JPS60177809A - Drill - Google Patents

Drill

Info

Publication number
JPS60177809A
JPS60177809A JP3367184A JP3367184A JPS60177809A JP S60177809 A JPS60177809 A JP S60177809A JP 3367184 A JP3367184 A JP 3367184A JP 3367184 A JP3367184 A JP 3367184A JP S60177809 A JPS60177809 A JP S60177809A
Authority
JP
Japan
Prior art keywords
drill
cutting edge
cutting
angle
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3367184A
Other languages
Japanese (ja)
Other versions
JPS6260202B2 (en
Inventor
Yoshikatsu Mori
良克 森
Yoshio Doi
土肥 嘉夫
Hideo Fukagawa
深河 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3367184A priority Critical patent/JPS60177809A/en
Publication of JPS60177809A publication Critical patent/JPS60177809A/en
Publication of JPS6260202B2 publication Critical patent/JPS6260202B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/24Overall form of drilling tools
    • B23B2251/241Cross sections of the diameter of the drill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves
    • B23B2251/406Flutes, i.e. chip conveying grooves of special form not otherwise provided for

Abstract

PURPOSE:To improve the strength of drill as much as possible by setting the diameter of web thickness section in the range of 25-35% of drill diameter while the groove width ratio in the range of 0.4:1-0.8:1 thereby suppressing increase of cutting resistance and deterioration of chip discharge function. CONSTITUTION:In the cutter end face direct-view profile, the radial rake angle of cutter positioned at least 2/3 of drill diameter to the outercircumference is set to -5 deg.- positive angle. The strength of drill is improved through increase of web thickness ratio and decrease of groove width ratio. Increase of cutting resistance is suppressed through increase of radial rake angle theta2 of cutter while deterioration of chip discharge function is suppressed through decrease of relative distance.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は高速度鋼製ドリルに係り、特に、切削抵抗の増
大および切屑の排出機能の低下を抑制しつつ強度を可及
的に高めることができるドリルに関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a high-speed steel drill, and in particular, to a drill made of high-speed steel, and in particular, to a drill made of high-speed steel, which is capable of increasing the strength as much as possible while suppressing an increase in cutting resistance and a decrease in chip evacuation function. This is about a drill that can be done.

[発明の技術的背景とその問題点] 一般鋼材や鋳鉄などの2穿孔作業には、従来から高速度
鋼製ドリルが使用されてきた。元来、ドリルは穿孔によ
って生成した切屑を自らの溝部を通して孔の外部へ排出
しながら進行していくものである。この穿孔作業が効率
良く行なわれるためには、切削抵抗が小さいことと、切
屑の排出が順調に行なわれることとが要求され、しかも
切屑の排出の良し悪しは切削抵抗の増減にも影響を及ぼ
す。
[Technical background of the invention and its problems] High-speed steel drills have traditionally been used for double-drilling operations in general steel materials, cast iron, and the like. Originally, a drill advances while discharging chips generated by drilling to the outside of the hole through its own groove. In order for this drilling work to be performed efficiently, it is required that the cutting resistance be small and that the chips be discharged smoothly, and the quality of the chip discharge also affects the increase or decrease of the cutting resistance. .

殊に、穿孔深さが深くなるほど切削抵抗の増大は顕倍と
なる。
In particular, the increase in cutting resistance becomes more significant as the drilling depth increases.

またドリルは、これに作用する切削抵抗に対して十分に
耐え得る強度が要求される。ところが、切屑の排出機能
を高めるべく溝部の面積を大きくすると、芯厚部の面積
が小さくなり、切削抵抗、特にスラストが必然的に小さ
くなるのであるが、その反面、強度が不足するというジ
レンマを有し、これらの関係をうまく調和させな(プれ
ばならない。
Further, the drill is required to have sufficient strength to withstand the cutting forces acting on it. However, if the area of the groove is increased in order to improve the chip evacuation function, the area of the thick core portion will become smaller, which inevitably reduces the cutting resistance, especially the thrust, but on the other hand, this creates the dilemma of insufficient strength. We must maintain a good balance between these relationships.

またドリルの強度は、その材料自体が有している靭性や
弾性の他に、形状に依存する剛性(曲げ剛性やねじれ剛
性)によっても与えられる。
Further, the strength of a drill is given not only by the toughness and elasticity of the material itself, but also by the rigidity (bending rigidity and torsional rigidity) that depends on the shape.

そこで従来のドリルに関して、その強度を支配する形状
について、その切刃端面直視形状を第1図に示して説明
づる。
Therefore, the shape that governs the strength of a conventional drill will be explained with reference to FIG. 1, which shows the shape of the cutting edge when viewed directly from the end surface.

図において破線で示されている部分1が芯厚部であり、
溝部2が形成されていない中実の部分である。ずなわち
ドリルは、周知のごとく芯厚部1の周囲に、切屑の排出
通路となる溝部2と肉厚部分である腔部2とが螺旋状に
巻き旬くように形成されている。したがって、ドリル直
径りに対する芯厚部1の直径Cの比率(以後、芯厚比と
称し、%表示する。)がドリルの強度に関与し、また腔
部3の周長Aに対する溝部2の周長Bの比(以後、溝幅
比と称し、B:Aで表示づる。)も同様にドリルの強度
に関与する。これら2つの要素は、ドリルの強度を形状
の上で主に支配Jる因子と考えることができる。すなわ
ち、芯厚比が大きく溝幅比が小さいほどドリル強度は増
大するわけである。
The part 1 shown by the broken line in the figure is the core thickness part,
This is a solid portion in which the groove portion 2 is not formed. As is well known, the drill has a thick core portion 1, a groove portion 2 serving as a discharge passage for chips, and a cavity portion 2 serving as a thick wall portion, which are formed in a spiral manner around the thick core portion 1. Therefore, the ratio of the diameter C of the core thick part 1 to the drill diameter (hereinafter referred to as the core thickness ratio and expressed as a percentage) is related to the strength of the drill, and the circumference of the groove part 2 to the circumference A of the cavity part 3. The ratio of length B (hereinafter referred to as groove width ratio and expressed as B:A) similarly affects the strength of the drill. These two factors can be considered to be the factors that mainly control the strength of the drill in terms of its shape. In other words, the drill strength increases as the core thickness ratio increases and the groove width ratio decreases.

第2図は、その関係を、芯厚比および溝幅比のそれぞれ
の値におけるねじれ剛性比で示すグラフ図であり、ねじ
れ剛性比は溝のない円形断面の丸棒部材のねじれ剛性を
100%とし、その値どの比率で示されている。図にお
いて、サンプル(イ)〜(ニ)は一般的な従来品のドリ
ルの形状であり、それぞれのサンプルの溝幅比は(イ)
と(ハ)が1+1.(ロ)と(ニ)が1.3:1である
。また、サンプル(ボ)〜(チ)は芯厚比を大きく溝幅
比を小さくした例であり、それぞれのサンプルの溝幅比
は(ホ)とくべ)が0.4:1.(ト)と(チ)が0.
8:1T:ある。図示するように、当然のことながらサ
ンプル(ホ)〜くチ)が良いねじれ剛性比を示し、強度
的に優れていることが明らかである。
Fig. 2 is a graph showing this relationship in terms of torsional rigidity ratio at each value of core thickness ratio and groove width ratio. and its value is shown in what proportion. In the figure, samples (a) to (d) are the shapes of general conventional drills, and the groove width ratio of each sample is (a).
and (c) are 1+1. The ratio of (b) and (d) is 1.3:1. In addition, samples (BO) to (CH) are examples in which the core thickness ratio is large and the groove width ratio is small, and the groove width ratio of each sample (E) and (C) is 0.4:1. (g) and (ch) are 0.
8:1T: Yes. As shown in the figure, it is clear that samples (H) to (H) exhibit good torsional rigidity ratios and are excellent in terms of strength.

しかし、単に芯厚比を大きく溝幅比を小さフタ−るだけ
では切削抵抗の増大と切屑排出機11シの低下を招くこ
とになり、必然的にこれらの値がとり得る範囲は限定さ
れ、従来の一般的な値は芯厚比が15%〜23%、溝幅
比が1:1〜1.3+1であった。
However, simply increasing the core thickness ratio and decreasing the groove width ratio will result in an increase in cutting resistance and a decrease in the chip discharger 11, and the range in which these values can be taken will inevitably be limited. Conventional general values were a core thickness ratio of 15% to 23% and a groove width ratio of 1:1 to 1.3+1.

なお、ウェブテーバについては周知の適切な勾配かつ(
プられている。
In addition, regarding the web taber, the well-known appropriate gradient and (
is being pulled.

第3図は、上)E−のどとき一般的な制約を取り除くべ
く工夫された、芯厚部ドリルと呼ばれる従来品の切端端
面直視形状を示している。この例にあっては、芯厚比が
約50%と大ぎく設定されている。すなわら、強度を高
めるための芯厚比を大きくとっているが、単に芯厚比を
大きくするだけでは溝部の面積が小さ・くなってしまう
ので、ドリルの先端部分にチップポケット4を設け、さ
らに剪断応力の集中を防ぎ、ねじれ剛性を高めるべくヒ
ール部5に丸みをつ番プでいる。しかし、この場合、チ
ップポケット4の面積は大きいにもかかわらず、排出切
屑とは異なった断面のチップポケットであるため、決し
て有効な溝形状とはいえず、むしろ、ヒール部5の丸み
の部分に切屑が詰まり、このためにドリルの折損をta
 <おそれがあった。したがって、この種のドリルを使
用できる条件は、切屑形状との兼ね合いで狭い範囲に限
定されている。
FIG. 3 shows the shape of a conventional product called a thick-core drill, as viewed directly from the incisal end surface, which was devised to eliminate the general restrictions on upper) E-throttle. In this example, the core thickness ratio is set to be approximately 50%. In other words, the core thickness ratio is set large to increase strength, but simply increasing the core thickness ratio will result in a smaller groove area, so a chip pocket 4 is provided at the tip of the drill. Furthermore, the heel portion 5 is rounded to prevent concentration of shear stress and increase torsional rigidity. However, in this case, although the area of the chip pocket 4 is large, the chip pocket has a cross section different from that of the discharged chips, so it cannot be said to be an effective groove shape, but rather a rounded part of the heel part 5. This can cause the drill to break due to chipping.
<There was a risk. Therefore, the conditions under which this type of drill can be used are limited to a narrow range due to the shape of the chips.

し発明の目的] 本発明は上述のごとき事情に鑑み、ドリルのせ能を有効
に改善すべく創案されたものである。
OBJECT OF THE INVENTION] In view of the above-mentioned circumstances, the present invention was devised to effectively improve the performance of a drill.

したがって本発明の目的は、切削抵抗の増大および切屑
排出機能の低下を抑制しつつ強度を可及的に高めること
ができるドリルを提供することにある。
Therefore, an object of the present invention is to provide a drill that can increase the strength as much as possible while suppressing an increase in cutting resistance and a decrease in chip evacuation function.

[発明の概要] 本発明は、芯厚部の直径をドリル直径の25%〜35%
に、かつ溝幅比を0.4:1〜0.8:1の範囲内にそ
れぞれ設定し、また、ドリル直径の少なくとも2/3よ
り外周側に位置づる切刃の半径方向のすくい角を一5°
〜正の範囲内に設定し、さらに切刃と、これに互いに向
かい合う溝壁との間の相対的な位置関係を近接させるこ
とによって上記目的を達成するものである。
[Summary of the Invention] The present invention is characterized in that the diameter of the core thick portion is 25% to 35% of the drill diameter.
and the groove width ratio is set within the range of 0.4:1 to 0.8:1, and the rake angle in the radial direction of the cutting edge located at least 2/3 of the drill diameter on the outer peripheral side is set as follows. -5°
The above object is achieved by setting the cutting edge within a positive range and also by bringing the relative positional relationship between the cutting edge and the groove walls facing each other close to each other.

[発明の実施例] 以下に本発明の好適一実施例について添付図面に従って
説明する。
[Embodiments of the Invention] A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

第4図は本発明に係るドリルの切刃端面直視形状を示す
側面図であり、第5図はその先端部分の概略構成を示J
斜視図である。
Fig. 4 is a side view showing the shape of the cutting edge of the drill according to the present invention when viewed directly from the end surface, and Fig. 5 shows the schematic configuration of the tip portion thereof.
FIG.

図において、芯厚部1(破線で図示)の直径Cはドリル
直径りの25%〜35%の範囲内に設定されている。ま
た、空間部分である溝部2の周長日と肉厚部分である陵
部3の周長Aとの比は0゜4:1〜0.8:1の範囲内
に設定されている。
In the figure, the diameter C of the core thick portion 1 (indicated by a broken line) is set within a range of 25% to 35% of the drill diameter. Further, the ratio of the circumferential length of the groove portion 2 which is the space portion to the circumferential length A of the ridge portion 3 which is the thick wall portion is set within the range of 0°4:1 to 0.8:1.

ずなわら、従来のドリルに比べて芯厚比が大きく溝幅、
比が小さくされている。
However, compared to conventional drills, the core thickness ratio is larger and the groove width is wider.
The ratio has been reduced.

次に、ドリル直径の少なくとも2/3よりも外周側に位
置する切刃6は、その半径方向のすくい角θ、が一5°
〜正の範囲内に設定されて、切刃形状は凹状円弧を形成
している。
Next, the cutting edge 6 located on the outer peripheral side of at least 2/3 of the drill diameter has a rake angle θ of 15° in the radial direction.
~ positive range, and the cutting edge shape forms a concave arc.

また、切刃6の外周端の点P1と、その切刃6上の点で
あって中心から半径の2/3の長さ外周寄りの点P2と
を直線で結ぶ仮想基準線見に対する点P、上の垂線まで
の、切刃6に臨んでいる溝壁7の外周端の点P3からの
距離L(以後、相対距離と称す。)がドリル直径りの4
7%以下に限定されている。
Also, a point P with respect to an imaginary reference line connecting a point P1 at the outer peripheral end of the cutting edge 6 and a point P2 on the cutting edge 6 that is 2/3 of the radius from the center and closer to the outer periphery with a straight line. , the distance L (hereinafter referred to as relative distance) from the point P3 of the outer peripheral end of the groove wall 7 facing the cutting edge 6 to the upper perpendicular line is 4 times the diameter of the drill.
Limited to 7% or less.

また、芯厚比が大ぎいので、切刃6の逃げ面8は、第5
図にも示すように、ドリルの回転方向の後側約半分がシ
ンニングによって研ぎ落とされており、芯厚部の切刃9
が形成されている。シンニングはドリルの軸心Oに対し
て軸対称に施され、これによって切刃9のずくい面10
とこれに隣接する隣接研ぎ出し而11とが形成される。
In addition, since the core thickness ratio is large, the flank surface 8 of the cutting edge 6 is
As shown in the figure, about half of the rear side in the rotating direction of the drill has been ground down by thinning, and the cutting edge 9 of the thick core part has been sharpened.
is formed. The thinning is performed axially symmetrically with respect to the axis O of the drill, so that the cutting face 10 of the cutting edge 9
and an adjacent polisher 11 adjacent thereto are formed.

このようなシンニングの種類をクロスシンニングと呼び
、芯厚部の切刃9は第4図に示すごとく軸心Oから18
00互いに反対側へ直線状に形成される。切刃9が形成
されないチゼル幅は0IIIIIl〜0.4II1mの
範囲内に設定されており、□mmに近いほど良い。
This kind of thinning is called cross thinning, and the cutting edge 9 of the thick core part is 18 mm from the axis O as shown in Fig. 4.
00 are formed in a straight line on opposite sides. The width of the chisel where the cutting edge 9 is not formed is set within the range of 0III1m to 0.4II1m, and the closer it is to □mm, the better.

また、切刃6の外周p2;の点P+J3よび軸心Oを結
ぶ直線の方向と、芯厚部の切刃9が延びる方向゛ とが
なす角θ2は35°〜45°の範囲内に設定されている
In addition, the angle θ2 formed by the direction of the straight line connecting the point P+J3 on the outer periphery p2 of the cutting blade 6 and the axis O and the direction in which the cutting blade 9 in the core thickness section extends is set within the range of 35° to 45°. has been done.

シンニングによって形成されるすくい面10は、その軸
方向のすくい角θ。(第7図に図示)が−5°〜+5°
の範囲内に設定されている。また第6図にも示すように
、すくい面10の軸方向の長さは、軸心0の部分でQm
mであり、径方向外方へいくに従って漸増している。す
くい面10ど隣接研ぎ出し面11とが交わってなす谷線
12とドリルの軸心0とがなす角θ、は25°〜60°
の範囲内に設定されている。これは、切刃9によって切
削された切屑が隣接研ぎ出し面11に当たってスラスト
を増大させることのないように、すくい面10の軸方向
の長さを十分に確保できる角度に設定されており、かつ
切屑のブレーキング作用を十分に得られるように設定さ
れている。また、強度的にも十分な強度が得られるよう
に設定されている。
The rake face 10 formed by thinning has an axial rake angle θ. (shown in Figure 7) is -5° to +5°
is set within the range. Further, as shown in FIG. 6, the length of the rake face 10 in the axial direction is Qm at the axial center 0.
m, and increases gradually toward the outside in the radial direction. The angle θ between the valley line 12 formed by the intersection of the rake face 10 and the adjacent polished surface 11 and the axis 0 of the drill is 25° to 60°.
is set within the range. This is set at an angle that ensures a sufficient length in the axial direction of the rake face 10 so that the chips cut by the cutting edge 9 do not hit the adjacent polished surface 11 and increase the thrust. It is set to provide sufficient braking action. In addition, it is set so that sufficient strength can be obtained.

また、すく而10と隣接研ぎ出し面11とのなJ角θ5
 (第7図に図示)は90°〜1100の範囲内に設定
されて、切屑によるスラスト増大を防止するとともにブ
レーキング作用を十分に得られるように設定されている
Also, the J angle θ5 between the cutter 10 and the adjacent polished surface 11 is
(shown in FIG. 7) is set within the range of 90° to 1100° to prevent an increase in thrust due to chips and to obtain a sufficient braking action.

第8図はドリルの先端部分が上述のごとく構成されたド
リルにおいて、さらに切削油の給油孔を備えた実施例を
示す斜視図である。
FIG. 8 is a perspective view showing an embodiment of the drill in which the tip portion of the drill is configured as described above, and further includes a cutting oil supply hole.

図示するように、ドリルの先端部から後端部までの中実
の肉厚を有する部分である陵部3およびシャンク13の
部分の内部には、溝部2のねじれ角に沿って螺旋状に切
削油の給油孔14・が2本形成されている。それぞれの
給油孔14の吐出[115は切刃6の逃げ面8に開口さ
れ、吸入口16は後端部の底面17に開口されている。
As shown in the figure, inside the ridge portion 3 and the shank 13, which are solid thick portions from the tip to the rear end of the drill, there is a spiral cut along the helix angle of the groove portion 2. Two oil supply holes 14 are formed. The discharge port 115 of each oil supply hole 14 is opened at the flank 8 of the cutting blade 6, and the suction port 16 is opened at the bottom surface 17 of the rear end.

給油孔14の数は、形成されている陵部3の条数に等し
く2本が望ましいが、1本であってもよい。また、給油
孔14の内径はドリル強度との関係から、ドリル直径り
の数%〜20%が望ましい。
The number of oil supply holes 14 is preferably two, which is equal to the number of grooves 3 formed, but it may be one. Further, the inner diameter of the oil supply hole 14 is desirably several percent to 20% of the diameter of the drill in view of the strength of the drill.

このドリルの給油孔14は、板状の棒部材に形成された
高速度鋼材に、その軸方向に沿って給油孔となるべき孔
を2本形成し、この板状棒部材を高温度下でねじること
によって塑性変形させて形成することができる。
The oil supply hole 14 of this drill is made by forming two holes to serve as oil supply holes along the axial direction in a high-speed steel material formed in a plate-shaped bar member, and then holding the plate-shaped bar member under high temperature. It can be formed by being plastically deformed by twisting.

さらに、上述のごときそれぞれの形状に構成されたドリ
ルには、その表面に]川C,l CN。
Furthermore, the drills configured in each of the shapes described above have a surface of the drill having [C,l CN].

TiNおよびA見20eのいずれが1種または2種以上
の組合わしによる被覆層が形成されてもよい。また、そ
の被覆層はイオンプレーディング法や化学蒸着法によっ
て緻密に薄層が形成される。
The coating layer may be formed of one type or a combination of two or more of TiN and A20e. Further, the coating layer is formed into a dense thin layer by an ion plating method or a chemical vapor deposition method.

次に、本発明の実施例の作用を従来例との比較において
実験データに基づいて説明する。
Next, the operation of the embodiment of the present invention will be explained based on experimental data in comparison with the conventional example.

次の表1は、一般的な構成のドリル(従来品−1)9強
度を高めるべく単に芯厚比を大きくし溝幅比を小さくし
たドリル(従来品−2)9本発明に係るドリル(発明品
)の3種類のすンブルについて行なった実験のデータを
示している。
The following Table 1 shows 9 drills with a general configuration (conventional product-1), 9 drills with a core thickness ratio simply increased and the groove width ratio decreased to increase strength (conventional product-2), 9 drills according to the present invention ( The data of experiments conducted on three types of sumburu (invention product) are shown.

なお、シンニングによる効果を一定にするためいずれの
ザンブルにおいても、発明品と同様のシンニングが施さ
れている。ドリル直径は8.5mm。
In addition, in order to make the effect of thinning constant, the same thinning as that of the invention product was applied to all Zambles. The drill diameter is 8.5mm.

材質ハS K I−19、HRC63テある。被削材ハ
s50 C、Ha 25 OF (T) ’)、9J 
削条件ハ、切削速度V= 15m /分、 1 回転ア
タV)(D送V)mf = 0 。
Materials are SKI-19 and HRC63. Work material Ha s50 C, Ha 25 OF (T) '), 9J
Cutting conditions C, cutting speed V = 15 m/min, 1 rotation (V) (D feed V) mf = 0.

25111111/ 回転、穿孔深さ40mmである。25111111/ Rotation, drilling depth 40mm.

C以下來白ン 表1より明らかなように、溝幅比を小さく芯厚比を大き
くした従来品−2と発明品とは、断面2次モーメントお
よびねじれ剛性比がともに高められ、強度増大の効果が
顕著である。ところで、このような効果の予測は十分な
されるところであるが、従来技術において従来品−2の
ようなドリルが採用されなかって理由は既に述べたとお
りである。表1において切削抵抗を示1トルクと推力(
スラスト)のデータ値に表わされているように、本発明
品によれば推力は若干増大しているが、従来品−2はど
ではなり、トルクに関しては従来品−1と同一の値に抑
制され−Cいる。しかも強度は十分に増大している。す
なわら、切刃6の半径方向のりくい角を大きくすること
によって得られる効果である。
As is clear from Table 1, the conventional product-2, which has a small groove width ratio and a large core thickness ratio, and the invented product have both increased cross-sectional moment of inertia and torsional rigidity ratio, resulting in increased strength. The effect is remarkable. By the way, although such an effect is well predicted, the reason why a drill like Conventional Product-2 has not been adopted in the prior art is as already stated. Table 1 shows the cutting resistance (1 torque and thrust (
As shown in the data values for thrust), the product of the present invention has a slight increase in thrust, but it is not as good as the conventional product-2, and the torque remains the same as the conventional product-1. Suppressed -C. Moreover, the strength has increased sufficiently. In other words, this is an effect obtained by increasing the radial rake angle of the cutting edge 6.

本発明のもう1つの特長は切屑排出機能に低下を抑制す
ることである。切屑排出機能の良し悪しに関しでは、生
成される切屑の形状と、その溝部2内での動きとが影響
する。第9図は従来品−2のドリルによる切屑の動きを
示す模式図である。
Another feature of the present invention is that it suppresses deterioration in chip evacuation function. The quality of the chip evacuation function is influenced by the shape of the chips generated and their movement within the groove 2. FIG. 9 is a schematic diagram showing the movement of chips by the drill of conventional product-2.

切刃6および9から削り出される切屑18は、溝壁7に
沿ってカール形状に形成されつつドリルの中心側から外
周側へ向かって流れる。このとき、切刃6と溝壁7どの
間の距離が大きいと、切屑18のカール半径が大きくな
り切屑18は溝部2内に詰まりゃ1“くなる。また、切
屑18は孔の壁19に当たって折れ、仕上げ面を粗くす
る。このように切屑18の動きを支配′する重要な要素
の1つは、切刃6の形状(曲り具合)と溝壁7の形状(
曲り具合)との互いの相対的な関係であり、しかって、
切屑18が溝部2内を通って順調に排出されるためには
、切刃6と溝壁7との間に適切な形状関係がある。その
形状を何らかの指標によって表わすすれば、切刃6に対
する溝壁7の、あるいは溝壁7に対する切刃6の互いの
相対的な位置関係を、これらの間の距離(相対距離)で
表わづことが1つの表示方法として有効である。そこで
、相対距離りを1つの指標として定義し、ドリル直径り
に対する相対路1l1111の比をもって切屑の排出職
能の良し悪しを表わづことが可能である。すなわち第9
図の例では、この相対距離【−が大きいために狭い溝部
2では切屑の排出機能を十分に発揮できない。
The chips 18 cut out from the cutting edges 6 and 9 are formed into a curled shape along the groove wall 7 and flow from the center side to the outer circumferential side of the drill. At this time, if the distance between the cutting edge 6 and the groove wall 7 is large, the curl radius of the chip 18 becomes large and the chip 18 becomes 1" if it gets stuck in the groove 2. Also, the chip 18 hits the wall 19 of the hole. One of the important factors governing the movement of the chips 18 is the shape of the cutting edge 6 (the degree of curvature) and the shape of the groove wall 7 (
It is a relative relationship with each other (degree of bending), and therefore,
In order for the chips 18 to pass through the groove 2 and be smoothly discharged, there is an appropriate geometrical relationship between the cutting edge 6 and the groove wall 7. If the shape is expressed by some index, the relative positional relationship of the groove wall 7 to the cutting edge 6 or the cutting edge 6 to the groove wall 7 can be expressed by the distance (relative distance) between them. This is an effective display method. Therefore, by defining the relative distance as one index, it is possible to express the quality of the chip evacuation function by the ratio of the relative path 1l1111 to the drill diameter. That is, the ninth
In the illustrated example, the relative distance [- is large, so that the narrow groove portion 2 cannot fully exhibit the chip discharge function.

第10図は本発明のドリルによる切屑の動きを示す模式
図である。相対距離しかドリル直径りの47%以下に設
定されているので、切屑18は溝壁7に沿ってカールし
、また、細かく短く折れて切れ、溝部2内で流動しやず
い、すなわち排出しやすい形状に形成される。
FIG. 10 is a schematic diagram showing the movement of chips by the drill of the present invention. Since the relative distance is set to 47% or less of the drill diameter, the chips 18 curl along the groove wall 7, break off into short pieces, and are difficult to flow within the groove 2, that is, easily discharged. formed into a shape.

また、第3図に示した角θ2が35°〜45゜の範囲内
に設定されることによって、切屑18は切刃6によって
切削される部分と切刃9によって切削される一部分とが
互いにその方向を異にして形成され、カール切断されや
すい形状に削り出される。この角θ2が小さすぎると切
屑18は偏平に近い形状となってカール切断されにくく
、また、人きずぎると切刃9によって切削される部分の
全体に占める比率が小さくなってカール切断されにくく
なる。次に切削油の給油孔14を形成した場合のその作
用について説明する。給油孔14の吸入口16からドリ
ル保持具を通して切削油を圧入すると、切削油は給油孔
14を通って先端部の吐出口15から切刃6の部分に供
給され、刃先部7分有効に冷却することができる。また
、切削油の戻りは溝部2内を通って孔の外部へ排出され
、その際に、切屑の排出を促し、かつ加工物の冷却をも
行なうことになる。したがって、切削抵抗は安定し、折
jμ事故を防止することができる。
Further, by setting the angle θ2 shown in FIG. 3 within the range of 35° to 45°, the part of the chip 18 cut by the cutting blade 6 and the part cut by the cutting blade 9 are mutually separated. It is formed in different directions and carved into a shape that is easy to curl and cut. If this angle θ2 is too small, the chips 18 will have a nearly flat shape and will be difficult to curl, and if the chips 18 are scratched, the proportion of the entire portion cut by the cutting blade 9 will be small, making it difficult to curl. Next, the effect when the cutting oil supply hole 14 is formed will be explained. When cutting oil is press-fitted from the suction port 16 of the oil supply hole 14 through the drill holder, the cutting oil passes through the oil supply hole 14 and is supplied to the cutting edge 6 from the discharge port 15 at the tip, effectively cooling the cutting edge by 7 minutes. can do. Further, the returning cutting oil passes through the groove 2 and is discharged to the outside of the hole, and at this time, it promotes the discharge of chips and also cools the workpiece. Therefore, cutting resistance is stabilized and breakage accidents can be prevented.

さらに、これらのドリルは高速度鋼のみを累月として形
成してもよいが、ドリルの表面にT + C+r+ C
N、 T+ NおよびA見20eのうちの1種または2
種以上の組合わせによる被覆層を形成づることによって
ドリル自体の耐熱性を高め、その摩耗をさらに防止する
ことができる。また、これらの被覆材は摩擦係数が小さ
いのでスラストおよびトルクをさらに小さくすることが
できる。
Furthermore, these drills may be formed only of high-speed steel, but T + C + r + C on the surface of the drill.
N, T+ N and one or two of Ami 20e
By forming a coating layer with a combination of more than one type, the heat resistance of the drill itself can be increased and its wear can be further prevented. Furthermore, since these coating materials have a small coefficient of friction, the thrust and torque can be further reduced.

また、ドリルは、その摩耗が進むと再研磨して刃先部を
再生するが、この再研磨に際してトリJしの逃げ面8に
母材が露出してもすくい面およびマージンの部分の外周
面には被覆層が残り、切削抵抗は小さいまま゛に維持す
ることができる。
In addition, when the drill wears out, it is re-sharpened to regenerate the cutting edge, but even if the base material is exposed on the flank 8 of the drill J during this re-sharpening, the outer peripheral surface of the rake face and margin portion The coating layer remains, and the cutting resistance can be maintained at a low level.

[発明の効果] 以上の説明より明らかなように本発明によれば次のごと
き優れた効果が発揮される。
[Effects of the Invention] As is clear from the above description, the present invention provides the following excellent effects.

すなわち、芯厚比を大きく溝幅比を小さくしたのでドリ
ルの強度を高めることができ、しかも切刃の半径方向の
すくい角を大きくすることによって切削抵抗の増大を抑
制し、かつ相対距離を小ざくすることで切屑の排出機能
の低下を抑制することができる。
In other words, by increasing the core thickness ratio and decreasing the groove width ratio, the strength of the drill can be increased, and by increasing the radial rake angle of the cutting edge, an increase in cutting resistance can be suppressed, and the relative distance can be reduced. By reducing the thickness, it is possible to suppress the deterioration of the chip evacuation function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のドリルの切刃端面直視形状を示す側面図
、第2図はドリルのねじれ剛性比と芯厚比および溝幅比
との関係を示ずグラフ図、第3図は他の従来例のドリル
の切刃端面直視形状を示す側面図、第4図は本発明のド
リルの一実施例における切刃端面直視形状を示す側面図
、第5図は本発明のドリルの一実施例における先端部分
の概略構成を示す斜視図、第6図は第5図の矢印VIの
方向から児た側面図、第7図は第5図の矢印V[の方向
から見た側面図、第8図は本発明のドリルの他の一実施
例を示す斜視図、り59図は従来のドリルの切屑の動き
を示づ゛模式図、第10図は本考案のドリルの切屑の動
きを示す模式図である。 なお、図中1は芯厚部、2は溝部、3は腔部、6は切刃
、7は溝壁、9は芯厚部の切刃、10は芯厚部の切刃の
ずくい面、11は隣接研ぎ出し面、12は谷線、14は
給油孔、Plは切刃の最外周端の点、P2は切刃上の点
であって中心から半径の2/3の長さ外周寄りの点、P
、は溝壁の最外周端の点、艶は仮想基準線である。 特許出願人 住友電気工業株式会社 図面の浄書(内容に変Wなし) 第1図 DI50,20 0.2!; OJD θJ5た厚/ド
リルfト 、乃5図 搭6図 搭7図 心3図 心10図 婚t/図 手続補正書(方式) %式% 2、発明の名称 ドリル 3、補正をする者 事件との関係 特許出願人 住所 大阪市 東区 北浜 5丁目゛15@地名称 (
213)住友電気工業株式会社代表者川上哲部 4、代理人 住 所 大阪市北区天神橋2丁目3番9@ 八千代第一
ビル6、補正の内容 図面および委任状 7、補正の内容 <1) ¥f4煕で描いに図面を別紙のとおり添付する
。なお、内容についての補正はありまUん。 (2) 委任状を別紙のとおり補充致します。 Lン:j二 手続補正書 昭和59年11月8日 昭和59年特許願第33671号 2、発明の名称 ドリル 3、補正をする者 事件との関係 特許出願人 住所 大阪市 東区 北浜 5丁目15番地名称 (2
13)住友電気工業株式会社代表者川上哲部 4、代理人 住 所 大阪市北区天神橋2丁目3番9号 八千代第一
ピル6、補正の対象 明細書の発明の詳細な説明の欄および図面の第4図 7、補正の内容 (1) 明細書第4頁第17行ないし第18行の「大き
くすると、他・厚部の面積が小さくなり、」を「大きく
、かつ、ぬ・厚を小さくすると、」に補正。 (2) 明細書第16頁第6行「表わすすれば、」を「
表わすとすれば、」に補正。 (3) 図面の第4図を別紙のとおり補正。 以上
Fig. 1 is a side view showing the shape of a conventional drill when viewed directly from the cutting edge end surface, Fig. 2 is a graph showing the relationship between the torsional rigidity ratio, core thickness ratio and groove width ratio of the drill, and Fig. 3 is a side view showing the shape of a conventional drill when viewed directly from the cutting edge. FIG. 4 is a side view showing the shape of a conventional drill when viewed directly from the cutting edge end surface. FIG. 4 is a side view showing the shape when viewed from the cutting edge end surface of an embodiment of the drill of the present invention. FIG. 5 is an embodiment of the drill of the present invention. 6 is a side view taken from the direction of arrow VI in FIG. 5, FIG. 7 is a side view taken from the direction of arrow V [in FIG. 5, and FIG. Figure 59 is a perspective view showing another embodiment of the drill of the present invention, Figure 59 is a schematic diagram showing the movement of chips in a conventional drill, and Figure 10 is a schematic diagram showing the movement of chips in the drill of the present invention. It is a diagram. In addition, in the figure, 1 is the core thickness part, 2 is the groove part, 3 is the cavity part, 6 is the cutting edge, 7 is the groove wall, 9 is the cutting edge of the core thickness part, and 10 is the cutting surface of the cutting edge of the core thickness part. , 11 is the adjacent polished surface, 12 is the valley line, 14 is the oil supply hole, Pl is the outermost point of the cutting edge, P2 is the point on the cutting edge, 2/3 of the radius from the center, near the outer periphery. point, P
, is the outermost point of the groove wall, and gloss is the virtual reference line. Patent applicant: Sumitomo Electric Industries, Ltd. Engraving of the drawing (no changes in content) Figure 1 DI50,20 0.2! ; OJD θJ5 Thickness/Drill f, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, Fig. 6, Fig. 7, Centroid, 3 Centroid, Fig. 10. Relationship to the incident Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka City @Place name (
213) Sumitomo Electric Industries, Ltd. Representative: Tetsube Kawakami 4, Agent address: 6, Yachiyo Daiichi Building, 2-3-9 Tenjinbashi, Kita-ku, Osaka, Contents of amendment Drawings and power of attorney 7, Contents of amendment <1) Attach the drawing as attached to the drawing for ¥f4hi. Please note that there are no amendments to the content. (2) The power of attorney will be supplemented as shown in the attached document. Ln:j2 Procedural amendment November 8, 1988 Patent Application No. 33671 2, Title of invention Drill 3, Relationship with the case of the person making the amendment Patent applicant address 5-chome, Kitahama, Higashi-ku, Osaka City Address 15 name (2
13) Sumitomo Electric Industries Co., Ltd. Representative: Tetsube Kawakami 4, Agent Address: 6 Yachiyo Daiichi Pill, 2-3-9 Tenjinbashi, Kita-ku, Osaka, Column for detailed description of the invention in the specification subject to amendment and drawings Contents of the amendment (1) in Figure 4, page 4 of the specification, lines 17 to 18, "If the area is increased, the area of the other/thick part will become smaller" has been changed to "If the area is increased, the area of the other/thick part will be reduced." If you make it smaller, it will be corrected to ``. (2) On page 16 of the specification, line 6, “in other words,” was replaced with “
If it were to be expressed, it would be corrected to ``. (3) Figure 4 of the drawings has been amended as shown in the attached sheet. that's all

Claims (7)

【特許請求の範囲】[Claims] (1) 高速度鋼製ドリルであって、 芯厚部の直径がドリル直径の25%〜35%に、かつ溝
幅比が0.4:1〜0.8:1の範囲内にそれぞれ設定
され、 切刃端面直視形状において、ドリル直径の少なくとも2
/3より外周側に位置する切刃の半径方向のりくい角が
−5°〜正に設定され、前記切刃端面直視形状における
切刃の最外周端の点と、該切刃上の点であって中心から
半径の2/3の長さ外周よりの点とを直線で結ぶ仮想基
準線に対して、前記切刃の最外周端の点を通る垂線まで
、前記切刃に溝部の空間を隔てて臨む溝壁の最外周端の
点からの距離がドリル直径の47%以下に設定されるこ
とを特徴とするドリル。
(1) A drill made of high-speed steel, where the diameter of the core thickness is set to 25% to 35% of the drill diameter, and the groove width ratio is set within the range of 0.4:1 to 0.8:1. and at least 2 of the drill diameter when viewed directly from the cutting edge end surface.
The rake angle in the radial direction of the cutting edge located on the outer periphery side from /3 is set to -5° to positive, and the point on the outermost periphery of the cutting edge in the shape directly viewed from the cutting edge end and the point on the cutting edge. With respect to a virtual reference line connecting a straight line from the center to a point 2/3 of the radius from the outer periphery, the space of the groove is formed in the cutting blade to a perpendicular line passing through the outermost point of the cutting blade. A drill characterized in that the distance from the outermost point of the groove wall facing apart is set to 47% or less of the drill diameter.
(2) 前記切刃端面直視形状において、ドリル直径の
少なくとも2/3より外周側に位置する切刃は、その半
径方向のすくい角が0°〜正に設定されるべく凹状円弧
に形成される特許請求の範囲第1項記載のドリル。
(2) In the shape of the cutting edge when viewed directly from the end surface, the cutting edge located on the outer peripheral side of at least 2/3 of the drill diameter is formed into a concave arc so that the rake angle in the radial direction is set to 0° to positive. A drill according to claim 1.
(3) シンニングによって形成される前記芯厚部の形
状は、チゼル幅がQmm−Q、4mmの範囲内に設定さ
れ、 前記切刃端面直視形状において、前記芯厚部の軸心から
径方向外方へ延びるそれぞれの切刃を互いに直線状に形
成し、かつ該芯厚部の切刃が延びる方向と、該芯厚部の
切刃の外周側の端部からさらに外周側へ延びる切刃の最
外周端の点に前記軸心から至る方向とが互いに軸心上で
交差してなす角が35°〜45°の範囲内に設定される
特許請求の範囲第1項または第2項記載のドリル。
(3) The shape of the thick core portion formed by thinning is set so that the chisel width is within the range of Qmm-Q, 4 mm, and in the shape of the cutting edge when viewed directly from the end surface, the thick core portion has a shape that is radially outward from the axis of the thick core portion. The respective cutting edges extending toward each other are formed linearly with respect to each other, and the direction in which the cutting edge of the core thick portion extends and the cutting edge extending further toward the outer periphery from the outer circumferential end of the cutting edge of the core thick portion are formed. Claim 1 or 2, wherein the angle formed by the direction from the outermost peripheral end to the axis is set within a range of 35° to 45°. Drill.
(4) シンニングによって形成される前記芯厚部の切
刃のすくい面は、軸方向のすくい角が一5°〜−15°
の範囲内に設定され、かつ軸方向への長さをドリルの軸
心位置でQmmとして、該すくい面と、これと同時にシ
ンニングによって形成される隣接研ぎ出し面とが交わっ
てなす谷線を、ドリルの軸心に対して25°〜60°の
範囲内の傾斜角で形成する特許請求の範囲第3項記載の
ドリル。
(4) The rake face of the cutting edge of the thick core portion formed by thinning has an axial rake angle of 15° to -15°.
, and the length in the axial direction is set to Qmm at the axial center position of the drill. 4. The drill according to claim 3, wherein the drill is formed at an angle of inclination within a range of 25° to 60° with respect to the axis of the drill.
(5) 前記芯厚部のすくい面と前記隣接研ぎ出し面と
のなす角が90°〜1106の範囲内に設定される特許
請求の範囲第4項記載のドリル。
(5) The drill according to claim 4, wherein the angle between the rake face of the thick core portion and the adjacent ground surface is set within a range of 90° to 110°.
(6) ドリルの後端部から先端部までのシャンク内お
よび本体の腔部内に、ねじれ角に沿ってねじれた切削油
の給油孔を有する特許請求の範囲第1項記載のドリル。
(6) The drill according to claim 1, which has a cutting oil supply hole twisted along a helix angle in the shank from the rear end to the tip of the drill and in the cavity of the main body.
(7) 少なくとも前記切刃のすくい面およびマージン
の外周面を含むドリルの表面の一部または全部がTi 
C,Ti CN、T−i Nおよび△見。 Ooからなる群より選ばれた1種または2種以上の組合
わせによって被覆される特許請求の範囲第1項記載のド
リル。
(7) Part or all of the surface of the drill, including at least the rake face of the cutting edge and the outer peripheral surface of the margin, is made of Ti.
C, Ti CN, Ti N and △ see. The drill according to claim 1, wherein the drill is coated with one kind or a combination of two or more kinds selected from the group consisting of Oo.
JP3367184A 1984-02-23 1984-02-23 Drill Granted JPS60177809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3367184A JPS60177809A (en) 1984-02-23 1984-02-23 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3367184A JPS60177809A (en) 1984-02-23 1984-02-23 Drill

Publications (2)

Publication Number Publication Date
JPS60177809A true JPS60177809A (en) 1985-09-11
JPS6260202B2 JPS6260202B2 (en) 1987-12-15

Family

ID=12392913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3367184A Granted JPS60177809A (en) 1984-02-23 1984-02-23 Drill

Country Status (1)

Country Link
JP (1) JPS60177809A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399112A (en) * 1986-10-15 1988-04-30 Kobe Steel Ltd Drill
US4983079A (en) * 1987-12-14 1991-01-08 Mitsubishi Kinzoku Kabushiki Kaisha Twist drill
US5230593A (en) * 1987-12-14 1993-07-27 Mitsubishi Kinzoku Kabushiki Kaisha Twist drill
WO2001045908A1 (en) * 1999-12-21 2001-06-28 Robert Bosch Gmbh Hammer supported drill
JP2002210608A (en) * 2001-01-17 2002-07-30 Dijet Ind Co Ltd Drill for heat-resistant metal
JP2003534927A (en) * 2000-06-02 2003-11-25 ケンナメタル インコーポレイテッド Drill bit for spiral drill and method for forming a cutting groove in drill bit area for spiral drill
US9199315B2 (en) 2000-06-02 2015-12-01 Kennametal Inc. Twist drill and method for producing a twist drill which method includes forming a flute of a twist drill
US10618120B2 (en) 2017-04-27 2020-04-14 Rolls-Royce Plc Cutting tool
JP2020519464A (en) * 2017-05-11 2020-07-02 サンドビック インテレクチュアル プロパティー アクティエボラーグ Drill body and drill

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399112A (en) * 1986-10-15 1988-04-30 Kobe Steel Ltd Drill
US4983079A (en) * 1987-12-14 1991-01-08 Mitsubishi Kinzoku Kabushiki Kaisha Twist drill
US5088863A (en) * 1987-12-14 1992-02-18 Mitsubishi Materials Corporation Twist drill
US5230593A (en) * 1987-12-14 1993-07-27 Mitsubishi Kinzoku Kabushiki Kaisha Twist drill
WO2001045908A1 (en) * 1999-12-21 2001-06-28 Robert Bosch Gmbh Hammer supported drill
CN100346935C (en) * 1999-12-21 2007-11-07 罗伯特·博施有限公司 Schlag supported drill
JP2003534927A (en) * 2000-06-02 2003-11-25 ケンナメタル インコーポレイテッド Drill bit for spiral drill and method for forming a cutting groove in drill bit area for spiral drill
US9199315B2 (en) 2000-06-02 2015-12-01 Kennametal Inc. Twist drill and method for producing a twist drill which method includes forming a flute of a twist drill
JP2002210608A (en) * 2001-01-17 2002-07-30 Dijet Ind Co Ltd Drill for heat-resistant metal
JP4694702B2 (en) * 2001-01-17 2011-06-08 ダイジ▲ェ▼ット工業株式会社 Drill for heat-resistant metal
US10618120B2 (en) 2017-04-27 2020-04-14 Rolls-Royce Plc Cutting tool
JP2020519464A (en) * 2017-05-11 2020-07-02 サンドビック インテレクチュアル プロパティー アクティエボラーグ Drill body and drill

Also Published As

Publication number Publication date
JPS6260202B2 (en) 1987-12-15

Similar Documents

Publication Publication Date Title
US4983079A (en) Twist drill
US5230593A (en) Twist drill
JP3739591B2 (en) Solid end mill
JPS60177809A (en) Drill
JP2560329B2 (en) Twist drill
JP2674123B2 (en) Twist drill
JP2674124B2 (en) Twist drill
JPS6389211A (en) Twist drill
JP2002273612A (en) Roughing end mill
JP4561054B2 (en) Ball end mill
JPH07204921A (en) End mill
JPH05261612A (en) Drill
JP3318020B2 (en) Ball end mill
JPH0532164B2 (en)
JPH02124210A (en) Twist drill
JPH0529615U (en) Hard film coated drill for difficult-to-cut materials
JP2508706B2 (en) Brazed drill
JPS6246491Y2 (en)
JP3019298B1 (en) Surface coating drill
JPS6246492Y2 (en)
JP3335401B2 (en) End mill
JPH10315021A (en) Drill
JPS63229212A (en) Boring tool
JPS637449Y2 (en)
JPH0647615A (en) Taped end mill