JPS6017812B2 - Method for recovering cobalt from an aqueous solution containing cobalt ions - Google Patents

Method for recovering cobalt from an aqueous solution containing cobalt ions

Info

Publication number
JPS6017812B2
JPS6017812B2 JP3784278A JP3784278A JPS6017812B2 JP S6017812 B2 JPS6017812 B2 JP S6017812B2 JP 3784278 A JP3784278 A JP 3784278A JP 3784278 A JP3784278 A JP 3784278A JP S6017812 B2 JPS6017812 B2 JP S6017812B2
Authority
JP
Japan
Prior art keywords
cobalt
aqueous solution
ions
iron
solution containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3784278A
Other languages
Japanese (ja)
Other versions
JPS54130433A (en
Inventor
泰二郎 岡部
昭嗣 奥脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP3784278A priority Critical patent/JPS6017812B2/en
Publication of JPS54130433A publication Critical patent/JPS54130433A/en
Publication of JPS6017812B2 publication Critical patent/JPS6017812B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は簡単な設備と操作とによってコバルトイオンを
含む水溶液からセメンテーションによってコバルトを高
収率で回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering cobalt in high yield by cementation from an aqueous solution containing cobalt ions using simple equipment and operations.

コバルトイオンを含む水溶液は、ラテラィト鉱の硫酸浸
出、マンガンノジュールの硫酸浸出や塩酸浸出などの湿
式処理、廃触媒の処理などの際に得られる。これらの溶
液からコバルトを回収する方法としては次のごとき硫化
物沈澱法、各種の抽出試薬を用いる溶媒抽出法などが提
案されているが、それぞれ欠点を有している。【1)
硫化物沈澱法は一般に低温で生成する硫化物沈澱が微細
で炉過いこくいため、オートクレープを用い160qo
以上の高温で沈澱操作を行なうので「大がかりな設備を
必要とする。
Aqueous solutions containing cobalt ions are obtained during wet processing such as sulfuric acid leaching of laterite ore, sulfuric acid leaching or hydrochloric acid leaching of manganese nodules, and during processing of waste catalysts. As methods for recovering cobalt from these solutions, the following sulfide precipitation methods and solvent extraction methods using various extraction reagents have been proposed, but each has its own drawbacks. [1]
In the sulfide precipitation method, the sulfide precipitate that is generated at low temperatures is generally fine and difficult to pass through the furnace.
Because the precipitation operation is carried out at such high temperatures, ``large-scale equipment is required.

■ 溶媒抽出法は電解採取法と組合わせて高純度金属を
得ることができるので、近年各種非鉄金属の湿式製錬法
の主流となってきたが、この方法は複雑な設備を運転す
る高度な操業技術を必要とするのでL金属濃度の低い場
合や処理量の少ない場合には必ずしも最適とはいえない
■ Since solvent extraction can be combined with electrowinning to obtain high-purity metals, it has become the mainstream method for hydrometallurgical smelting of various nonferrous metals in recent years. Since it requires operational technology, it is not necessarily optimal when the L metal concentration is low or when the amount of treatment is small.

本発明者らは簡単な設備と操作とにより水溶液中のコバ
ルトイオンの回収する方法について種々研究した結果、
金属鉄を用い水溶液の温度とpHなどの条件を制御する
ことにより、コバルトを定量的にセメンテーションでき
ることを見出し、本発明に到達した。すなわち、本発明
の要旨とするところは、コバルトイオンを含む水溶液に
不活性ガス雰囲気下で温度60qo以上でpH5.5以
下において金属鉄を添加してコバルトのセメンテーショ
ンを行なわせることを特徴とするコバルトイオンを含む
水溶液からのコバルトの回収方法にある。次に、本発明
に到達した経過について述べる。鉄によるコバルトイオ
ンのセメンテーションは平衡論的には十分可能であるが
、一般にコバルトイオンを含む水溶液を加溢し、鉄を加
えてもコバルトイオンのセメンテーションは少ししか進
行しない。これは、通常の金属鉄の表面は酸化物に覆わ
れているものであり、純度が高く、表面の酸化物皮膜が
薄い場合でも、水溶液中に入れると溶存酸素により、た
だちに厚い酸化物皮膜が形成され、この酸化物皮膜がコ
バルトイオンと素地金属との接触を妨げるためによるも
のである。また、溶存酸素が徴量の場合でも、水溶液の
pHが高いと、金属鉄は高温の水と反応してその表面に
は酸化物皮膜が形成され、コバルトイオンと素地金属と
の十分な接触が妨げられるので、セメンテーションはや
はり進行し‘こくい。以上要するに、平衡論的には十分
可能である鉄によるコバルトイオンのセメンテーション
を進行させるために必要な条件は加えた金属鉄の表面を
水溶液中で常に新鮮な状態に保ち、コバルトイオンと素
地金属の金属鉄が反応してセメンテーションが起こるよ
うにすることである。このために、本発明は次のごとき
工業的手段を組み合わせるものである。‘1} 漆存酸
素による酸化皮膜の生成を極力防止するために不活性ガ
ス雰囲気とする。
The present inventors have conducted various studies on methods for recovering cobalt ions in aqueous solutions using simple equipment and operations.
We have discovered that cobalt can be quantitatively cemented by controlling conditions such as the temperature and pH of an aqueous solution using metallic iron, and have arrived at the present invention. That is, the gist of the present invention is characterized in that metal iron is added to an aqueous solution containing cobalt ions in an inert gas atmosphere at a temperature of 60 qo or more and a pH of 5.5 or less to cause cobalt cementation. A method for recovering cobalt from an aqueous solution containing cobalt ions. Next, the progress that led to the present invention will be described. Cementation of cobalt ions by iron is fully possible in equilibrium terms, but generally, even if an aqueous solution containing cobalt ions is flooded and iron is added, cementation of cobalt ions will proceed only slightly. This is because the surface of ordinary metallic iron is covered with oxides, and even if it is highly pure and the oxide film on the surface is thin, when placed in an aqueous solution, dissolved oxygen will immediately form a thick oxide film. This is because this oxide film is formed and prevents contact between cobalt ions and the base metal. Furthermore, even if dissolved oxygen is present, if the pH of the aqueous solution is high, metallic iron will react with high-temperature water and an oxide film will be formed on its surface, preventing sufficient contact between cobalt ions and the base metal. Because of the obstruction, cementation still progresses slowly. In summary, the conditions necessary to promote the cementation of cobalt ions by iron, which is fully possible in terms of equilibrium theory, are to keep the surface of the added metal iron in a fresh state in an aqueous solution, and to bond cobalt ions and base metal. The purpose is to allow the metal iron to react and cementation to occur. To this end, the present invention combines the following industrial measures. '1} Create an inert gas atmosphere to prevent the formation of an oxide film due to oxygen present in the lacquer.

不活性ガスとしては窒素、アルゴン、ヘリウム等が好適
であり、特に窒素はコスト的に有利である。不活性ガス
の圧は特定しない。{2) セメンテーションの可能な
範囲で酸化物皮膜の形成を防止し、あるいは形成された
酸化物皮膜を溶解するために、硫酸などの鍵酸を添加し
ながら水溶液のpHを5.5以下、好ましくは5〜3の
範囲に保持する。
Nitrogen, argon, helium, etc. are suitable as the inert gas, and nitrogen is particularly advantageous in terms of cost. The pressure of the inert gas is not specified. {2) In order to prevent the formation of an oxide film within the range where cementation is possible or to dissolve the formed oxide film, the pH of the aqueous solution is adjusted to 5.5 or less while adding a key acid such as sulfuric acid. Preferably it is kept in the range of 5-3.

この場合、コバルトイオンを含む水溶液を加渇し、その
pHを低く保つと、セメンテーションはすみやかに進行
するが、その反面鉄の酸に対する溶解速度も急上昇し、
その消費量がいたずらに増加するようになるので、必要
最低限度の鉄の使用により効果的なセメンテーションが
行なわれるためには上記のpHの範囲が要求されるので
ある。さらに、反応温度としては、温度の上昇とともに
セメンテーションの速度は増大するが、上記{1},‘
2}の条件が満たされるならば、6000以上、好まし
くは70〜90ooの範囲である。
In this case, if the aqueous solution containing cobalt ions is dehydrated and its pH is kept low, cementation will proceed quickly, but on the other hand, the dissolution rate of iron in acid will also increase rapidly.
Since the amount of iron consumed increases unnecessarily, the above pH range is required in order to achieve effective cementation using the minimum necessary amount of iron. Furthermore, as for the reaction temperature, the cementation rate increases as the temperature rises, but the above {1},'
2} is satisfied, it is 6000 or more, preferably in the range of 70 to 90oo.

本発明で使用される置換用金属鉄としては各種の鉄粉が
使用できる。
Various iron powders can be used as the replacement metal iron used in the present invention.

たとえば、電解鉄粉は純度が高く、反応性も最もよいが
、高価であるので実用的ではない。還元鉄粉は純度にお
いて電解鉄粉より劣るが、十分な反応性をもち、安価で
あるので最も実用的である。鉄暦も使用できるが、鉄粉
より比表面積が非常に小さく、反応性が劣るので前記鉄
粉の場合より苛酷な条件下で使用する必要がある。これ
ら鉄粉の使用量は理論量の2〜3倍量で十分である。他
の金属イオンの共存については、その金属イオンがコバ
ルトイオンより卑の電位をもつものであれば、原理的に
も、実際においてもほとんどが何ら悪い影響を与えるも
のではない。
For example, electrolytic iron powder has high purity and the best reactivity, but it is expensive and therefore impractical. Although reduced iron powder is inferior in purity to electrolytic iron powder, it is the most practical because it has sufficient reactivity and is inexpensive. Iron powder can also be used, but since it has a much smaller specific surface area and poorer reactivity than iron powder, it needs to be used under harsher conditions than the iron powder. The amount of iron powder to be used is 2 to 3 times the theoretical amount. Regarding the coexistence of other metal ions, as long as the metal ions have a more base potential than cobalt ions, most of them do not have any adverse effects either in principle or in practice.

しかしながらアルミニウムイオンは例外である。このも
のは加水分解して酸性を示し、そのため鉄を溶解し、そ
の表面にアルミニウムの水酸化物皮膜を形成してコバル
トイオンと素地金属との接触を妨げる。したがって、ア
ルミニウムイオンが多量に共存する場合には、あらかじ
めある程度除去しておく必要がある。また、コバルトイ
オンより貴の電位をもつ銅やニッケルイオンが共存する
場合は、これらはコバルトとともに析出沈澱する。銅が
共存する場合はむしろコバルトのセメンテーションは促
進される。鉄(m)イオンの電位は非常に貴であり、そ
のため、鉄(0)イオンに還元されて金属鉄を消費する
のでアルミニウムと同様、あらかじめ除去しておくこと
が望ましい。本発明は、以上のように、簡単な設備と操
作とによってコバルトイオンを含む水溶液からセメンテ
ーションによってコバルトを高収率で回収する方法を提
供するもので、その工業的価値は大きい。
However, aluminum ions are an exception. This material hydrolyzes and becomes acidic, thereby dissolving iron and forming an aluminum hydroxide film on its surface, which prevents contact between cobalt ions and the base metal. Therefore, if a large amount of aluminum ions coexist, it is necessary to remove them to some extent in advance. Furthermore, if copper or nickel ions having a more noble potential than cobalt ions coexist, these will precipitate together with cobalt. If copper coexists, cobalt cementation is rather promoted. The potential of iron (m) ions is very noble, and therefore, it is reduced to iron (0) ions and consumes metallic iron, so it is desirable to remove them in advance like aluminum. As described above, the present invention provides a method for recovering cobalt in high yield by cementation from an aqueous solution containing cobalt ions using simple equipment and operations, and has great industrial value.

次に、本発明を実施例によってさらに具体的に説明する
が、本発明はその要旨を超えない限り以下の実施例に限
定されるものではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例 1 硫酸コバルト水溶液(Co濃度2夕/そ)1夕を丸底フ
ラスコに取り、300〜40仇pmの速度でかきまぜな
がら、窒素ガスを通じ90q0の恒塩槽内に設置し、還
元鉄粉(一150メッシュ、純度98.5%)4.85
夕を投入後、IN硫酸を添加して水溶液のpHを4に保
ち、10分間反応させたところ、水溶液のコバルト濃度
は0.03夕/そに低下した。
Example 1 An aqueous solution of cobalt sulfate (Co concentration 2/2) was placed in a round bottom flask, stirred at a speed of 300 to 40 pm, nitrogen gas was passed through the flask, and the flask was placed in a constant salt bath of 90 q0. (150 mesh, purity 98.5%) 4.85
After the cobalt concentration was added, IN sulfuric acid was added to maintain the pH of the aqueous solution at 4, and the reaction was allowed to proceed for 10 minutes, and the cobalt concentration of the aqueous solution was reduced to 0.03 cobalt/so.

実施例 2硫酸コバルトおよび硫酸ニッケルの混合水溶
液(CoおよびNi濃度それぞれ2夕/夕)1〆を丸底
フラスコに取り、実施例1と同一の条件下で同様に操作
して還元鉄粉9.70夕を投入し、水溶液のpHを5に
保ち、10分間反応させたところ、コバルトおよびニッ
ケルの濃度はそれぞれ0.035および0.013夕/
そに低下した。
Example 2 A mixed aqueous solution of cobalt sulfate and nickel sulfate (Co and Ni concentrations 2 nights/night each) was placed in a round bottom flask and operated in the same manner as in Example 1 to obtain reduced iron powder 9. When the pH of the aqueous solution was kept at 5 and the reaction was allowed to proceed for 10 minutes, the concentrations of cobalt and nickel were 0.035 and 0.013/2, respectively.
It declined.

さらに、反応時間20分においては、コバルトおよびニ
ッケルの濃度はそれぞれ0.010および0.001タ
ノそまで低下し、両者ともほぼ完全に沈澱した。鉄粉の
溶解量は反応時間10分および20分においてそれぞれ
4.44夕および5.01夕であり、理論量のそれぞれ
1.18倍および1.32倍であった。実施例 3 硫酸コバルト、硫酸鋼および硫酸ニッケルの混合水溶液
(Co,CuおよびNi濃度それぞれ2タノそ)1〆を
丸底フラスコに取り、実施例1と同一の条件下で同機に
操作して還元鉄粉12.50夕を投入して、pHを4に
保ち10分間反応させたところ、コバルト、ニッケルお
よび銅はほぼ完全に沈澱した。
Further, at a reaction time of 20 minutes, the concentrations of cobalt and nickel decreased to 0.010 and 0.001%, respectively, and both were almost completely precipitated. The amount of iron powder dissolved was 4.44 hours and 5.01 hours at reaction times of 10 minutes and 20 minutes, respectively, which were 1.18 times and 1.32 times the theoretical amount, respectively. Example 3 A mixed aqueous solution of cobalt sulfate, steel sulfate, and nickel sulfate (Co, Cu, and Ni concentrations of 2 tons each) was placed in a round bottom flask and reduced by operating the same machine under the same conditions as Example 1. When 12.50 tons of iron powder was added and reacted for 10 minutes while keeping the pH at 4, cobalt, nickel, and copper were almost completely precipitated.

Claims (1)

【特許請求の範囲】[Claims] 1 コバルトイオンを含む水溶液に不活性ガス雰囲気下
で温度60℃以上でpH5.5以下において金属鉄を添
加してコバルトのセメンテーシヨンを行なわせることを
特徴とするコバルトイオンを含む水溶液からのコバルト
の回収方法。
1. Cobalt from an aqueous solution containing cobalt ions, which is characterized by cementing cobalt by adding metallic iron to the aqueous solution containing cobalt ions in an inert gas atmosphere at a temperature of 60° C. or higher and a pH of 5.5 or lower. collection method.
JP3784278A 1978-03-31 1978-03-31 Method for recovering cobalt from an aqueous solution containing cobalt ions Expired JPS6017812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3784278A JPS6017812B2 (en) 1978-03-31 1978-03-31 Method for recovering cobalt from an aqueous solution containing cobalt ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3784278A JPS6017812B2 (en) 1978-03-31 1978-03-31 Method for recovering cobalt from an aqueous solution containing cobalt ions

Publications (2)

Publication Number Publication Date
JPS54130433A JPS54130433A (en) 1979-10-09
JPS6017812B2 true JPS6017812B2 (en) 1985-05-07

Family

ID=12508776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3784278A Expired JPS6017812B2 (en) 1978-03-31 1978-03-31 Method for recovering cobalt from an aqueous solution containing cobalt ions

Country Status (1)

Country Link
JP (1) JPS6017812B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279097U (en) * 1988-12-05 1990-06-18

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100253915B1 (en) * 1997-09-04 2000-04-15 윤덕용 Method for manufacturing cobalt metal using nitrogen reducing agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279097U (en) * 1988-12-05 1990-06-18

Also Published As

Publication number Publication date
JPS54130433A (en) 1979-10-09

Similar Documents

Publication Publication Date Title
JP4874268B2 (en) Method for producing titanium
US5304359A (en) Dissolution of platinum group metals from materials containing said metals
CA2745933A1 (en) Method for thiosulfate leaching of precious metal-containing materials
AU2012250290B1 (en) Process for recovering valuable metals from precious metal smelting slag
US4218240A (en) Method for producing cobaltic hexammine compounds and cobalt metal powder
CN103014352A (en) Method for smelting and extracting platinum metal from alumina-supported petrochemical catalyst
CN108588425B (en) Treatment method of cobalt-nickel metallurgy wastewater slag
CN112695200B (en) Method for recovering selenium, gold and silver from copper anode slime
CN113444886B (en) Valuable element leaching and recycling method for copper smelting smoke dust
Shamsuddin Metal recovery from scrap and waste
CN101994013A (en) Copper scum smelting process
US4423011A (en) Selective recovery of base metals and precious metals from ores
Zhang et al. Separation of As and Bi and enrichment of As, Cu, and Zn from copper dust using an oxidation-leaching approach
JP5530195B2 (en) Method for recovering copper from copper-containing material
Zhang et al. Two-stage leaching of manganese and silver from manganese–silver ores by reduction with calcium sulfide and oxidation with copper (II)
Haver et al. Recovering elemental sulfur from nonferrous minerals: Ferric chloride leaching of chalcopyrite concentrate
JPS6017812B2 (en) Method for recovering cobalt from an aqueous solution containing cobalt ions
CN104032145B (en) The method of a kind of extraction and isolation Ag, Cu from flotation of silver concentrate
CN1043787C (en) Technical process for extracting valuable metal from gold slime
US3849269A (en) Processing ores containing nickel and copper oxides
US5082638A (en) Process of recovering non-ferrous metal values, especially nickel, cobalt, copper and zinc, by using melt and melt coating sulphation, from raw materials containing said metals
US4030917A (en) Hydrometallurgical processing of metal sulfides
CN114014373A (en) Process method for producing carbonyl nickel powder and carbonyl iron powder from nickel iron particles
KR101585777B1 (en) Method for multi-step reduction of low grade nickel ore and concentration method in nickel recovery from low grade nickel ore using the same
US4497659A (en) Production of metals with low selenium contents