JPS60178617A - Molecular beam source - Google Patents

Molecular beam source

Info

Publication number
JPS60178617A
JPS60178617A JP3421484A JP3421484A JPS60178617A JP S60178617 A JPS60178617 A JP S60178617A JP 3421484 A JP3421484 A JP 3421484A JP 3421484 A JP3421484 A JP 3421484A JP S60178617 A JPS60178617 A JP S60178617A
Authority
JP
Japan
Prior art keywords
heater
molecular beam
beam source
crucible
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3421484A
Other languages
Japanese (ja)
Inventor
Kunihiro Takahashi
邦弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3421484A priority Critical patent/JPS60178617A/en
Publication of JPS60178617A publication Critical patent/JPS60178617A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To inhibit degassing from a heater for heating a crucible of a molecular beam source by burying the heater in an insulating high-temperature material or completely coating the surface of the heater by evaporating the material on the heater. CONSTITUTION:Structure in which a heater 3 is held by insulating high-temperature materials 12, 13 is formed. Or the heater 3 is wound on the inside of a material 14 so as to be brought into contact with the inside of the material 14, and a material 15 is evaporated on the heater 3 to coat the surface thereof. Since a radiation shielding plate and a support for the shielding plate can be installed adjoined to the heater, the outer diameter of a molecular beam source can be reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は分子線エピタキシャル成長装置に係り、特に分
子線源のヒータの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a molecular beam epitaxial growth apparatus, and particularly to the structure of a heater for a molecular beam source.

〔発明の背景〕[Background of the invention]

分子線エピタキシ装置はソース物質を超高真空中で高温
に加熱し分子線状で飛ばし、基板に薄膜を蒸着する技術
である。従って、加熱に用いるヒータは高温になり、ヒ
ータからの脱ガスがソース物質や基板表面を汚染して、
成長した膜の品質を低下させる原因となる5また、分子
線源は少ないスパースの中にヒータ等を組み込むため、
ヒータと他の物質との接触事故が起りやすい。従って、
脱ガスが少なく、接触しない様なヒータ構造が重要にな
る。
Molecular beam epitaxy equipment is a technology that deposits a thin film onto a substrate by heating a source material to high temperatures in an ultra-high vacuum and ejecting it in the form of molecular beams. Therefore, the heater used for heating becomes high temperature, and the outgassing from the heater contaminates the source material and the substrate surface.
In addition, since the molecular beam source incorporates a heater etc. into a sparse space, which causes a decrease in the quality of the grown film,
Accidents that come into contact with the heater and other substances are likely to occur. Therefore,
It is important to have a heater structure that has minimal outgassing and no contact.

従来の分子線源の構成を第1図、第2図に示す。The configuration of a conventional molecular beam source is shown in FIGS. 1 and 2.

まず第1図では、ソース物!R1を入れたルツボ2は支
柱5で保持されている。ルツボ2の加熱はヒータ3によ
って行なわれ、ヒータ3の外側に輻射熱シールド板6,
7がシールド板支持物9,1゜で支持され、その外側は
外壁8でおおわれている。
First of all, in Figure 1, it's a sauce item! The crucible 2 containing R1 is held by a support 5. The crucible 2 is heated by a heater 3, and a radiant heat shield plate 6 is placed on the outside of the heater 3.
7 is supported by a shield plate support 9,1°, and its outside is covered with an outer wall 8.

従来のヒータ3は、むき出しで使われることが多く、ヒ
ータ3からの脱ガスは、ソース物質lや基板面の蒸着膜
を汚染しやすい構造になっていた。
The conventional heater 3 is often used in an exposed state, and has a structure in which degassing from the heater 3 tends to contaminate the source material 1 and the deposited film on the substrate surface.

また従来例の第2図では、一応ヒータ・カバー11でi
Eおわれているが、ヒータ3の、リード線の六等から脱
ガスはでてくる。第2図では、ヒータ・力/<−11が
ヒータ3に近接して設置されることになり、ヒータ3と
の接触事故をおこす危険がある。
In addition, in FIG. 2 of the conventional example, the heater cover 11 is
EAlthough it is closed, degassing comes out from the 6th grade of the lead wire of the heater 3. In FIG. 2, the heater force/<-11 is installed close to the heater 3, and there is a risk of accidental contact with the heater 3.

〔発明の目的〕[Purpose of the invention]

本発明の目的は成長薄膜の高品質化を達成するために、
分子線源のヒータからの脱ガスを抑える分子線源を提供
することにある。
The purpose of the present invention is to improve the quality of grown thin films by:
An object of the present invention is to provide a molecular beam source that suppresses degassing from a heater of the molecular beam source.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、ルツボ加熱用のヒ
ータを絶縁性の高温材料に埋め込むか、または前記材料
をヒータに蒸着してヒータ表面を完全におおう構造にし
たものである。
In order to achieve the above object, the present invention has a structure in which a heater for heating a crucible is embedded in an insulating high-temperature material, or the material is vapor deposited on the heater to completely cover the surface of the heater.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第3〜4図に本発明の一実施例を示す。第3図の実施例
は絶縁性の高温材料12,13でヒータ3をはさみ込む
構造であり、第4図の実施例は上記材料14の内側にヒ
ータ3を接する様に巻き、その上で上記材料15を蒸着
し、ヒータ表面をおおったものである。上述した第4図
は高温材料の内側にヒータ3を巻いた構造であるが、上
記材料の外側に接する様にヒータ3を巻き、その上でヒ
ータ表面を蒸着等によっておおうこともできる。また、
第3、第4図の実施例で示したヒータ3は線状のもので
あるが、箔状のヒータを用いてもよい。
An embodiment of the present invention is shown in FIGS. 3 and 4. The embodiment shown in FIG. 3 has a structure in which the heater 3 is sandwiched between insulating high-temperature materials 12 and 13, and the embodiment shown in FIG. Material 15 is deposited to cover the heater surface. Although the above-mentioned FIG. 4 shows a structure in which the heater 3 is wound inside the high-temperature material, it is also possible to wrap the heater 3 so as to contact the outside of the material and cover the surface of the heater thereon by vapor deposition or the like. Also,
Although the heater 3 shown in the embodiments of FIGS. 3 and 4 is linear, a foil heater may also be used.

以上述べた実施例により次のような効果が得られる。The embodiment described above provides the following effects.

(1)ヒータ線が絶縁材料で表面をおおわれているため
ヒータの絶縁を保ったまま輻射シールド板や輻射シール
ド板支持物をヒータに接近して設置することができ、従
って、分子線源の外径を小さくすることができる。分子
線源の外径を小さくできることにより、同じ大きさの成
長チャンバーであれば分子線源の本数をより多く取り付
けることができ、また、同じ本数の分子線源を設置する
場合では成長チャンバーの外径を小さくできる。
(1) Since the surface of the heater wire is covered with an insulating material, the radiation shield plate or radiation shield plate support can be installed close to the heater while maintaining the insulation of the heater. The diameter can be made smaller. By making the outer diameter of the molecular beam source smaller, it is possible to install more molecular beam sources in the same size growth chamber. The diameter can be made smaller.

(2)ヒータ表面が高温材料でおおわれているため一般
に使われているTa線に代り安価な材料を使うことがで
きる。
(2) Since the heater surface is covered with a high-temperature material, an inexpensive material can be used in place of the commonly used Ta wire.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明により、ヒータからの脱ガ
スを完全に抑えることができ、その結果、高品質の半導
体薄膜を作ることができる。
As explained above, according to the present invention, outgassing from the heater can be completely suppressed, and as a result, a high quality semiconductor thin film can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は従来の分子線源の断面図、第3゜4図は本
発明の分子線源の実施例を示す断面図である。 1・・・ソース物質、2・・・ルツボ、3・・・ヒータ
、4・・・熱電対、訃・・ルツボの支柱、6,7・・・
輻射シールド板、8・・・外壁、9,10・・・シール
ド板支持物、ti・・・ヒータカバー、12,13,1
4,15・・・絶縁性の高温材料。 第 1 (2) 茅2目 43 (2) 3
1 and 2 are cross-sectional views of a conventional molecular beam source, and FIGS. 3-4 are cross-sectional views showing an embodiment of the molecular beam source of the present invention. 1... Source material, 2... Crucible, 3... Heater, 4... Thermocouple, Death... Crucible support, 6, 7...
Radiation shield plate, 8... Outer wall, 9, 10... Shield plate support, ti... Heater cover, 12, 13, 1
4,15...Insulating high temperature material. 1st (2) Kaya 2nd eye 43 (2) 3

Claims (1)

【特許請求の範囲】[Claims] ソース物質を入れるためのルツボ、ルツボを加熱するた
めのヒータ、輻射熱をさえぎるためのシールド板、加熱
されたルツボの温度を測定する熱電列、ルツボを支持す
るための支柱および外壁とから成る分子線源において、
前記ヒータの表面を絶縁性の高温材料でおおったことを
特徴とする分子線源。
A molecular beam consisting of a crucible for containing a source material, a heater for heating the crucible, a shield plate for blocking radiant heat, a thermoelectric column for measuring the temperature of the heated crucible, a support and an outer wall for supporting the crucible. At the source,
A molecular beam source characterized in that the surface of the heater is covered with an insulating high temperature material.
JP3421484A 1984-02-27 1984-02-27 Molecular beam source Pending JPS60178617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3421484A JPS60178617A (en) 1984-02-27 1984-02-27 Molecular beam source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3421484A JPS60178617A (en) 1984-02-27 1984-02-27 Molecular beam source

Publications (1)

Publication Number Publication Date
JPS60178617A true JPS60178617A (en) 1985-09-12

Family

ID=12407901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3421484A Pending JPS60178617A (en) 1984-02-27 1984-02-27 Molecular beam source

Country Status (1)

Country Link
JP (1) JPS60178617A (en)

Similar Documents

Publication Publication Date Title
US3678889A (en) Reflector assembly for reflecting the vapors of high temperature volatile materials
KR910001911A (en) Film Forming Apparatus and Method
US3186880A (en) Method of producing unsupported epitaxial films of germanium by evaporating the substrate
US3666553A (en) Method of growing compound semiconductor films on an amorphous substrate
JPS60178617A (en) Molecular beam source
US3213825A (en) Vacuum deposition apparatus
CA1056658A (en) Method of vapor deposition
JPH03183778A (en) Method and device for forming deposited film
JP3428053B2 (en) Heater for producing oxide superconducting tape and method for producing oxide superconducting tape
JPS6130028B2 (en)
JP3095740B2 (en) Evaporator for organic compounds
JPS61220414A (en) Apparatus for generating molecular beam
Kerr et al. Antimony passivation of molecular‐beam epitaxially grown GaAs surfaces
JP3323522B2 (en) Molecular beam cell
JPH0619569Y2 (en) Molecular beam cell PBN crucible
JPH02204391A (en) Crucible for molecular beam source
JPH07116591B2 (en) Opaque thin film manufacturing method
US3001892A (en) Evaporation method and apparatus
JPS6023992Y2 (en) Zinc oxide thin film production equipment
JPS61104070A (en) Formation of thin film
JPH04359508A (en) Molecular-beam source container
JP2825974B2 (en) Molecular beam source container
Howson et al. Getter evaporation of pure thin films of indium antimonide
JPS62196814A (en) Substrate holder for molecular beam epitaxy
JPH03232530A (en) Internal diffusion thin film type getter material