JPS60177606A - Manufacture of superconductive electromagnet coil - Google Patents

Manufacture of superconductive electromagnet coil

Info

Publication number
JPS60177606A
JPS60177606A JP3321984A JP3321984A JPS60177606A JP S60177606 A JPS60177606 A JP S60177606A JP 3321984 A JP3321984 A JP 3321984A JP 3321984 A JP3321984 A JP 3321984A JP S60177606 A JPS60177606 A JP S60177606A
Authority
JP
Japan
Prior art keywords
insulating layer
coil
cooling body
layer
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3321984A
Other languages
Japanese (ja)
Other versions
JPH031807B2 (en
Inventor
Taku Umegaki
梅垣 卓
Makoto Tawara
俵 誠
Masaru Ikeda
池田 ▲まさる▼
Makoto Kudo
誠 工藤
Fujio Tokimitsu
富士雄 時光
Haruo Ono
春雄 小野
Mitsuru Yamada
充 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Fuji Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3321984A priority Critical patent/JPS60177606A/en
Publication of JPS60177606A publication Critical patent/JPS60177606A/en
Publication of JPH031807B2 publication Critical patent/JPH031807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)
  • Laminated Bodies (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductive electromagnet coil having superior insulating performance, cooling performance, adhesion strength and cryoresistive performance by a method wherein when the superconducting coil is to be fixed on the surface of a cooling body interposing an insulating layer between them, a multiplex insulating layer consisting of a polyimide film, glass reinforced plastics and a heat-sensitive adhesive film is used as the insulating layer. CONSTITUTION:An adhesive resin layer 12 is applied on the inside surface of a cooling body 2, and a superconductive coil 4 is fixed thereon interposing a composite sheet 11 between them. At this construction, as the core material of the composite sheet 11, a polyimide film 6 processed to have rough surfaces according to a sand blast is used, and glass reinforced plastic sheets 7 are adhered to both the surfaces of the film thereof interposing epoxy resin adhesives 8 between them. Moreover a heat-sensitive adhesive layer 9 is adhered to the side to face with the cooling body 2, and an adhesion checking sheet 10 is sticked thereon. The composite sheet 11 is constructed in such a way, and when the adhesive layer 9 side is to be sticked to the cooling body 2 interposing butted parts 11A, 11B between them, sticking is performed by peeling off the sheet 10. Accordingly, the sheet 11 having no void, etc. can be obtained.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は高エネルギー物理の粒子検出用等に用いられる
間接冷却方式の超電導電磁石コイルの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for manufacturing an indirect cooling superconducting electromagnetic coil used for detecting particles in high-energy physics.

〔従来技術とその問題点′〕[Prior art and its problems']

この種の超電導電磁石コイルは直径および長さがそれぞ
れ数メートルにおよぶ゛ものがあり、一般に外周側に液
化ヘリウム等の冷却媒体を通す冷却管を固着した筒状の
冷却体と、この冷却体の内周面に密接して巻回された単
層の内巻き超電導コイルとからなる間接冷却方式の電磁
石コイルが用いられており、冷却体とコイルとを電気的
に絶縁するとともに大電流を導くコイルを機械的に強化
するために、コイルと冷却体との間に接着樹脂を含んだ
絶縁層を介在させて両者を固着し一体化するよう構成さ
れる。したがってコイルの冷却は前記絶縁層を介して行
われることになるので、絶縁層には高度な絶縁性能と接
着強度がめられると同時に、良好な熱伝導性と厳しい冷
却サイクルに対しても前記性能が低下しない耐極低温性
および耐ヒートサイクル性とがめられる。
This type of superconducting electromagnetic coil has several meters in diameter and length, and generally consists of a cylindrical cooling body with a cooling pipe fixed to the outer circumference for passing a cooling medium such as liquefied helium, and An indirect cooling type electromagnetic coil is used, which consists of a single-layer inner-wound superconducting coil that is tightly wound around the inner circumferential surface.The coil electrically insulates the cooling body and the coil and conducts a large current. In order to mechanically strengthen the coil and the cooling body, an insulating layer containing an adhesive resin is interposed between the coil and the cooling body to fix and integrate the two. Therefore, the coil is cooled through the insulating layer, so the insulating layer is required to have high insulation performance and adhesive strength, as well as good thermal conductivity and the ability to withstand severe cooling cycles. It is said to have cryogenic resistance and heat cycle resistance that do not deteriorate.

第1図は内巻き超電導電磁コイルの概略断面図である。FIG. 1 is a schematic cross-sectional view of an inner-wound superconducting electromagnetic coil.

図において、2はアルミニウム、銅等の熱良導体からな
る円筒状の冷却体で、外周面側には冷却管5が溶接され
ている。3は冷却体2の内周面に被着された接着樹脂を
含んだ絶縁層、4は内巻き超電導コイルで、アルミニウ
ム、銅等の係蹄導体によって方形断面に形成され絶縁被
覆された超電導線を円筒の接線方向に力を加えつつ絶縁
層3に密接巻回されている。このように形成された超電
導電磁コイル1には、図示しない軸方向加圧装置および
半径方向加圧装置によって、図に矢印で示す分布荷重が
加えられた状態で所定温度の加熱硬化炉に搬入され、絶
縁層に被着された接着樹脂が加熱硬化されることにより
、冷却体2と内巻き超電導コイル4とが絶縁層3を介し
て強固に接着されて一体化せしめられる。
In the figure, reference numeral 2 denotes a cylindrical cooling body made of a good thermal conductor such as aluminum or copper, and a cooling pipe 5 is welded to the outer peripheral surface of the cooling body. 3 is an insulating layer containing an adhesive resin applied to the inner peripheral surface of the cooling body 2, and 4 is an inwardly wound superconducting coil, which is a superconducting wire formed into a rectangular cross section by a snare conductor such as aluminum or copper and coated with insulation. is tightly wound around the insulating layer 3 while applying force in the tangential direction of the cylinder. The thus formed superconducting electromagnetic coil 1 is loaded into a heat curing furnace at a predetermined temperature with distributed loads indicated by arrows in the figure being applied by an axial pressure device and a radial pressure device (not shown). By heating and curing the adhesive resin applied to the insulating layer, the cooling body 2 and the inner-wound superconducting coil 4 are firmly bonded and integrated via the insulating layer 3.

上述のように形成された超電導電磁石コイルにおいて、
コイルの直径および長さがそれぞれ数メートルにも及ぶ
大形コイルである場合、コイルζζ大電流を流すに必要
な電圧は数千ボルト番どなるため、超電導コイル4々冷
却体2との間の絶縁は上記電圧に耐えることがめられる
。また絶縁物の破壊電圧は、弱点理論に基づき、絶縁物
の面積の増大に逆比例して低下するので、上述のような
大形コイルにおいては材料として一般に測定される破壊
電圧は致方ボルトであることがめられる。
In the superconducting electromagnetic coil formed as described above,
When the coil is a large coil with a diameter and length of several meters, the voltage required to flow a large current in the coil is several thousand volts, so the insulation between the four superconducting coils and the cooling body 2 is required. is expected to withstand the above voltage. Furthermore, based on the weak point theory, the breakdown voltage of an insulator decreases in inverse proportion to the increase in the area of the insulator, so for large coils such as those mentioned above, the breakdown voltage generally measured as a material is I can see something.

そこで従来このような電圧に耐える絶縁材料としてガラ
ス強化プラスチック積層板が用いられていたが、前記電
圧に耐える絶縁層の厚さとしてほぼ1ミリメートルを必
要とするため、たとえば0.5ミリメートルの厚さの積
層板を2層粘り合わせて用いられていた。ところが、積
層板の剛性が高いためiこ、筒状の冷却体の内周面に隙
き間なく貼り着けることが困難であり、かつ粘度の高い
接着剤lこよって封じ込められた気泡はコイルを介して
押圧力を加えても追い出すことが困難で、このようにし
て形成された絶縁層の熱伝導特性は、厚い絶縁層の熱抵
抗と空隙の熱抵抗とが直列に介在することによって悪く
なり、超電導コイル4を絶対温度の零度近くの所定温度
まで間接冷却することが困難になるという問題があった
。また積層板相互の突き合わせ部分に空隙が残り、この
部分の絶縁強度が低いために、異なる層の突き合わせ部
を相互にずらせて積層したとしても、耐電圧値がほぼ手
分に低下してしまうという欠点があった。
Conventionally, glass-reinforced plastic laminates have been used as an insulating material that can withstand such voltages. It was used by gluing two layers of laminate together. However, due to the high rigidity of the laminate, it is difficult to adhere it to the inner circumferential surface of the cylindrical cooling body without any gaps, and the highly viscous adhesive prevents the trapped air bubbles from forming on the coil. It is difficult to drive out even if pressing force is applied through the insulating layer, and the thermal conductivity of the insulating layer formed in this way is deteriorated due to the serial intervening of the thermal resistance of the thick insulating layer and the thermal resistance of the void. However, there is a problem in that it becomes difficult to indirectly cool the superconducting coil 4 to a predetermined temperature near zero absolute temperature. In addition, voids remain where the laminates butt each other, and the insulation strength of these areas is low, so even if the butts of different layers are stacked with their butts offset from each other, the withstand voltage value will drop by almost a fraction. There were drawbacks.

一方ポリイミドフイルム等の絶縁フィルムを用いて絶縁
層を形成したものも知られている。ポリイミドフィルム
は電気絶縁性にすぐれ、またすぐれた耐熱性、耐寒性を
もち、ガラス強化プラスチλソ゛り積層板に比べて薄く
柔らかいので、筒状の冷却体の内周面に密着した絶縁層
を比較的容易をこ形成することができ、絶縁層の厚さも
前記積層板方式の数分の−でよいために、すぐれた冷却
性能が得られる利点がある。しかしながらポリイミドフ
ィルムはエポキシ樹脂などの接着剤との接着性が悪く、
かつ機械的に傷つきやすいので、超電導線のコイル巻回
作業時において絶縁層を損傷したり、コイルに作用する
電磁機械力によって絶縁層にはく離を生ずるなどの欠点
があった。
On the other hand, it is also known that an insulating layer is formed using an insulating film such as a polyimide film. Polyimide film has excellent electrical insulation properties, as well as excellent heat and cold resistance, and is thinner and softer than glass-reinforced plastic laminates, so it is suitable for forming an insulating layer that adheres closely to the inner circumferential surface of a cylindrical cooling body. Since it can be formed relatively easily and the thickness of the insulating layer can be several times smaller than that of the laminated plate method, it has the advantage of providing excellent cooling performance. However, polyimide film has poor adhesion with adhesives such as epoxy resin,
In addition, since it is easily damaged mechanically, it has disadvantages such as damage to the insulating layer during coil winding of superconducting wire, and peeling of the insulating layer due to electromagnetic mechanical force acting on the coil.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、絶縁層の
厚さが薄く、接着層中に空隙やボイドが少なく、絶縁性
能ならびに熱伝導性がすぐれ、接する。
The present invention has been made in view of the above-mentioned situation, and has a thin insulating layer, few voids and voids in the adhesive layer, and excellent insulating performance and thermal conductivity.

〔発明の要点〕[Key points of the invention]

本発明は、冷却体面上化、絶縁層を介して超電導コイル
を固着せしめた超電導電磁石コイルの製造方法に詔いて
、前記冷却体面上に、粗面加工したポリイミドフィルム
とガラス強化プラスチ・ンクシートとの積層体の少なく
とも一方の両に気泡等を含まない感熱性接着剤層(以下
感熱接着膜という)を被着した複合シートを貼り重ねて
複合絶縁層を形成し、さらに前記複合絶縁層と超電導コ
イルとを、複合絶縁層または超電導コイルの表面に塗布
した接着樹脂層を介して固着することにより、前記の目
的を達成するものである。
The present invention is directed to a method of manufacturing a superconducting electromagnetic coil in which a superconducting coil is fixed to the surface of the cooling body through an insulating layer, and a roughened polyimide film and a glass-reinforced plastic sheet are placed on the surface of the cooling body. A composite insulating layer is formed by laminating a composite sheet with a heat-sensitive adhesive layer (hereinafter referred to as a heat-sensitive adhesive film) that does not contain air bubbles on both sides of at least one side of the laminate, and then the composite insulating layer and the superconducting coil are stacked together. The above object is achieved by fixing the composite insulating layer or the superconducting coil through an adhesive resin layer applied to the surface of the superconducting coil.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を添付図面を参照しつつ説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第2図は本発明lこおいて用いた複1合シートの構造断
面図である。図において、複合シー)11は、サンドブ
ラスト法等により粗面加工されたポリイミドフィルム6
とガラス強化プラスチックシ一ト7とをたとえばエポキ
シ樹脂接着層8によって強固iこ接着して複合絶縁シー
トを形成し、少なくともその一方の表面に感熱接着膜9
をたとえば転写法等により被着したもので、感熱接着1
x9の表面には複合シート使用時lこは除去される粘着
防止シート10が貼着されている。このように構成され
た複合シート11の耐電圧を主に保持するポリイミドフ
ィルムの厚さは0.01〜0.5 ミリメートルの範囲
で選択が可能であり、該ポリイミドフィルムの機械的な
保護と絶縁シートの接着性の向上を主な目的とするガラ
ス強化プラスチ1ツクシートとしては、薄いガラス布に
たとえばエポキシワニスを含浸し硬化したものが用いら
れ、その厚さは、ポリイミドフィルムよりやや薄いもの
が適している。
FIG. 2 is a structural sectional view of the composite sheet used in the present invention. In the figure, a composite sheet 11 is a polyimide film 6 whose surface has been roughened by sandblasting or the like.
and a glass-reinforced plastic sheet 7 are firmly bonded, for example, with an epoxy resin adhesive layer 8 to form a composite insulating sheet, and a heat-sensitive adhesive film 9 is provided on at least one surface of the composite insulating sheet.
For example, it is applied by a transfer method, etc., and heat-sensitive adhesive 1
An anti-adhesion sheet 10 is attached to the surface of x9, which is removed when the composite sheet is used. The thickness of the polyimide film that mainly maintains the withstand voltage of the composite sheet 11 configured in this way can be selected in the range of 0.01 to 0.5 mm, and the thickness of the polyimide film that mainly maintains the withstand voltage can be selected from the range of 0.01 to 0.5 mm. Glass-reinforced plastic sheets, whose main purpose is to improve the adhesive properties of the sheet, are made by impregnating and curing a thin glass cloth with, for example, epoxy varnish, and it is suitable that the thickness is slightly thinner than that of polyimide film. ing.

このよう化構成した複合シートは適度な柔軟性と高い耐
電圧強度ならびに機械的強度を有する。感熱接着膜は絶
縁層を構成する上で特に重要な機能を有する。すなわち
、感熱接着H9は、たとえば半硬化エポキシ樹脂からな
りこの半硬化の程度は、常温では適度の粘着力があって
たとえば筒状の冷却体に貼り着けたときその状態を保持
して容易にはがれない機能を持ち、かつ適度の軟らかさ
があってコイルを介して接着剤層iこ押圧力を加えたと
き、被接着面との間こと残存空気を逃がす通路を形成す
る機能を持つよう半硬化の状態が決められる。
The composite sheet constructed in this manner has appropriate flexibility, high voltage strength, and mechanical strength. The heat-sensitive adhesive film has a particularly important function in forming the insulating layer. That is, the heat-sensitive adhesive H9 is made of, for example, a semi-cured epoxy resin, and the degree of semi-curing is such that it has a moderate adhesive strength at room temperature, and when it is attached to, for example, a cylindrical cooling body, it maintains its state and is easily peeled off. It is semi-cured so that when pressure is applied to the adhesive layer through the coil, it has the function of forming a passage between the bonded surface and the remaining air to escape. The state of can be determined.

しかも所定温度番ζ加熱された状態では融解して流動可
能となり、気泡を包含した余分な接着樹脂が絶縁層の外
iこ流れ出すことにより、加熱硬化した時点では空隙や
気泡を含まない接着層が形成されるような融解温度特性
と硬化温度特性を具備するものが用いられる。
Moreover, when heated to a predetermined temperature, it melts and becomes fluid, and the excess adhesive resin containing air bubbles flows out of the insulating layer, resulting in an adhesive layer that does not contain any voids or air bubbles when heated and cured. A material having melting temperature characteristics and curing temperature characteristics such as those to be formed is used.

第3図は本発明の製造方法を説明するための内巻き超電
導電磁石コイルの概略断面図で、第4図は該超電導電磁
石コイルの一部分拡大図である。
FIG. 3 is a schematic sectional view of an internally wound superconducting electromagnetic coil for explaining the manufacturing method of the present invention, and FIG. 4 is a partially enlarged view of the superconducting electromagnetic coil.

図Iこおいてまず、筒状冷却体2の内周面上に、第2図
のように構成された複合シー)11を2層貼り重ねて複
合絶縁層3oを形成し、しかる後肢複合絶縁層30と超
電導コイル4とを、複合絶縁層30または超電導コイル
4の表面に塗布した接着樹脂層12を介して固着する。
In FIG. 1, first, two layers of the composite sheet 11 configured as shown in FIG. The layer 30 and the superconducting coil 4 are fixed to each other via the adhesive resin layer 12 applied to the surface of the composite insulating layer 30 or the superconducting coil 4.

骸接着樹脂層12は加熱硬化樹脂または室温硬化樹脂の
いずれでもよく、さらに前記複合シート11における感
熱接着膜9の加熱硬化温度は感熱性接着剤の種類により
適宜選択し得るもので、感熱接着膜9と接着樹脂層12
の硬化方法は、同時ξこ加熱硬化させる方法、あるいは
感熱接着膜9をあらかじめ加熱硬化させておきその後に
接着樹脂層12を加熱硬化または室温硬化させる方法の
いずれでもよい。
The adhesive resin layer 12 may be made of either a heat-cured resin or a room-temperature cured resin, and the heat-curing temperature of the heat-sensitive adhesive film 9 in the composite sheet 11 can be appropriately selected depending on the type of heat-sensitive adhesive. 9 and adhesive resin layer 12
The curing method may be either simultaneous heating curing or heating curing of the thermosensitive adhesive film 9 in advance and then heating or room temperature curing of the adhesive resin layer 12.

前記複合絶縁層30は、第4図に示すように、たとえば
幅が0.5メートルの複合シート複数枚を隣接するシー
トの両端部が互いに重ならないよう相互の端部を突き合
わせ、第1層の突き合わせ部11Aと第2層の突き合わ
せ部11Bとが重ならないようにコイル円筒周方向番と
位置をずらせてコイル円筒軸方向に伸びるよう貼着され
る。複合絶縁層30は前述の2層構成に限定されるもの
ではなく、前記突き合わせ部を設けずに、シートを円周
方向複数個所で軸方向に沿って重ね合わせるようにする
こともできるし、さらに複合シートを周方向に螺線状に
重ね巻きすることもできる。
As shown in FIG. 4, the composite insulating layer 30 is made by abutting a plurality of composite sheets each having a width of, for example, 0.5 meters, so that the ends of adjacent sheets do not overlap each other, and forming the first layer. The abutting portions 11A and the abutting portions 11B of the second layer are attached so as to extend in the axial direction of the coil cylinder while being shifted in number and position in the circumferential direction of the coil cylinder so that they do not overlap. The composite insulating layer 30 is not limited to the above-mentioned two-layer configuration, and the sheets may be overlapped along the axial direction at multiple locations in the circumferential direction without providing the abutting portion, or It is also possible to wrap the composite sheet in a spiral manner in the circumferential direction.

いま複合絶縁層30の表面に適当な粘度の接着剤を塗布
して接着樹脂層12を形成したのち、超電導線に円筒の
接線方向に力を加えて複合絶縁層30に押圧力が作用す
るように巻回してコイル4を形成する場合であって、さ
らに感熱接着膜9と接着樹脂層12は同時に加熱硬化さ
せる場合を一例として、さらに詳細に説明すると、接着
樹脂層12が潤滑剤の役割をはたして超電導線を複合絶
縁層30に、より密着するよう巻回することができ、つ
ぎにコイル4に軸方向の分布荷重を加えた場合にも同様
に、潤滑作用により複合絶縁層30を傷つけることなく
コイル4の各巻回間に所定の面圧を均等に加えることが
できる。つぎにコイル4を介して絶縁層に放射状の押圧
力を加えた場合、接着樹脂層12の接着剤はコイルの隙
き間を埋めコイルの強固な固着が可能となる。
Now, after applying an adhesive of an appropriate viscosity to the surface of the composite insulating layer 30 to form the adhesive resin layer 12, force is applied to the superconducting wire in the tangential direction of the cylinder so that a pressing force acts on the composite insulating layer 30. To explain in more detail, taking as an example the case where the coil 4 is formed by winding the thermosensitive adhesive film 9 and the adhesive resin layer 12 at the same time, the adhesive resin layer 12 plays the role of a lubricant. The superconducting wire can be wound more tightly around the composite insulating layer 30, and even if a distributed load is applied to the coil 4 in the axial direction, the composite insulating layer 30 will not be damaged due to the lubricating action. A predetermined surface pressure can be applied evenly between each winding of the coil 4. Next, when a radial pressing force is applied to the insulating layer through the coil 4, the adhesive of the adhesive resin layer 12 fills the gap between the coils and the coil can be firmly fixed.

半硬化状態の感熱接着層9(第2図参照)は押圧力によ
って被接着面に徐々に密着し、その際感熱接着層9と被
接着面との間ζこ介在する残存空気が追い出される。こ
の際シートの突き合わせ部11AおよびIIBに介在し
コイルの軸方向にのびる僅かな空隙は残存空気の通路と
なり、残存空気を追い出しやすくする利点がある。つぎ
に全体を加熱硬化炉に収納して徐々に所定温度に加熱し
た場合、感熱接着剤の融解温度に達した時点で感熱接着
膜9が流動し、残存空気を巻き込んだ余分な感熱性接着
剤が突き合わせ部11A、IIB等を介して外部化流出
するとともに、突き合わせ部の隙赤間は流動した感熱性
接着剤によって充填される。したがって接着樹脂が加熱
硬化した時点では、得られる絶縁層中に空隙やボイドな
どが少なく、したがって絶縁性能や伝熱性能が高く、か
つ強固lこ一体化した超電導電磁石コイルを得ることが
できる。
The heat-sensitive adhesive layer 9 (see FIG. 2) in a semi-cured state gradually comes into close contact with the surface to be bonded by the pressing force, and at this time, residual air present between the heat-sensitive adhesive layer 9 and the surface to be bonded is expelled. At this time, a small gap extending in the axial direction of the coil between the abutted portions 11A and IIB of the sheets becomes a passage for the remaining air, and has the advantage of making it easier to expel the remaining air. Next, when the whole is placed in a heat-curing furnace and gradually heated to a predetermined temperature, the heat-sensitive adhesive film 9 flows when the melting temperature of the heat-sensitive adhesive is reached, and the excess heat-sensitive adhesive containing residual air is generated. At the same time, the adhesive flows out to the outside through the abutting portions 11A, IIB, etc., and the gap between the abutting portions is filled with the flowing heat-sensitive adhesive. Therefore, when the adhesive resin is heated and cured, there are few voids or voids in the resulting insulating layer, and therefore a superconducting electromagnetic coil with high insulation performance and heat transfer performance, and which is strongly integrated can be obtained.

発明者等の実験的検討によれば、第4図のような構成お
よび前述の製造方法により厚さ0.5ミリメートルの絶
縁模型を作り、その破壊電圧をめた結果70KVという
値が得られた。この値はガラス強化プラスチック積層板
を用いた従来方法の厚さ1ミリメートルの絶縁模型につ
いてめた破壊電圧の2倍を超える値であり、絶縁層の厚
みを従来方法に比べ大幅に縮小できることが明らかにな
った。なお両者の接着せん断強度についても比較したが
両者の値はほぼ同等でほぼ3 kg / xi (常温
)であった。
According to the inventors' experimental studies, an insulating model with a thickness of 0.5 mm was made using the configuration shown in Figure 4 and the manufacturing method described above, and the breakdown voltage was calculated to obtain a value of 70 KV. . This value is more than twice the breakdown voltage achieved for a 1 mm thick insulation model using a conventional method using glass-reinforced plastic laminates, and it is clear that the thickness of the insulation layer can be significantly reduced compared to the conventional method. Became. The adhesive shear strength of the two was also compared, and the values were almost the same, approximately 3 kg/xi (at room temperature).

なお第2図のように構成した複合シートの熱膨張係数は
広い温度範囲に右いてアルミニウムの熱膨張係数とほぼ
等し′いので、吸熱体2および超電導線の保護導体をア
ルミニウムで構成した場合には、冷熱サイクルlこよっ
て生ずる熱応力が少なく、とくに極低温に冷却されても
絶縁層の接着強度を安定に維持することができる。
Note that the thermal expansion coefficient of the composite sheet constructed as shown in Figure 2 is approximately equal to that of aluminum over a wide temperature range, so when the heat absorber 2 and the protective conductor of the superconducting wire are constructed of aluminum, In this case, there is less thermal stress caused by cooling/heating cycles, and the adhesive strength of the insulating layer can be stably maintained even when the insulating layer is cooled to an extremely low temperature.

なお前述の説明は、内巻き超電導電磁石コイルについて
のみ行ったが、外巻き超電導電磁石コイルにも適用可能
なことは前述の説明から明らかである。さらζこ本−明
の適用対象は、筒状冷却体の周面上に超電導コイルを絶
縁層を介して固着せし導電磁石コイルなどにも適用可能
である。第5図はパンケーキ形超電導電磁石コイルの断
面図を示すもので、第3図および第4図と同一部分には
同一記号を符して説明を省略する。パンケーキ形や鞍形
の場合、コイルの巻回作業は若干具なるものの、前述の
説明から本発明の適用により同様の作用効果が得られる
ことは明らかである。
Although the above explanation was given only for the inner-wound superconducting electromagnetic coil, it is clear from the above description that it is also applicable to the outer-wound superconducting electromagnetic coil. Furthermore, this invention can also be applied to conductive magnet coils in which a superconducting coil is fixed to the circumferential surface of a cylindrical cooling body via an insulating layer. FIG. 5 shows a cross-sectional view of a pancake-shaped superconducting electromagnetic coil, and the same parts as in FIGS. 3 and 4 are denoted by the same symbols and explanations thereof will be omitted. In the case of a pancake shape or a saddle shape, it is clear that similar effects can be obtained by applying the present invention from the above description, although the coil winding work is slightly more necessary.

〔発明の効果〕〔Effect of the invention〕

本発明は、冷却体面上に、絶縁層を介して超電導コイル
を固着せしめた超電導電磁石コイルの製造方法lこおい
て、冷却体面上lこ、粗面加工したポリイミドフィルム
とガラス強化プラスチックシートとの積層体の少なくと
も一方の面に気泡等を含まない感熱接着膜を被着した複
合シートを貼り重ねて複合絶縁層を形成し、さらに前記
複合絶縁層と超電導コイルとを、複合絶縁層または超電
導コイルの表面に塗布した接着樹脂層を介して固着する
ようIこした。
The present invention provides a method for manufacturing a superconducting electromagnetic coil in which a superconducting coil is fixed on the surface of a cooling body through an insulating layer. A composite insulating layer is formed by laminating a composite sheet coated with a heat-sensitive adhesive film that does not contain air bubbles on at least one surface of the laminate, and the composite insulating layer and a superconducting coil are further bonded together to form a composite insulating layer or a superconducting coil. It was rubbed so that it would be fixed through the adhesive resin layer applied to the surface.

その結果、まず複合絶縁層の絶縁強度が高いこ^により
ガラス強化プラスチック積層板を用いた選択することに
より、冷却体への貼着作業が容易になって作業を省力化
できるきともに、残存空気の排、出をほぼ完全に行える
ことにより、従来のように接着剤を塗布しつつ絶縁層を
形成する方法では得られない空隙や気泡の少ない接着層
が形成さ° れ、冷却性能および接着強度の高い絶縁層
を得ることができる。さらに複合シートの構成として傷
つきやすいポリイミドフィルムを機械的強度の高いガラ
ス強化プラスチックシートで保護するよう構成するとと
もに、複合絶縁層と超電導コイルとの間には接着樹脂層
を介在させて巻線時および加圧締付時に両者間の滑りを
よくするようにしたことにより、複合絶縁層の損傷を防
止することができ、かつコイルの締付力を有効に作用さ
せることができる。さらにまた、絶縁層の耐電圧を主に
ポリイミドフィルムに期待する構成であるにも拘らず、
ガラス強化プラスチック層が骨材として機能するために
、熱膨張係数がアルミニウムのそれに近く、極低温にお
いても熱応力の発生が少なく、絶縁層の接着強度を安定
して維持することができる。
As a result, first of all, by selecting a glass-reinforced plastic laminate due to the high insulation strength of the composite insulating layer, it becomes easier to attach it to the cooling body, saving labor. By almost completely discharging and releasing the adhesive, an adhesive layer is formed with fewer voids and bubbles that cannot be obtained with the conventional method of applying an adhesive and forming an insulating layer, resulting in improved cooling performance and adhesive strength. It is possible to obtain a high insulation layer. Furthermore, the composite sheet is constructed so that the easily damaged polyimide film is protected by a mechanically strong glass-reinforced plastic sheet, and an adhesive resin layer is interposed between the composite insulating layer and the superconducting coil during winding and By improving the slippage between the two during pressure tightening, damage to the composite insulating layer can be prevented, and the coil tightening force can be applied effectively. Furthermore, despite the structure of the insulating layer, which relies mainly on polyimide film for its voltage resistance,
Since the glass-reinforced plastic layer functions as an aggregate, its coefficient of thermal expansion is close to that of aluminum, generating less thermal stress even at extremely low temperatures, and the adhesive strength of the insulating layer can be stably maintained.

上述の効果を総合して、絶縁性能、冷却性能。By combining the above effects, insulation performance and cooling performance are improved.

接着強度、耐極低温性能および耐ヒートサイクル性能が
すぐれ、絶縁スペースが少なくてすむ超電導電磁石コイ
ルの製造方法を提供できる。
It is possible to provide a method for manufacturing a superconducting electromagnetic coil that has excellent adhesive strength, cryogenic resistance performance, and heat cycle resistance performance, and requires less insulation space.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は内巻き超電導電磁石コイルの概略断面図、第2
図は本発明において用いられる複合シートの断面図、第
3図は本発明の製造方法を説明する超電導電磁石コイル
の平面図、第4図は第3図の一部分拡大断面図、第5図
は本発明の異なる適用対象であるパンケーキ形超電導電
磁石コイルの断面図である。 l・・・超電導電磁石コイル、2・・・冷却体、3・・
・絶縁層、4・・・超電導コイル、5・・・冷却管、6
・・・ボ“リイミドフイルム層、7・・・ガラス強化プ
ラスチシゾク層、8・・接着層、9・・・感熱接着膜、
11・・・複合シート、12・・、接着樹脂層、IIA
、IIB ・・・突き合わせ部、30・・・複合絶縁層
。 才1 図 才Z図 第1頁の続き 0発 明 者 池 1) 云 @発明者 工 藤 誠 @発明者 時光 富士雄 @発明者小野 春雄 [相]発 明 者 山 1) 充 東京部品用区二葉2丁目9番15号 古河電気工業株式
会社中央研究所内 東京部品用区二葉2丁目9番15号 古河電気工業株式
会社所内
Figure 1 is a schematic cross-sectional view of an inner-wound superconducting electromagnetic coil, Figure 2
The figure is a cross-sectional view of the composite sheet used in the present invention, Figure 3 is a plan view of a superconducting electromagnetic coil explaining the manufacturing method of the present invention, Figure 4 is a partially enlarged cross-sectional view of Figure 3, and Figure 5 is a diagram of the present invention. FIG. 3 is a cross-sectional view of a pancake-shaped superconducting electromagnetic coil to which the invention is applied. l...Superconducting electromagnetic coil, 2...Cooling body, 3...
・Insulating layer, 4... Superconducting coil, 5... Cooling pipe, 6
... Polyimide film layer, 7 ... Glass reinforced plastic layer, 8 ... Adhesive layer, 9 ... Heat-sensitive adhesive film,
11... Composite sheet, 12... Adhesive resin layer, IIA
, IIB...butt portion, 30... composite insulating layer. Sai 1 Continuation of Z drawing page 1 0 Inventor Ike 1) Yuu @ Inventor Makoto Kudo @ Inventor Tokimitsu Fujio @ Inventor Haruo Ono [Ai] Inventor Yama 1) Mitsuru Tokyo Parts Industry Ward Futaba 2-9-15 Furukawa Electric Co., Ltd. Central Research Laboratory Tokyo Parts Ward Futaba 2-9-15 Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)冷却体面上に、絶縁層を介して超電導コイルを固着
せしめた超電導電磁石コイルの製造方法において、前記
冷却体面上に、ポリイミドフィルムとガラス強化プラス
チックシートとの積層体の少なくとも一方の表面に感熱
接着膜を被着した複合シートを貼り重ねて複合絶縁層を
形成し、該複合絶縁層と前記超電導コイルとを該複合絶
縁層または該超電導コイルの表面に塗布した接着樹脂層
を介して固着することを特徴とする超電導電磁石コイル
の製造方法。
1) In a method for manufacturing a superconducting electromagnetic coil in which a superconducting coil is fixed on a cooling body surface via an insulating layer, at least one surface of a laminate of a polyimide film and a glass-reinforced plastic sheet is heat-sensitive on the cooling body surface. A composite insulating layer is formed by pasting composite sheets coated with adhesive films, and the composite insulating layer and the superconducting coil are fixed via an adhesive resin layer applied to the surface of the composite insulating layer or the superconducting coil. A method for manufacturing a superconducting electromagnetic coil, characterized by:
JP3321984A 1984-02-23 1984-02-23 Manufacture of superconductive electromagnet coil Granted JPS60177606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3321984A JPS60177606A (en) 1984-02-23 1984-02-23 Manufacture of superconductive electromagnet coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3321984A JPS60177606A (en) 1984-02-23 1984-02-23 Manufacture of superconductive electromagnet coil

Publications (2)

Publication Number Publication Date
JPS60177606A true JPS60177606A (en) 1985-09-11
JPH031807B2 JPH031807B2 (en) 1991-01-11

Family

ID=12380331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3321984A Granted JPS60177606A (en) 1984-02-23 1984-02-23 Manufacture of superconductive electromagnet coil

Country Status (1)

Country Link
JP (1) JPS60177606A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874372A1 (en) * 1997-04-23 1998-10-28 Arisawa Mfg. Co., Ltd. Insulating material and epoxy adhesive for super low temperature
JP2005340637A (en) * 2004-05-28 2005-12-08 Toshiba Corp Superconducting coil
JP2007214466A (en) * 2006-02-13 2007-08-23 Hitachi Ltd Superconducting coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874372A1 (en) * 1997-04-23 1998-10-28 Arisawa Mfg. Co., Ltd. Insulating material and epoxy adhesive for super low temperature
JP2005340637A (en) * 2004-05-28 2005-12-08 Toshiba Corp Superconducting coil
JP2007214466A (en) * 2006-02-13 2007-08-23 Hitachi Ltd Superconducting coil

Also Published As

Publication number Publication date
JPH031807B2 (en) 1991-01-11

Similar Documents

Publication Publication Date Title
US4376904A (en) Insulated electromagnetic coil
US4400226A (en) Method of making an insulated electromagnetic coil
JP4752744B2 (en) Superconducting coil
JP6445165B2 (en) Superconducting coil and manufacturing method thereof
JP5687504B2 (en) Superconducting coil device
JP2000510316A (en) Conductor winding structure of large electric machine
US5989702A (en) Sandwich insulation for increased corona resistance
JPS60177606A (en) Manufacture of superconductive electromagnet coil
JP2014236092A (en) Manufacturing apparatus and manufacturing method of superconducting coil
CA2130161C (en) Sandwich insulation for increased corona resistance
JP2014525117A (en) Insulated high temperature superconducting wire and method of manufacturing the superconducting wire
JPH0794317A (en) Superconducting coil device
JPS6213010A (en) Superconductive electromagnet
JPH07192912A (en) Superconducting coil and diagnostic method of stability thereof
JP2014112617A (en) Superconducting coil and manufacturing method thereof
JP6005428B2 (en) Superconducting coil and superconducting coil device
JPH09231836A (en) Sandwiched insulating material having high anti-corona property
JP7222622B2 (en) Superconducting coil and superconducting coil device
JP4607540B2 (en) Superconducting coil and manufacturing method thereof
JPH02240901A (en) Coil insulation of electric apparatus
JP3199782B2 (en) Superconducting coil manufacturing method
JPH10312930A (en) Metallized film capacitor
JPH01179406A (en) Manufacture of molded coil
JPH02288308A (en) Superconducting coil
JP2602550Y2 (en) Foil winding transformer