JPS60177732A - Error detecting system by viterbi decoder - Google Patents

Error detecting system by viterbi decoder

Info

Publication number
JPS60177732A
JPS60177732A JP3322984A JP3322984A JPS60177732A JP S60177732 A JPS60177732 A JP S60177732A JP 3322984 A JP3322984 A JP 3322984A JP 3322984 A JP3322984 A JP 3322984A JP S60177732 A JPS60177732 A JP S60177732A
Authority
JP
Japan
Prior art keywords
data
code
dummy
error
dummy code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3322984A
Other languages
Japanese (ja)
Inventor
Bunichi Miyamoto
宮本 文一
Yoshiyuki Nakajima
佳之 中島
Hiroshi Kubota
広志 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3322984A priority Critical patent/JPS60177732A/en
Publication of JPS60177732A publication Critical patent/JPS60177732A/en
Pending legal-status Critical Current

Links

Landscapes

  • Error Detection And Correction (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

PURPOSE:To detect exactly an error in case a punctured system is applied, by inhibiting the output of an erroneous pulse due to a dummy code, by a metric calculation inhibiting signal. CONSTITUTION:Data I, Q to which a dummy code is inserted, which are inputted to terminals T1, T2 are decoded by a viterbi decoder 1, corrected as to its error, attains a data equal to a transmitting data D,encoded convolutionally by a convolutional encoder 2. attain data I', Q' an in EX-OR circuits 5, 6, the dissidence to the data I, Q delayed by delaying circuits 3, 4, and in case of a dissidence bit, the pulse of an I level is inputted to AND circuits 10, 11. Also, at the time point when the dummy code is inserted, metric calculation inhibiting signals R, S for sending out a ''0'' level are delayed by delaying circuits 8, 9, inputted to the circuits 10, 11 so as to execute synchronization with a code restored to a code which has erased the dummy signal, of the data I', Q', the output of the pulse of the dissidence bit in a dummy code position is inhibited, and only an error detecting pulse before inserting the dummy code is outputted through an OR circuit 12.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は、主として#星通信のディジタル情報の誤りを
自動的に訂正する為に用いられる、たたみ込み符号化・
ビタビ復号法の、ビタビデコーダを用いた誤り検出回路
に係り、特にパンクチャツト方式を適用した場合にも使
用可能なとデビデコーダによる誤り検出方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a convolutional coding system mainly used for automatically correcting errors in digital information of #star communications.
The present invention relates to an error detection circuit using a Viterbi decoder in the Viterbi decoding method, and particularly to an error detection method using a Viterbi decoder that can be used even when a puncturing method is applied.

(b) 技術の背景 衛星通信では送信局と受信局は遠く離なれている。この
為送信側からは大電力で送信せねばならないが、この送
信電力を大きくする為には装置を大形にせねばならない
。この為受信局で受信可能な程度に送信電力をおさえて
いる。従って受信局でイま着信レベルが低く、受信機の
熱雑音により信号対雑音比(以下S/Nと称す)が悪く
なる。この熱雑音はランダム雑音である為、伝送するデ
ィジタル情報は、このランダム雑音に強い符号復号化方
式を用いる必要がある。
(b) Technical background In satellite communications, transmitting stations and receiving stations are far apart. For this reason, the transmitting side must transmit with high power, but in order to increase this transmit power, the device must be made larger. For this reason, the transmission power is kept to a level that allows reception at the receiving station. Therefore, the current level of incoming calls at the receiving station is low, and the signal-to-noise ratio (hereinafter referred to as S/N) becomes poor due to the thermal noise of the receiver. Since this thermal noise is random noise, it is necessary to use a code/decoding method that is resistant to this random noise for the digital information to be transmitted.

従って符号化としてはたたみ込み符号とし、復号化とし
ては誤り訂正能力が優れているビタビ復号法とする方式
が、近年、よく用いられるようになってきた。衛星通信
では主として、4相PSK(Phase 5hif’t
 Keying)方式が用いられる。
Therefore, a system in which convolutional codes are used for encoding and Viterbi decoding, which has excellent error correction ability, is used for decoding, has become popular in recent years. In satellite communications, 4-phase PSK (Phase 5hif't
Keying method is used.

この為衛星通信のたたみ込み符号化では、送信デ−タを
たたみ込み符号化されたI (Inphase)CH(
Channel )データとQ (Quadratur
e )CHのデータの2つの2値データに分けて送信す
る0 この為l−CHとQ−CHを合計すると2倍の情報を送
らねばならず伝送効率は1/2となる。この伝送効率を
上げる為に符号化ビットの一部を適当に消去するパンク
チャド方式が用いられる。このパンクチャド方式ではに
ビットを一周期とし、最初のビットは工・CH,Q−C
H共消去はしないが残りのに一1ビットは交互にいづれ
かのCHのビットを消去するものである。受信側ではダ
ミー信号挿入部にてこの消去されたビット位置に任意の
ダミー符号を挿入し、この挿入された信号と、ダミー符
号のメトリック(数値化)計算を禁止する為の′° メ
トリック計算禁 止信号を、ビタビデコーダにて復号化し誤りを訂正して
受信している。尚この復号の場合、とりとデコーダでは
挿入されたダミー符号も送信側で消去した符号となるよ
う訂正して送信側の送信データと一致さすようにしてい
る。
For this reason, in convolutional coding for satellite communication, transmission data is convolutionally coded into I (Inphase)CH (
Channel ) data and Q (Quadrature
e) CH data is divided into two binary data and transmitted 0 Therefore, if you add up the l-CH and Q-CH, twice as much information has to be sent, and the transmission efficiency becomes 1/2. In order to increase the transmission efficiency, a punctured method is used in which a portion of the coded bits are appropriately erased. In this punctured method, each bit is one cycle, and the first bit is
H is not erased, but the remaining 11 bits are used to alternately erase the bits of one of the CHs. On the receiving side, the dummy signal insertion unit inserts an arbitrary dummy code into the erased bit position, and prohibits metric calculation of the inserted signal and dummy code. The signal is decoded by a Viterbi decoder, errors are corrected, and then received. In the case of this decoding, the inserted dummy code is also corrected in the decoder so that it becomes the code deleted on the transmitting side so that it matches the data transmitted on the transmitting side.

(C)従来技術と問題点 たたみ込み符号化したICHとQCHのデータをそのま
ま伝送し受信側でビタビ復号化を行う方式の場合の、誤
り検出方式としては従来第1図に示す方式がある。
(C) Prior Art and Problems In the case of a method in which convolutionally encoded ICH and QCH data is transmitted as is and Viterbi decoding is performed on the receiving side, there is a conventional error detection method shown in FIG. 1.

送信側で送信データDをたたみ込み符号器にてたたみ込
み符号化されたICH及びQCHのデータは、各種伝送
路を通り、第1図のとタビデコーダ1のT、、T、端子
にデータI、Qとして入力し、ビタビデコーダ1にて復
号化及び誤り訂正されて受信データDとして出力される
。データI、 Qの誤りを検出するためにはこのデータ
Dをたたみ込み符号器2にてたたみ込み符号化しI C
M、 Q CMのデータI′、Q′として排他的論理和
(以下EX−ORと称す)回路5,6に入力し、−万デ
ータI。
The ICH and QCH data obtained by convolutionally encoding the transmission data D by the convolutional encoder on the transmitting side pass through various transmission paths and are sent to the terminals T, T, and T of the Tobi decoder 1 shown in FIG. The data is inputted as received data D, decoded and error corrected by the Viterbi decoder 1, and outputted as received data D. In order to detect errors in data I and Q, this data D is convolutionally encoded by convolutional encoder 2.
M, Q are input to exclusive OR (hereinafter referred to as EX-OR) circuits 5 and 6 as data I' and Q' of CM, and -10,000 data I.

Qを遅延回路3.4にて遅延させ、とタビデコーダ1.
たた込み符号器2を通ったデータエ′、Q′と同期をと
り、EX−OR回路5.6に入力する。
Q is delayed by the delay circuit 3.4, and the Tavi decoder 1.
It is synchronized with data E' and Q' that have passed through the convolutional encoder 2, and is input to an EX-OR circuit 5.6.

EX−OR回路5,6では誤りビットを含むデータI、
 Qと誤り訂正されたデータI/、 Q/とをビット毎
に不一致を検出することで誤りビットを見つけ、不一致
ビットを発見した特電1“レベルのパルスを出力しOR
回路7を介して誤りパルスとして出力することで誤りを
検出している。しかし、バタピデコーダ1にて誤り訂正
され÷母台も西も;欅*瓜消去された符号に復元された
符号と、任意の符号であるダミー符号との不一致の確率
は約50チある。このためダミー符号を挿入されたデー
タI、Qと、ビタビデコーダ誤り訂正後、再びたたみ込
み符号化されたデータx/、 Q7と比較すればダミー
符号の部分では約50%の確率で不一致が起る。したが
ってこの場合は、第1図の回路をダミー符号を挿入する
前のデータの誤り検出回路としては使用出来なくなる。
In the EX-OR circuits 5 and 6, data I including error bits,
Error bits are found by detecting mismatch between Q and error-corrected data I/ and Q/ bit by bit, and a pulse of the special electric 1 level is output when the mismatched bit is detected, and OR is performed.
Errors are detected by outputting them as error pulses through the circuit 7. However, there is a probability of a mismatch between the code restored to the error-corrected code in the Batapi decoder 1 and the dummy code, which is an arbitrary code, and the dummy code, which is an arbitrary code, is about 50. Therefore, if we compare the data I and Q into which the dummy code has been inserted and the data x/Q7 which has been convolutionally encoded again after Viterbi decoder error correction, there is a probability of mismatch in the dummy code part with approximately 50% probability. Ru. Therefore, in this case, the circuit shown in FIG. 1 cannot be used as an error detection circuit for data before inserting the dummy code.

尚T、、T4はメトリック計算禁止信号の入力端子であ
る。
Note that T, , T4 are input terminals for a metric calculation prohibition signal.

(d)〉る明の目的 本発明の目的は上記の問題に鑑み、パンクチット方式を
適用した場合でも、使用可能なとタビデコーダによる誤
り検出方式の提供にある。
(d)〉Object of the Invention In view of the above-mentioned problems, an object of the present invention is to provide an error detection method using a tabi decoder that can be used even when a punctit method is applied.

(e) 発明の構成 本発明は上記の目的を達成するために、パンクチャツト
方式にて消去された符号のかわりにダミー符号を挿入し
た第1の信号及び該ダミー符号のメトリック計算禁止信
号をとタビデコーダに入力し、該第1の信号を復号して
誤りを訂正した第2の信号と、該第1の信号とを比較し
、誤りパルスを検出した出力の内、該ダミー符号による
誤りパルスの出力を、該メトリック計算禁止信号で阻止
するようにしたことを特徴とする。
(e) Structure of the Invention In order to achieve the above object, the present invention includes a first signal in which a dummy code is inserted in place of the code erased by the puncturing method, and a metric calculation prohibition signal for the dummy code. The first signal is input to the Tavi decoder, the error is corrected by decoding the first signal, and the second signal is compared with the first signal. The present invention is characterized in that the output is blocked by the metric calculation prohibition signal.

即ちこうすることによりダミー符号と、ダミー符号を消
去した符号に訂正された符号との比較にとになる。
That is, by doing this, the dummy code is compared with the code corrected to the code from which the dummy code has been deleted.

(f) 発明の実施例 以下本発明の実施例につ、き図に従って説す」する。(f) Examples of the invention Embodiments of the present invention will be described below with reference to the accompanying drawings.

第2図は本発明の実施例の誤り検出回路のブロック図で
あり、図中第1図と同一機能のものは同一記号で示し、
8,9は遅延回路、10.11はAND回路、12はO
R1路+’rs、T4は夫々れICH。
FIG. 2 is a block diagram of an error detection circuit according to an embodiment of the present invention, in which the same functions as those in FIG. 1 are indicated by the same symbols.
8 and 9 are delay circuits, 10.11 is an AND circuit, and 12 is an O
R1 road +'rs and T4 are each ICH.

QCHのメトリック計算禁止信号の入力端子を示す。第
3図はパンクチャツト方式の一例の符号を消去しダミー
符号を挿入するパターン図であり、上段はICl1側下
段はQCH側を示し、%O“の場合は符号を消去しダミ
ー符号を挿入する場合を示している。
This shows the input terminal of the QCH metric calculation prohibition signal. Figure 3 is a pattern diagram of erasing a code and inserting a dummy code as an example of the puncturing method.The upper row shows the ICl1 side, the lower row shows the QCH side, and in the case of %O'', the code is deleted and a dummy code is inserted. It shows the case.

第2図はバンクデッド方式を適用した場合でも使用可能
なビタビデコーダによる−り検出回路を示しており、端
子TI、T2にはダミー信号挿入部で消去された符号の
位置にダミー符号が挿入されたデータI、Qが入力され
、端子Ts、1’*には、夫々ICH,QCHに挿入さ
れたダミー符号のメトリック計算を禁止する10“レベ
ルのメトリック計算禁止信号R8がダミー符号挿入時点
で該ダミー符号挿入部より入力する。
Figure 2 shows a loss detection circuit using a Viterbi decoder that can be used even when the bank dead method is applied, and a dummy code is inserted into the terminals TI and T2 at the position of the code erased by the dummy signal insertion section. data I and Q are input to terminals Ts and 1'*, and a 10" level metric calculation prohibition signal R8, which prohibits metric calculation of the dummy codes inserted into ICH and QCH, respectively, is applied at the time of dummy code insertion. Input from the dummy code insertion section.

端子TI、T2に入力した、ダミー符号が挿入されたデ
1−タI、Qは、第1図の場合と同様にとタビデコーダ
1にて復号し誤り訂正され送信データDと等しいデータ
Dとなり、たたみ込み符号器2にてたたみ込み符号化さ
れ、データI’、 Q’とされ、致ビットの場合はルベ
ルのパルスがAND回路10、l’lに入力する。しか
しデータI、Qのダミー符号と、誤り訂正され、ダミー
符号が、消去された符号に復元されたデータI’、’Q
’との比較では503チの誤りとなるので、不一致ビッ
トのパルスを其のまま誤り検出としたのではダミー符号
を挿入する前のデータの誤り検出とはならないので、タ
ミー符号位置での不一致ビットのパルスLtd)なけれ
ばならない。この為ダミー符号挿入時点で、気0“レベ
ルを送出するメトリック計算禁止信号R1Sを、夫々遅
延回路8,9にて遅延させ、データ1/。
The data I and Q inputted to the terminals TI and T2, into which dummy codes have been inserted, are decoded and error-corrected by the tabi decoder 1 in the same way as in the case of FIG. 1, and become data D equal to the transmission data D. The data is convolutionally encoded by the convolutional encoder 2 to become data I' and Q', and in the case of a matching bit, the Lebel pulse is input to the AND circuit 10, l'l. However, the dummy codes of data I, Q and the data I', 'Q which are error-corrected and restored to the erased codes.
', there are 503 errors, so if the pulse of the mismatched bit is used as error detection, it will not be the error detection of the data before inserting the dummy code, so the mismatched bit at the tummy code position Pulse Ltd). For this reason, at the time of inserting the dummy code, the metric calculation prohibition signal R1S that sends out the ``0'' level is delayed by the delay circuits 8 and 9, respectively, and the data 1/.

Q′の、ダミー符号が消去された符号に復元された符号
との同期をとるようにして、AND回路10゜11に入
力させ、ダミー符号位置での不一致ビットのパルスの出
力を禁止して、ダミー符号挿入前の誤り検出パルスのみ
をOR回路12を介して出力するようにしている。
The code from which the dummy code of Q' has been deleted is synchronized with the restored code, and is input to the AND circuits 10 and 11, and the output of the pulse of the mismatched bit at the dummy code position is prohibited. Only the error detection pulse before dummy code insertion is outputted via the OR circuit 12.

このようにしてダミー符号挿入による間違った誤りパル
スの検出を回避出来る。勿論パンクチャツト方式を適用
しない場合は、T、、T4端子に1トレベルを与えてお
くことで第1図の場合と同様に誤りパルスの検出を行う
ことが出来る。
In this way, incorrect detection of error pulses due to dummy code insertion can be avoided. Of course, if the puncturing method is not applied, error pulses can be detected in the same way as in the case of FIG. 1 by applying 1 level to the T, , T4 terminals.

以上の説明では遅延回路8,9にて遅延さす量は、デー
タ1. Qがビタビデコーダ1.たたみ込み符号器2.
EX−OR回路5又は6を通る分遅延さす必要があるこ
とになるが、ビタビデコーダ1での遅延量(7リツグフ
ロツプによる処理段数)は大きいので例えば遅延回路8
.9をシフトレジスタで構成するとすると回路規模が相
当大きくなる。
In the above explanation, the amount of delay in the delay circuits 8 and 9 is the amount of delay for data 1. Q is the Viterbi decoder 1. Convolutional encoder 2.
Although it is necessary to delay the data through EX-OR circuit 5 or 6, since the amount of delay in Viterbi decoder 1 (the number of processing stages with 7 logic flops) is large, for example, delay circuit 8
.. If 9 is constructed with a shift register, the circuit scale will be considerably large.

そこで、第3図に示しである、パンクデッド方式に着目
し、遅延回路8.9のビタビデコーダ1での遅延段数M
に相当する部分のシフトレジスタの段数Nを、Mをkで
除した余り数に設定するようにすると遅延回路8,9の
シフトレジスタの段数を非常に少なく出来る。
Therefore, we focused on the punctured dead method shown in FIG.
By setting the number N of shift register stages corresponding to , to the remainder when M is divided by k, the number of shift register stages of the delay circuits 8 and 9 can be extremely reduced.

例えば、ビタビデコーダ1での遅延段数M=70゜ての
遅延はないものとすると、70段遅延した第3図の四点
のダミー符号挿入状況と、今のイ点のダミー符号挿入状
況とは等しいので遅延回路8゜9にて遅延されない今の
メトリック計算禁止信号を使用すればダミー符号の場合
の誤り検出信号出力はAND回路10.11にて禁止出
来る。次にビタビデコーダ1の遅延段数M=71とする
と71段遅延した第3図のハ点のダミー符号挿入状況と
は今のイ点を1段遅延さした二点のダミー符号挿入状況
とは等しいので遅延回路8.9の遅延段数を1とすれば
よい。
For example, assuming that there is no delay due to the number of delay stages M = 70° in Viterbi decoder 1, what is the dummy code insertion situation at the four points in Figure 3, which is delayed by 70 stages, and the current dummy code insertion situation at point A? Since they are equal, if the current metric calculation prohibition signal which is not delayed by the delay circuit 8.9 is used, the output of the error detection signal in the case of a dummy code can be prohibited by the AND circuit 10.11. Next, if the number of delay stages of the Viterbi decoder 1 is M = 71, the dummy code insertion situation at point C in Figure 3, which is delayed by 71 stages, is the same as the dummy code insertion situation at two points, where the current point A is delayed by one stage. Therefore, the number of delay stages of the delay circuits 8.9 may be set to 1.

これはMをkで割った余りに相当する0従って遅延回路
8,9の、ビタビデコーダ1に相当する遅延段数を、ビ
タビデコーダ1での遅延段数Mを・(ンクチ、ドパター
ンの一周期のビット数kにて除した余りの段数にすれば
遅延回路8,9は非常に小形化出来る。
This is 0, which corresponds to the remainder when M is divided by k. Therefore, the number of delay stages in delay circuits 8 and 9, which corresponds to Viterbi decoder 1, is the number of delay stages M in Viterbi decoder 1. The delay circuits 8 and 9 can be made extremely compact by setting the number of stages to the remainder after dividing by the number k.

第4図は本発明の他の実施例の誤り検出回路のブロック
図であり、図中第1図と同一機能のものは同一記号で示
し、13.15はアンド回路、14は遅延回路を示す。
FIG. 4 is a block diagram of an error detection circuit according to another embodiment of the present invention, in which the same functions as in FIG. 1 are indicated by the same symbols, 13.15 is an AND circuit, and 14 is a delay circuit. .

第4図は、第2図の2つの遅延回路8,9のかわりに一
つの遅延回路14にてダミー符号位置での不一致ビット
の出力を禁止するようにしたものである。
In FIG. 4, one delay circuit 14 is used instead of the two delay circuits 8 and 9 in FIG. 2 to inhibit the output of mismatched bits at dummy code positions.

即ち、ダミー符号を挿入しない時はメトリック計算禁止
信号R,Sは第3図に示す如(I CHIQCH側共虱
1“レベルであり、ダミー符号を挿入した場合はいづれ
か一方がOレベルであるので、“メトリック計算禁止信
号R,SをAND回路13に入力し、AND回路13で
ダミー符号を挿入した場合%0“レベルを出力するよう
にして、AND回路15にてダミー符号位置での不一致
ビットのパルスの出力を禁止するようにしている。
That is, when no dummy code is inserted, the metric calculation prohibition signals R and S are at the 1 level as shown in FIG. , the metric calculation prohibition signals R and S are input to the AND circuit 13, and the AND circuit 13 outputs a level of %0 when a dummy code is inserted, and the AND circuit 15 detects the mismatch bit at the dummy code position. The output of pulses is prohibited.

第5図も本発明の別の実施例の誤り検出回路のブロック
図であり、図中第1図と同一機能のものは同一記号で示
し、16.17は遅延回路、18はFJX−OR回路、
19はAND回路、SWI〜SW3は連動のスイッチを
示す。
FIG. 5 is also a block diagram of an error detection circuit according to another embodiment of the present invention. Components having the same functions as those in FIG. ,
19 is an AND circuit, and SWI to SW3 are interlocking switches.

第5図の回路はICH,QCHのいづれか一方のダミー
符号を挿入する前のデータの誤りビットを検出するもの
でスイッチSWI、SW2.SW3を実線で示す接続側
とすれば第2図の場合で説明したと同様にしてICH側
の誤りビットを検出出来、スイッチSWI、SW2.S
W3を点線で示す接続側とすればQCH側の誤りビット
を検出出来る。
The circuit shown in FIG. 5 detects error bits in data before inserting a dummy code for either ICH or QCH, and switches SWI, SW2. If SW3 is the connection side shown by the solid line, the error bit on the ICH side can be detected in the same way as explained in the case of FIG. 2, and switches SWI, SW2 . S
If W3 is on the connection side shown by the dotted line, error bits on the QCH side can be detected.

(g) 発明の効果 以上詳細に説明せる如く本発明によればメ) IJフッ
ク算禁止信号にて、ダミー符号による間違った誤りパル
スの出力が無くなるので、パンクチャツト方式を適用し
た場合でも正しく誤りを検出出来るビタビデコーダによ
る誤り検出回路が得られる効果がある。
(g) Effects of the Invention As explained in detail above, according to the present invention, the IJ hook calculation prohibition signal eliminates the output of erroneous error pulses due to dummy codes, so even when the puncturing method is applied, errors can be corrected. This has the effect of providing an error detection circuit using a Viterbi decoder that can detect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例のビタビデコーダによる誤り検出回路の
ブロック図、第2図、第4図、第5図は本発明の実施例
のビタビデコーダによる誤り検出回路のブロック図、第
3図はノくンクテヤツド方式の一例の符号を消去ダミー
符号を挿入するノ(ターン図である。 図中、1はビタビデコーダ、2はたたみ込み符号器、3
,4,8,9,14,16.17は遅延回路、5.6.
、−18は排他的論理和回路、r、x2はオア回路、1
0゜11、13.15.19はアンド回路、SWI、S
W2゜SW3はスイッチを示す。 芥l閉
FIG. 1 is a block diagram of an error detection circuit using a conventional Viterbi decoder, FIGS. 2, 4, and 5 are block diagrams of an error detection circuit using a Viterbi decoder according to an embodiment of the present invention. This is a turn diagram for erasing codes and inserting dummy codes in an example of the chunk-tailed method. In the figure, 1 is a Viterbi decoder, 2 is a convolutional encoder, and 3 is a convolutional encoder.
, 4, 8, 9, 14, 16.17 are delay circuits, 5.6.
, -18 is an exclusive OR circuit, r, x2 is an OR circuit, 1
0゜11, 13.15.19 are AND circuits, SWI, S
W2°SW3 indicates a switch. Closed

Claims (1)

【特許請求の範囲】[Claims] たたみ込み符号化ビタピ復号法のバンクチャラック計算
禁止信号をビタビデコーダに入力し、該第1の信号を復
号して誤りを訂正した出力を、たたみ込み符号器に入力
し再符号化した第2の信号と、該第1の符号とを比較し
誤りパルスを検出した出力の内、該ダミー符号と比較し
た場合の誤りパルスの出力を、該メ) IJクック算禁
止信号で阻止するようにしたことを特徴とするビタビデ
コーダによる誤り検出方式。
The bankcharac computation prohibition signal of the convolutional encoding Vitapi decoding method is input to the Viterbi decoder, and the output obtained by decoding the first signal and correcting errors is input to the convolutional encoder and re-encoded. Among the outputs in which an error pulse is detected by comparing the signal with the first code, the output of the error pulse when compared with the dummy code is blocked by the IJ Cook calculation prohibition signal. An error detection method using a Viterbi decoder characterized by the following.
JP3322984A 1984-02-23 1984-02-23 Error detecting system by viterbi decoder Pending JPS60177732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3322984A JPS60177732A (en) 1984-02-23 1984-02-23 Error detecting system by viterbi decoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3322984A JPS60177732A (en) 1984-02-23 1984-02-23 Error detecting system by viterbi decoder

Publications (1)

Publication Number Publication Date
JPS60177732A true JPS60177732A (en) 1985-09-11

Family

ID=12380625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3322984A Pending JPS60177732A (en) 1984-02-23 1984-02-23 Error detecting system by viterbi decoder

Country Status (1)

Country Link
JP (1) JPS60177732A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310057A2 (en) * 1987-09-30 1989-04-05 Nec Corporation Decoder
JPH05503825A (en) * 1990-11-21 1993-06-17 モトローラ・インコーポレーテッド error detection system
JP2919072B2 (en) * 1992-03-30 1999-07-12 モトローラ・インコーポレーテッド Error detection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310057A2 (en) * 1987-09-30 1989-04-05 Nec Corporation Decoder
JPH05503825A (en) * 1990-11-21 1993-06-17 モトローラ・インコーポレーテッド error detection system
JP2919072B2 (en) * 1992-03-30 1999-07-12 モトローラ・インコーポレーテッド Error detection system

Similar Documents

Publication Publication Date Title
US6199190B1 (en) Convolution decoding terminated by an error detection block code with distributed parity bits
EP0595034B1 (en) Differentially coded and guard pulse position modulation for communication networks
US20060150067A1 (en) Error detector, semiconductor device, and error detection method
JPS5864850A (en) High speed deciding device for end of binary data sequence
JP3712184B2 (en) Method and apparatus for receiving and decoding modulated signal by different modulation schemes
EP0000039B1 (en) A data transmission process and system to permit substantial reduction of interference between a received first and second digital signal
WO2008055207A2 (en) Reciever for the geo satellite reverse link using tail-biting code
US5014275A (en) Sequential decoder
EP0465782A1 (en) Convolutionally-encoded quadrature frequency-modulation system
US5850403A (en) Process of selectively protecting information bits against transmission errors
JPS60177732A (en) Error detecting system by viterbi decoder
US3577186A (en) Inversion-tolerant random error correcting digital data transmission system
Zhou et al. A cyclic redundancy check‐based non‐coherent receiver for automatic identification system signals
US6700938B1 (en) Method for determining quality of trellis decoded block data
JP2944153B2 (en) Demodulation reference phase ambiguity removal method
JPH04291552A (en) Demodulation reference phase uncertainty elimination system and its receiver
JPH07114424B2 (en) Carrier synchronous demodulator
JP3874605B2 (en) Error correction method and error correction apparatus
JP2945686B2 (en) Multiple reception maximum likelihood decoding circuit
US20040059991A1 (en) Simple detector and method for QPSK symbols
JP3960225B2 (en) Method and apparatus for decoding data transmitted by a turbo coder that facilitates synchronization
JP2800855B2 (en) Digital wireless communication system
EP0312200A2 (en) Synchroniser for a decoder and decoder system
JP3458782B2 (en) DUTY correction circuit
SNYDER et al. Forward error correction for satellite TDMA in the INTELSAT V era