書の特許請求の範囲の欄 6、補正の内容 明細書の特許請求の範囲を別紙のとおり訂正する。 7、 添付書類の目録 補正後の特許請求の範囲を記載した書面 1通以上 特許請求の範囲 (1)電極となる導電層に半導体層を設ける工程、この
半導体層に電解重合法により絶縁性有機高分子層を設け
る工程、およびこの絶縁性有機高分子層に電極となる金
属層を設ける工程を施すMISダイオードの製造方法。 (2)半導体層がπ−共役系高分子層である特許請求の
範囲第1項記載のMISダイオードの製造方法。 (3)π−共役系高分子層が電解重合法により得られる
特許請求の範囲第2項記載のMISダイオードの製造方
法。 (4)π−共役系高分子がビロールとN−置換ビロール
の共重合体、ピロールのホモポリマー、N −置換ビロ
ールのホモポリマー、ポリチェニレン、ポリアニリン、
ポリフラン、ポリアズレンおよびポリピリジンの内の少
なべとも一種である特許請求の範囲第2項又は第8項記
載のMISダイオードの製造方法。 (5)π−共役系高分子層に電子受容体および電子供与
体の内の一種がドープされている特許請求の範囲第2項
ないし第4項のいずれかに記載のMISダイオードの製
造方法。 (6)絶縁性有機高分子層が、α−ナフトール、β−ナ
フトール、m−キシレノール、2,6−キシレノール、
アクロレイン、PIP′−ジアミノジフェニルメタン、
4,4−チオジアニリン、0−アミノフェノール、フェ
ノールおよびチオフェノールのホモポリマー並びに上記
化合物の内の少なくとも2種のコポリマーの内のいずれ
か一種である特許請求の範囲第1項ないし第5項のいず
れかに記載のMISダイオードの製造方法。
FIG. 1 is a cross-sectional view of a general MOS diode, FIG. 2 is a cross-sectional view of a conventional MOS diode, FIG. 3 is a cross-sectional view of an M-S diode according to an embodiment of the present invention, and FIG. 4 is a cross-sectional view of a conventional MOS diode. A cross-sectional view of a general Schottky diode, FIG.
It is a pressure (V) characteristic diagram. In the figure, fil, +61 Vi lead wire, (2
) is a metal layer that becomes an electrode, 13) is an insulating layer, 141 is a semiconductor layer, (1 conductive layer becomes 61 electrodes, (7) is an 810 layer,
181 is the 81st layer, 191, (+a+cut line, (
10j construction n (4i, pole, (11) is poly α-naphthol layer, +121 is polyN-methylvirol film, (141
Au electrode, (15+ I′i glass plate, (161) characteristics of comparison sample, (171 to (19) are the characteristics of MIS diode samples (1) to 13+, respectively, according to an embodiment of the present invention. , In the figures, the same reference numerals indicate the same or corresponding parts O. Agent: Masuo Oiwa Figure 1 Figure 2 Figure 3 Procedural amendment (voluntary) 2. Title of the invention: Method for manufacturing MIS diodes: 3° Amendment. To Representative Hitoshi Katayama, Part 5, Claims column 6 of the specification to be amended, and the scope of claims of the description of the contents of the amendment, are corrected as shown in the attached document. 7. Patent after amendment to list of attached documents Documents stating the scope of claims: one or more Claims: (1) A step of providing a semiconductor layer on a conductive layer to be an electrode, a step of providing an insulating organic polymer layer on this semiconductor layer by an electrolytic polymerization method, and this insulating layer. A method for manufacturing an MIS diode, which includes a step of providing a metal layer serving as an electrode on a conjugated organic polymer layer. (2) Manufacturing a MIS diode according to claim 1, wherein the semiconductor layer is a π-conjugated polymer layer. Method. (3) A method for manufacturing an MIS diode according to claim 2, wherein the π-conjugated polymer layer is obtained by an electrolytic polymerization method. (4) The π-conjugated polymer is virol and N-substituted virol. copolymers of pyrrole, homopolymers of N-substituted pyrrole, polythenylene, polyaniline,
The method for manufacturing an MIS diode according to claim 2 or 8, wherein the MIS diode is at least one of polyfuran, polyazulene, and polypyridine. (5) The method for manufacturing an MIS diode according to any one of claims 2 to 4, wherein the π-conjugated polymer layer is doped with one of an electron acceptor and an electron donor. (6) The insulating organic polymer layer includes α-naphthol, β-naphthol, m-xylenol, 2,6-xylenol,
Acrolein, PIP'-diaminodiphenylmethane,
Any one of 4,4-thiodianiline, 0-aminophenol, a homopolymer of phenol and thiophenol, and a copolymer of at least two of the above-mentioned compounds. The method for manufacturing the MIS diode described in .

Claims (3)

【特許請求の範囲】[Claims] (1) 電極となる非成層を設ける半専体層ケ設ける工
程、この半導体層に1解重合法によりP3縁性有機晶分
子層を設ける工程、およびこの絶縁性有4婚M1分子層
に電極となる金属@ゲ設ける工程?施すMISダイオー
ドの製造方法。
(1) A step of providing a semi-dedicated layer that provides a non-stratified layer that will serve as an electrode, a step of providing a P3-oriented organic crystal molecular layer on this semiconductor layer by a 1-depolymerization method, and an electrode on this insulating tetragonal M1 molecular layer. The process of providing metal @ge? A method for manufacturing MIS diodes.
(2) 半導体層がπ−共役系−分子1聞である特許請
求の範囲41項記載のM工Sダイオードの製造方法。
(2) The method for manufacturing an M-S diode according to claim 41, wherein the semiconductor layer is a π-conjugated system-molecule.
(3) π−共役系高分子層が亀解覗合法により傅らね
る特許請求の範囲第2項記載のM工Sダイオードの製造
方法。 :4) π−共共役系仕分子ビロールとN −it 榊
ビロールの共電合体、ビロールのホモポリマー、N−t
t 侠ビロールのホモポリマー、ポリチェニレン、ポリ
アニリン、ポリフラン、ポリアズレンおよびポリピリジ
の囚の少なくとも一種である特I+′請求の範囲第2項
又は第3項記載のMISダイオードの製造方法。 (61π−共役系洲分子)t!lIに電子受容体および
電子供与体の内の一種がドープされている特WE 請求
の範囲第2項ないし第4項のいずれかに記載のM工8ダ
イオードの製造方法。 (61絶縁性4f機市分子層が、α−ナフトール、β−
ナフトール、m−キシレノール、2,6−キシレノール
、アクロレイン、P、P’−ジ゛rミノジフェニルメタ
ン、4.4−チオジアニリン、0−アミンフェノール、
フェノールおよびチオフェノールのホモポリマー並びに
上記化合物の内の少なくとも28!のコホリマーの内の
いずれか一種である特許請求の範囲第1項外いし第5項
のいす負かに記載のM工Sダイオードの製造方法。
(3) A method for manufacturing an M-type S diode according to claim 2, wherein the π-conjugated polymer layer is formed by a tortoise method. :4) Co-electropolymer of π-conjugated virole and N-it Sakaki virole, homopolymer of virol, N-t
The method for producing an MIS diode according to claim 2 or 3, wherein the MIS diode is at least one of a homopolymer of virol, polythenylene, polyaniline, polyfuran, polyazulene, and polypyridine. (61π-conjugated molecule) t! A method for manufacturing an M-8 diode according to any one of claims 2 to 4, wherein lI is doped with one of an electron acceptor and an electron donor. (61 insulating 4F machine molecular layer is α-naphthol, β-
Naphthol, m-xylenol, 2,6-xylenol, acrolein, P, P'-diminodiphenylmethane, 4,4-thiodianiline, 0-aminephenol,
Homopolymers of phenol and thiophenol and at least 28 of the above compounds! A method for manufacturing an M-S diode according to any of claims 1 to 5, which is any one of coholimers.
JP59034575A 1984-02-24 1984-02-24 Manufacture of mis diode Granted JPS60178669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59034575A JPS60178669A (en) 1984-02-24 1984-02-24 Manufacture of mis diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59034575A JPS60178669A (en) 1984-02-24 1984-02-24 Manufacture of mis diode

Publications (2)

Publication Number Publication Date
JPS60178669A true JPS60178669A (en) 1985-09-12
JPH0570950B2 JPH0570950B2 (en) 1993-10-06

Family

ID=12418119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59034575A Granted JPS60178669A (en) 1984-02-24 1984-02-24 Manufacture of mis diode

Country Status (1)

Country Link
JP (1) JPS60178669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449226A1 (en) * 1990-03-27 1991-10-02 Seiko Epson Corporation Non-linear resistor switching element, active matrix liquid crystal panel using the same, and method for manufacturing the non-linear resistor switching element
FR2821575A1 (en) * 2001-03-02 2002-09-06 Commissariat Energie Atomique METHOD FOR LOCALIZED ORGANIC GRAFTING WITHOUT MASK ON CONDUCTIVE OR SEMICONDUCTOR PROPERTIES OF COMPOSITE SURFACES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107686A (en) * 1981-12-21 1983-06-27 Nippon Telegr & Teleph Corp <Ntt> Macromolecular semiconductor variable capacity element
JPS58206612A (en) * 1982-05-27 1983-12-01 Showa Denko Kk Production of acetylene high-polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107686A (en) * 1981-12-21 1983-06-27 Nippon Telegr & Teleph Corp <Ntt> Macromolecular semiconductor variable capacity element
JPS58206612A (en) * 1982-05-27 1983-12-01 Showa Denko Kk Production of acetylene high-polymer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449226A1 (en) * 1990-03-27 1991-10-02 Seiko Epson Corporation Non-linear resistor switching element, active matrix liquid crystal panel using the same, and method for manufacturing the non-linear resistor switching element
FR2821575A1 (en) * 2001-03-02 2002-09-06 Commissariat Energie Atomique METHOD FOR LOCALIZED ORGANIC GRAFTING WITHOUT MASK ON CONDUCTIVE OR SEMICONDUCTOR PROPERTIES OF COMPOSITE SURFACES
WO2002070148A1 (en) * 2001-03-02 2002-09-12 Commissariat A L'energie Atomique Method for mask-free localised organic grafting on conductive or semiconductive portions of composite surfaces
JP2004524149A (en) * 2001-03-02 2004-08-12 コミツサリア タ レネルジー アトミーク Method for mask-free local grafting of organics onto conductive or semiconductive parts of composite surfaces
KR101017493B1 (en) 2001-03-02 2011-02-25 꼼미사리아 아 레네르지 아또미끄 에 오 에네르지 알떼르나띠브스 Method for mask-free localised organic grafting on conductive or semiconductive portions of composite surfaces
JP4667715B2 (en) * 2001-03-02 2011-04-13 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for locally grafting organic matter mask-free onto conductive or semiconductive portions of a composite surface

Also Published As

Publication number Publication date
JPH0570950B2 (en) 1993-10-06

Similar Documents

Publication Publication Date Title
US5107308A (en) Field-effect transistor
CN101151691B (en) Solid electrolytic capacitor element, method for manufacturing same, and solid electrolytic capacitor
EP1798785B1 (en) Transparent Polymer Electrode for Electro-Optical Devices
US5946551A (en) Fabrication of thin film effect transistor comprising an organic semiconductor and chemical solution deposited metal oxide gate dielectric
KR100303934B1 (en) Thin-film field-effect transistor with organic semiconductor requiring low operating voltages
US4785380A (en) Solid electrolytic capacitor, and method of manufacturing same
EP1505664B1 (en) Transparent electrode for optoelectronic devices
EP0617442B1 (en) Solid electrolytic capacitor and method of manufacturing the same
JP4315038B2 (en) Solid electrolytic capacitor
DE3811415A1 (en) ELECTROLYTE CAPACITOR WITH SOLID ELECTROLYTE
KR100975729B1 (en) Thin-Layer Chemical Transistor and Making Method
WO2004004022A1 (en) Reduction in the contact resistance in organic field effect transistors with palladium contacts by the use of nitriles and isonitriles
KR20020034873A (en) Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
Ofer et al. Potential dependence of the conductivity of polyacetylene: finite potential windows of high conductivity
JPS60178669A (en) Manufacture of mis diode
EP2040317B1 (en) Solution processed organic device having an improved electrode
JPS62118511A (en) Manufacture of solid electrolytic capacitor
JPS611060A (en) Manufacture of mis diode
JPS62118509A (en) Solid electrolytic capacitor
US3766443A (en) High molecular weight semi-solid electrolytic capacitor
JPH11307386A (en) Capacitor and its manufacture
JPS61163658A (en) Manufacture of mis diode
JP2632944B2 (en) Solid electrolytic capacitors
JPS61107723A (en) Manufacture of junction element
CN1823397B (en) Method for producing solid electrolytic capacitor