JPS60177409A - Magnetic head for vertical recording and reproducing - Google Patents

Magnetic head for vertical recording and reproducing

Info

Publication number
JPS60177409A
JPS60177409A JP3327784A JP3327784A JPS60177409A JP S60177409 A JPS60177409 A JP S60177409A JP 3327784 A JP3327784 A JP 3327784A JP 3327784 A JP3327784 A JP 3327784A JP S60177409 A JPS60177409 A JP S60177409A
Authority
JP
Japan
Prior art keywords
magnetic
recording
pole
main
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3327784A
Other languages
Japanese (ja)
Inventor
Atsunori Hayakawa
早川 穆典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3327784A priority Critical patent/JPS60177409A/en
Publication of JPS60177409A publication Critical patent/JPS60177409A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Abstract

PURPOSE:To reduce the relative speed of the head and to attain the satisfactory reproduction even with multi-channels by providing a cut part to a main magnetic pole and arranging an MR element having a magneto-sensitive part which is magnetically connected to the main magnetic pole. CONSTITUTION:A main magnetic pole 2 or recording/reproducing is divided into two parts by magnetic poles 2b and 2c together with a cut part 2d formed partially. The part 2d contains an MR (magneto-resistance effect) element 10 having a magnetic-sensitive part connected magentically to poles 2b and 2c. Then an energizing winding 4 and a common conductor 4b are formed by etching. In a reproduction mode the reproduced magnetic flux flowed from the tip 2a of the pole 2 is sent back to a recording medium after passing through the element 10, the main magnetic pole 2c and then magnetic matters 6 and 9. Thus the head relative speed is low since the element 10 has a magnetic flux response type structure. This ensures the satisfactory reproduction even with many channels and a narrow track.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はフレキシブルディスク等の磁気記録媒体に対し
て多チャンネルの垂直磁気記録を行うと共にこれを再生
するのに好適な垂直記録再生用磁気ヘッドに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a perpendicular recording/reproducing magnetic head suitable for performing multi-channel perpendicular magnetic recording on a magnetic recording medium such as a flexible disk and for reproducing the same. It is.

背景技術とその間順点 先に、フレキシブルディスク等の磁気記録媒体に対しい
わゆる垂直磁気記録を多チャンネルにて行なう垂直記録
再生用磁気ヘッドとして、第1図第2図、第3図及び第
4図に示すものが提案されている。
BACKGROUND TECHNOLOGY First of all, as a perpendicular recording/reproducing magnetic head for performing so-called perpendicular magnetic recording in multiple channels on a magnetic recording medium such as a flexible disk, FIG. 1, FIG. 2, FIG. 3, and FIG. The following are proposed.

この例は、第1図に示すように非磁性基板(1)上に多
チヤンネル用に所定数の主磁極(21、(2) 、・・
・。
In this example, as shown in FIG. 1, a predetermined number of main magnetic poles (21, (2),...
・.

(2)が配されている。また、この主磁極(2)よりの
垂直磁界により例えばディジタル信号が記録される磁気
記録媒体(3)は、第3図に示すように垂直記録層(3
a)と高透磁率層(3b)とが支持体(3C)上に設け
られた垂直磁気記録用の二層媒体となされている。垂直
記録再生磁界がw主磁極(2)及び磁気記録媒体(3)
を通り開磁路構成となされている。次に、第2図及び第
3図を参照してこの例につき詳述するも、主磁極(2)
の先端部(2a)が磁気記録媒体摺動面Sまで延在し、
磁気記録媒体(2)に対し垂直方向の磁束を通すよう罠
なされている。ここで、磁束密度を高めるため先端部(
2a)の断面様は小さく形成されると共に、かかる垂d
a束の磁路の磁気抵抗を小さくして他端側より良好に磁
束を通すため、励磁巻線(4)としての薄膜コイルに近
い部分の断面積は大きく形成されている。また、薄膜コ
イル(4)の内側には絶縁膜(5)の開孔部を貫通して
主磁極(2)と磁気的に接続すると共に、薄膜コイル(
4)を流れる励磁電流により励磁された磁束を通す例え
ば磁性薄膜よりなる接続磁性材部(6)が設けられてい
る。この絶縁膜(5)を介して非磁性材部(7)及び(
8)と7磁束のリターンパスをなすため磁性フェライト
により形成された磁性材部(9)とを複合した複合基板
が接合されている。このような構成にすると多チャンネ
ルに容易に対応でき、第4図に示すよを減らすことがで
きる。
(2) is arranged. In addition, the magnetic recording medium (3) on which, for example, digital signals are recorded by the perpendicular magnetic field from the main magnetic pole (2) has a perpendicular recording layer (3) as shown in FIG.
This is a two-layered medium for perpendicular magnetic recording in which a) and a high magnetic permeability layer (3b) are provided on a support (3C). The perpendicular recording/reproducing magnetic field is w main magnetic pole (2) and magnetic recording medium (3)
It has an open magnetic path configuration. Next, this example will be described in detail with reference to FIGS. 2 and 3.
a tip (2a) of which extends to the magnetic recording medium sliding surface S;
The magnetic recording medium (2) is configured to pass magnetic flux in a perpendicular direction to the magnetic recording medium (2). Here, in order to increase the magnetic flux density, the tip (
The cross section of 2a) is formed small, and the vertical d
In order to reduce the magnetic resistance of the magnetic path of the a-flux and allow the magnetic flux to pass through it better than the other end, the cross-sectional area of the part near the thin film coil as the excitation winding (4) is formed to be large. In addition, inside the thin film coil (4), the thin film coil (
4) is provided with a connecting magnetic material portion (6) made of, for example, a magnetic thin film, through which the magnetic flux excited by the excitation current flowing through the connecting magnetic material portion (6) passes. The non-magnetic material portion (7) and (
8) and a magnetic material portion (9) made of magnetic ferrite to form a return path for the magnetic flux 7. A composite substrate is joined. With such a configuration, it is possible to easily handle multiple channels, and the number of channels shown in FIG. 4 can be reduced.

このように構成された提案例にあっては励磁巻線(4)
に流れる電流により励磁され接続磁性体(6)から主磁
極(2)を通った磁束が主磁極先端(2a)から磁気記
録媒体(3)に対し垂直方向に進むので垂直記録層(3
a)がディジタル信号の反転に対応した反転により磁化
され、記録信号が高密度に記録される。
In the proposed example configured in this way, the excitation winding (4)
The magnetic flux excited by the current flowing through the connecting magnetic body (6) and passing through the main magnetic pole (2) advances from the main magnetic pole tip (2a) in a direction perpendicular to the magnetic recording medium (3).
a) is magnetized by inversion corresponding to the inversion of the digital signal, and recording signals are recorded with high density.

また、再生の際には一旦磁化された垂直記録層(3a)
が磁束をひろい主磁束(2)及び接続磁性体(6)を通
る磁束の変化により励磁巻a(4)に再生電流が流れ再
生信号が検出され磁気再生できることになる。
In addition, during reproduction, the once magnetized perpendicular recording layer (3a)
expands the magnetic flux, and due to changes in the magnetic flux passing through the main magnetic flux (2) and the connecting magnetic body (6), a reproduction current flows to the excitation winding a (4), a reproduction signal is detected, and magnetic reproduction can be performed.

しかし、狭トラツク幅の多チャンネル磁気ヘッドを作る
には薄膜ヘッドの構造にせざるを得ないが薄膜コイルの
形成過程によって巻線を形成する場合数十ターン以上に
することは困難である点にこの提案例は問題があった。
However, in order to create a multi-channel magnetic head with a narrow track width, a thin-film head structure is necessary, but when forming a winding using the process of forming a thin-film coil, it is difficult to make more than a few tens of turns. The proposed example had a problem.

また、狭トラツク幅で多チャンネルとすると共に記録再
生効率を上げ 、。
In addition, it has a narrow track width and multiple channels, and improves recording and reproducing efficiency.

るため磁路を短(すると巻線幅が減るが、この意味から
も巻線を増すととKは限界があった。このため、磁気記
録媒体(3)と垂直記録再生用磁気ヘッドとの相対速度
が小さい装置では再生電圧が非常に小さくなり、尚膜導
体巻線を施したタイプでの再生は実用に供さない点に問
題があった。
In order to shorten the magnetic path (this reduces the winding width, but from this point of view as well, increasing the number of windings has a limit on K. In devices with low relative speeds, the reproduction voltage becomes very small, and there is a problem in that reproduction in a type equipped with a membrane conductor winding is not practical.

発明の目的 本発明はかかる点に鑑み、特に磁気記録媒体と垂直記録
再生用磁気ヘッドとの相対速度が小さく、狭トラツク多
チャンネルでも良好な再生電圧が得られるようにした垂
直記録再生用磁気ヘッドを提供せんとするものである。
Purpose of the Invention In view of the above, the present invention provides a magnetic head for perpendicular recording and reproducing, which has a low relative speed between the magnetic recording medium and the magnetic head for perpendicular recording and reproducing, and is capable of obtaining a good reproducing voltage even with a narrow track and multiple channels. We aim to provide the following.

発明の概要 本発明垂直記録再生用磁気ヘッドは、非磁性材料により
形成された基板と、一端が磁気記録媒体摺動面まで延在
し切除部を有する主磁極と、この主磁極の他端側の磁路
を内側にするように形成した記録巻線と、切除部に主磁
極と磁気的につながるような感磁部を有する磁気抵抗効
果素子と、磁気記録媒体摺動面側の非磁性材部と記録巻
線内を貫通して主磁極に磁気的に連結する磁性材部を有
するもので磁気記録媒体と磁気ヘッドとの相対速度が小
さく狭トラツク多チャンネルでも再生電圧を良好に得ら
れるようにしたものである。
Summary of the Invention The magnetic head for perpendicular recording and reproducing of the present invention includes a substrate formed of a non-magnetic material, a main magnetic pole whose one end extends to the sliding surface of a magnetic recording medium and has a cutout, and the other end of the main magnetic pole. A recording winding formed so that the magnetic path is on the inside, a magnetoresistive element having a magnetic sensing part in the cutout part that is magnetically connected to the main magnetic pole, and a non-magnetic material on the sliding surface side of the magnetic recording medium. It has a magnetic material part that penetrates the inside of the recording winding and is magnetically connected to the main pole, so that the relative speed between the magnetic recording medium and the magnetic head is small and a good reproduction voltage can be obtained even with narrow tracks and multiple channels. This is what I did.

実施例 以下、第5図及び第6図を参照して本発明垂直記録再生
用磁気ヘッドの一実施例について説明する。
EXAMPLE Hereinafter, an example of the perpendicular recording/reproducing magnetic head of the present invention will be described with reference to FIGS. 5 and 6.

部分に切除部(2d)を有する記録再生用主磁極を示し
、この主磁極(2)の切除部(2d)に主磁極(2b)
及び(2C)と磁気的につながるよウナ感磁部を有する
磁気抵抗効果素子(以下MR素子と記す。)(lotを
配する。ここで、MR素子の幅WR及び厚さDは再生感
度を決定する大きな要素である、例えば第5図Bに示す
ように幅WRは数μm以下、望ましくは5〜20μm程
度、厚さDは200X〜500Xが多く用いられる。主
磁極(2)と重なる幅は数μm以下い。主磁極]2)の
摺動面の厚さTmは、再生の分解能を決めるので、使用
最短波長の約4以下に選び、普通0.05〜1μmであ
り多くは0.1〜0.5μmである。記録再生感度を上
げるため主磁極の先端部以外は厚くする。その厚さTa
は1μm以上が好ましい。あまり厚くすると製造に時間
な倣するので実用的に10〜20μm以下とする。厚く
なるところまでの長さ即ち主磁極先端長Lmは感度の点
からは短いほうが良いが、垂直記録再生用磁気ヘッドの
寿命を決めるのであまり短くすることも間順があり、5
〜10μm程度が適当と1.【る。また、MR素子αO
)までの長さLoは再生感度を上げるためにできるだけ
先端にもっていきたいので、Lm<LDでできるだけ小
さくする。このように主磁極(2)はMR素子より先端
の位置で段を付けて薄くしているが、MR素子00)よ
り先の部分は一定の厚さTmとし、後部を厚くすること
もできる。この方がMR素子(101を先端近くにもっ
ていけるので再生の点では有利になるが、記録時には先
端部(2a)も一部厚くなっている方が感度の点で有利
である。また励磁巻線(4)の位置は効率を上げるため
出来るだけ摺動面Sに近づけるのが良いが、摺動面Sに
出てしまうと記録に悪影響が出るので、MR素子00)
と同じ位置が適当といえる。
A main magnetic pole for recording and reproduction is shown which has a cutout (2d) in the main pole (2).
A magnetoresistive element (hereinafter referred to as MR element) (lot) having a magneto-sensitive part so as to be magnetically connected to (2C) is arranged.Here, the width WR and thickness D of the MR element are For example, as shown in FIG. 5B, the width WR, which is a major determining factor, is several μm or less, preferably about 5 to 20 μm, and the thickness D is often 200X to 500X.The width that overlaps with the main magnetic pole (2) The thickness Tm of the sliding surface of the main magnetic pole]2) determines the resolution of reproduction, so it is selected to be approximately 4 or less of the shortest wavelength used, and is usually 0.05 to 1 μm, often 0. It is 1 to 0.5 μm. To increase the recording and reproducing sensitivity, the main pole is made thicker except for the tip. Its thickness Ta
is preferably 1 μm or more. If it is too thick, it will take a long time to manufacture, so for practical purposes it should be 10 to 20 μm or less. The length up to the point where it becomes thicker, that is, the main pole tip length Lm, is better to be shorter from the point of view of sensitivity, but since it determines the life of the magnetic head for perpendicular recording/reproduction, it is not wise to make it too short.
~10μm is appropriate.1. [ru. In addition, the MR element αO
) should be as close to the tip as possible in order to increase the reproduction sensitivity, so it should be made as small as possible so that Lm<LD. In this way, the main magnetic pole (2) is made thinner by adding steps at the tip end position than the MR element, but the part ahead of the MR element 00) can have a constant thickness Tm, and the rear part can be made thicker. This is advantageous in terms of reproduction because the MR element (101) can be brought closer to the tip, but when recording, it is advantageous in terms of sensitivity if the tip (2a) is also partially thickened. It is best to position (4) as close to the sliding surface S as possible in order to increase efficiency, but if it is on the sliding surface S, it will have a negative effect on recording, so the MR element 00)
The same position is appropriate.

また、第6図において(Illは記録信号入力端子を示
し、この記録信号入力端子(Illよりの信号を記録ア
ンプ(12+に供給し、この記録アンプ(121の出力
端子を切換スイッチ(131の第一の固定接点(13a
)に接続する。また、直流を臨端子VDCをMR素子0
0)のバイアス磁界を調整するための可変抵抗器R1を
介して切換スイッチ(131の第二の固定接点(13b
)に接続する。ま、た、切換スイッチ(131の可動接
点(13c)を励磁巻豚(4)の一端に接続し、励磁巻
線f41の他端を接地する。記録の際には切換スイッチ
α&の可動接点(13a)と切換スイッチ(131の第
一の固定接点(13a)とを接続し、励磁巻線(4)に
記録電流を流し、主磁極(2)に垂直磁束を励磁する。
Further, in FIG. 6, (Ill indicates a recording signal input terminal, the signal from this recording signal input terminal (Ill) is supplied to the recording amplifier (12+), and the output terminal of this recording amplifier (121) is connected to the selector switch (131). One fixed contact (13a
). In addition, direct current is connected to terminal VDC to MR element 0.
The second fixed contact (13b
). Also, the movable contact (13c) of the changeover switch (131) is connected to one end of the excitation coil (4), and the other end of the excitation winding f41 is grounded.When recording, the movable contact (13c) of the changeover switch (α&) is connected to one end of the excitation winding (4). 13a) and the first fixed contact (13a) of the changeover switch (131) are connected, a recording current is passed through the excitation winding (4), and a perpendicular magnetic flux is excited in the main magnetic pole (2).

MR素子(101の一端を再生アンプ(1,41の非反
転入力端子に接続すると共にMR素子(101の他端を
接地する。また、直流電源VDCをMR素子バイアス電
流劇整用の可変抵抗器R2を介して杓生アンプ(141
の非反転入力端子に供給する。また、直流電源VDCを
零バランス調整用の可変抵抗器R3の一端に接続し、こ
の可変抵抗器R3の他端を接地する。また、可変抵抗器
R2の可動子と再生アンプ(1410反転入力端子とを
接続して、再生アンプQ41の出力端子(151に再生
信号を得るようにする。ここで、再生信号を得る際には
切換スイッチ(131の可動接点(13c)を第二の固
定接点(13b)に接続し再生時に励磁巻線(4)はM
R素子(101にバイアス磁場を印加するバイアス巻線
として使用する。このようにするとMR素子バイアス用
回路を別に設ける必要が無い。各チャンネルの主磁極用
に共通にバイアス線を別に用意しても良いが、垂直記録
再生用磁気ヘッドが複雑になる。なお、再生時に磁気ヘ
ッドの帯磁があり再生に悪影響があるときは、記録終了
後の記録電流値の振幅から振幅が除々に減衰するような
交流霜、流を励磁巻勝に流して磁路のコアーを消磁する
ようにする。また、他の部分は従来の垂直記録再生用磁
気ヘッドと同様に構成するものとする。
One end of the MR element (101) is connected to the non-inverting input terminal of the reproduction amplifier (1, 41), and the other end of the MR element (101 is grounded. Also, the DC power supply VDC is connected to a variable resistor for adjusting the bias current of the MR element. The power amplifier (141
is supplied to the non-inverting input terminal of Further, a DC power supply VDC is connected to one end of a variable resistor R3 for zero balance adjustment, and the other end of this variable resistor R3 is grounded. Also, connect the movable element of the variable resistor R2 and the inverting input terminal of the reproducing amplifier (1410) so that the reproduced signal is obtained at the output terminal (151) of the reproducing amplifier Q41.Here, when obtaining the reproduced signal, The movable contact (13c) of the changeover switch (131) is connected to the second fixed contact (13b), and the excitation winding (4) is set to M during playback.
It is used as a bias winding to apply a bias magnetic field to the R element (101). In this way, there is no need to provide a separate MR element bias circuit. Even if a separate bias line is prepared commonly for the main magnetic pole of each channel, Good, but the magnetic head for perpendicular recording and playback becomes complicated.In addition, if the magnetic head is magnetized during playback and has a negative effect on playback, the amplitude of the recording current value after recording ends may gradually attenuate. The core of the magnetic path is demagnetized by passing an AC current through the excitation winding.Other parts are constructed in the same manner as the conventional magnetic head for perpendicular recording/reproduction.

次に、この実施例の製造工程例について第7図〜第17
図を参照して説明する。まず、第7図に示すように鏡面
研磨した非磁性基板■上に、を学MR素子住01をパタ
ーンニングする。MR素子QOIは、Ni−Fe又はN
i −Coの磁性合金膜(10a)を厚さ100X〜1
oooX(多くは200X〜500X )だけ蒸着、ス
パッタ、イオンプレーテング等で付けることにより形成
する。このパターンユング後のMRfE子(101の感
磁部のバイアス電流の流れる方向即ちヘッドのトラック
幅方向に磁性膜(10a)が磁化容易軸を持つように磁
場中あるいは基板を斜傾させて作膜を行う。第7図では
、MR素子ααは2個でセットにして片側の端子を共通
にし、後に述べるように共通導体で引き出すようにして
いる、これは端子の数を減らすためである。この例では
全てを磁性薄膜で形成しているが、感磁部以外の部分は
銅などの良導体膜で形成しまたは:ノード線部は磁性膜
の上に導体膜を重ねて厚くしてリード線部の電気抵抗を
小さくすると熱雑音を小さくでき、有利である。次に、
第8図のように絶縁膜を0.1〜0.5μm付ける。こ
の膜は絶縁が充分であれば薄い方が良い。これは、上に
付ける磁性主磁極膜との間の磁気抵抗を減らすためであ
る。次に主磁極(2)としてパーマロイ、センダスト、
Co −Zr 、 Co −Nb −Zr等の磁性アモ
ルファス膜を付はホトエツチングによってパターンニン
グを行う(第9図)。MIt素子αBの付近で主磁極(
2)を図に示すように分割し切除部を形成しMR素子0
0)とわずかに重なるようにする。また、第10図に示
すように主磁極(2b)の先端部分(2a)は再生分解
能を良くするため薄く、主磁極(2b)の後部は磁気抵
抗を小さくするため厚く形′成する。次に、絶縁膜(5
)を付は平坦化した後、銅、アルミニウム等の導体薄膜
で励磁巻線(4)をパターンニングにより形成する(第
11図)。
Next, FIGS. 7 to 17 show examples of the manufacturing process of this embodiment.
This will be explained with reference to the figures. First, as shown in FIG. 7, an MR element 01 is patterned on a mirror-polished nonmagnetic substrate. The MR element QOI is Ni-Fe or N
The i-Co magnetic alloy film (10a) has a thickness of 100X to 1
It is formed by attaching an oooX (mostly 200X to 500X) by vapor deposition, sputtering, ion plating, etc. After this pattern Jung, the MRfE element (101) is formed in a magnetic field or with the substrate tilted so that the magnetic film (10a) has an axis of easy magnetization in the direction in which the bias current flows in the magnetic sensitive part (101), that is, in the track width direction of the head. In Fig. 7, the MR elements αα are set in sets of two, and the terminals on one side are shared, and as will be described later, they are drawn out through a common conductor, in order to reduce the number of terminals. In the example, everything is made of a magnetic thin film, but the parts other than the magnetically sensitive part are made of a good conductor film such as copper. It is advantageous to reduce the electrical resistance of , as it can reduce thermal noise.
As shown in FIG. 8, an insulating film with a thickness of 0.1 to 0.5 μm is applied. As long as the insulation is sufficient, the thinner the film, the better. This is to reduce the magnetic resistance between the magnetic main pole film and the magnetic main pole film attached thereon. Next, as the main magnetic pole (2), permalloy, sendust,
A magnetic amorphous film of Co--Zr, Co--Nb--Zr, etc. is applied and patterned by photoetching (FIG. 9). The main magnetic pole (
2) is divided as shown in the figure to form a cutout part and the MR element 0
0) so that it slightly overlaps. Further, as shown in FIG. 10, the tip portion (2a) of the main pole (2b) is formed thin in order to improve reproduction resolution, and the rear portion of the main magnetic pole (2b) is formed thick in order to reduce magnetic resistance. Next, the insulating film (5
) is planarized, and then an excitation winding (4) is formed by patterning using a conductive thin film of copper, aluminum, etc. (FIG. 11).

次に、絶縁膜を付け(第12図)、励磁巻IvIIf4
1及びMR素子00)の共通導体端子部に接続用スルー
ホールをエツチングであけて、導体膜を付は第13図の
ように共通導体(4b)をホトエツチングでパターンニ
ングする。この共通導体(4b)は励磁巻線(4)及び
再生用MR素子00)の共通アース端子で、必要端子数
を減らしている。励磁巻線(4)はこの例では一層2タ
ーンで形成しているが二層以上にすることもできる。次
に、絶縁膜を付けた後励磁巻線(41の中央部分に主磁
極膜(7)とリターンス部である7エライトコアーとの
接続のための孔をホトエツチングであけ、接続のための
磁性膜(6a)を付けた後平坦化する。次に、各端子部
を作るため、MR素子αα、励磁巻線(41、共通導体
の所定範囲の絶縁膜に孔部をあけ、導体膜をパターンニ
ングして各端子を形成する(第14図)。ここまででき
た基板の概観を第15図に示す。−列になるように切断
TfIIC1で切断する。
Next, an insulating film is attached (Fig. 12), and the excitation winding IvIIf4
A through hole for connection is made by etching in the common conductor terminal portion of the MR element 1 and MR element 00), and a conductor film is attached.The common conductor (4b) is patterned by photoetching as shown in FIG. This common conductor (4b) is a common ground terminal for the excitation winding (4) and the reproduction MR element 00), reducing the number of required terminals. Although the excitation winding (4) is formed of two turns per layer in this example, it can also be formed of two or more layers. Next, after attaching the insulating film, a hole is made in the center of the excitation winding (41) for connection between the main pole film (7) and the 7-elite core that is the return part, and a magnetic film (41) for connection is made. 6a) is attached and then flattened.Next, in order to make each terminal part, holes are made in the insulating film in a predetermined range of the MR element αα, the excitation winding (41, and the common conductor), and the conductor film is patterned. Then, each terminal is formed (FIG. 14).The outline of the board thus far produced is shown in FIG. 15.- Cut in rows using cutting TfIIC1.

次に、磁束のリターンパス部を構成する複合基板(7a
)を第16図に示すように接合し、摺動面Sを円筒研磨
後各垂直記録杓生用磁気ヘッドに切断して第17図のよ
うに本例の垂直記録再生用磁気ヘッドを得る。
Next, a composite substrate (7a
) are joined together as shown in FIG. 16, and the sliding surface S is cylindrically polished and then cut into each perpendicular recording magnetic head to obtain the perpendicular recording/reproducing magnetic head of this example as shown in FIG. 17.

このような本実施例においては、主磁極(2)先端付近
で導磁@!(2+を分割しその切除部(2d)に再生用
MR素子を置いた栴造になっているので相生時には主磁
極先端(2a)から流入した沓生磁束はMl(。
In this embodiment, magnetic conduction @! near the tip of the main magnetic pole (2) occurs. (Since the 2+ is divided and the reproducing MR element is placed in the cut-out part (2d), the magnetic flux flowing from the main magnetic pole tip (2a) during coexistence is Ml().

素子任())を通り後部主磁極(2C)に抜は接続磁性
体(101によって行なわれる。このとき励磁巻線(4
)にはMR素子α0)にバイアス磁界を加えるために適
当な直流電流が流され、MR素子(10)は磁束応答型
であるので磁気記録媒体(3)と垂直記録再生磁気ヘッ
ドとの相対速度には無関係に良好な再生電圧が得られる
。また、記録の際には主磁極(2)に切除部(2d)が
あるので記録感度を多少低下させるが、もともと磁路が
短く作られ高効率であるので切除部(2d)による記録
感度低下は特に間順にならない。
The connection magnetic body (101) passes through the element (2C) and connects the rear main pole (2C). At this time, the excitation winding (4
) is supplied with an appropriate DC current to apply a bias magnetic field to the MR element α0), and since the MR element (10) is of a magnetic flux responsive type, the relative speed between the magnetic recording medium (3) and the perpendicular recording/reproducing magnetic head is A good reproduction voltage can be obtained regardless of. Also, during recording, the main magnetic pole (2) has a cutout (2d), which slightly reduces the recording sensitivity, but since the magnetic path is originally short and has high efficiency, the cutout (2d) reduces the recording sensitivity. are not particularly ordered.

以上述べたように、本実施例によればMR素子αωによ
り非常に高感度に再生電圧が得られるので磁気記録媒体
(3)と垂直記録再生磁気ヘッドとの相対速度が小さく
狭トラツク多チャンネルでも再生電圧を良好に得られる
利益がある。また、主磁極(2)がMR素子00)に流
れる磁束の導磁路になっているためMR素子(1(lの
端部での反磁界が小さくなり、MR素子QOI内での磁
束密度がより一様に近づく利益がある。
As described above, according to this embodiment, since the reproduction voltage can be obtained with extremely high sensitivity by the MR element αω, the relative speed between the magnetic recording medium (3) and the perpendicular recording/reproducing magnetic head is small, even in the case of narrow tracks and multiple channels. There is an advantage that a good reproduction voltage can be obtained. In addition, since the main magnetic pole (2) serves as a magnetic conduction path for the magnetic flux flowing to the MR element (00), the demagnetizing field at the end of the MR element (1 (l) becomes smaller, and the magnetic flux density within the MR element QOI decreases. There are benefits that approach more uniformity.

また、第18図は効率を良くするよう改良した他の例を
示す。まず、記録再生効率を上げるためMR素子(10
1の下部にも磁性膜を形成し枕材を付けか、下部の主磁
極(2c)=ffA=d+をMR素子(1,(11より
先端の主磁極(2b)より淳(して記録感度を向上させ
る。
Further, FIG. 18 shows another example improved to improve efficiency. First, in order to increase the recording and reproducing efficiency, an MR element (10
Either a magnetic film is formed on the lower part of the MR element (11) and a pillow material is attached, or the lower main magnetic pole (2c) = ffA = d+ is inserted from the main magnetic pole (2b) at the tip of the MR element (1, (11) to increase the recording sensitivity. improve.

更に、接続磁性体(6)も接続孔の周囲にも磁性膜を形
成し、フェライトとの対向面積を大きくしリターンバス
の効果をより良くするような形状にしたものである。こ
の例によっても上述実施例同様の作用効果が得られるこ
とは容易に理解できよう。
Furthermore, the connecting magnetic body (6) has a shape in which a magnetic film is also formed around the connecting hole to increase the area facing the ferrite and improve the return bus effect. It is easy to understand that this example also provides the same effects as those of the above embodiment.

また、第19図のようにMR素子(101を形成する前
に主磁極(2)を形成することもでき上述例よりもMR
素子QOIにバイアス磁界を加えるのに効率が良くなる
利益がある。
Further, as shown in FIG. 19, the main magnetic pole (2) can be formed before forming the MR element (101), and the MR element (101) can be formed.
There is the benefit of increased efficiency in applying a bias magnetic field to the element QOI.

なお、本発明は上述実施例に限らず本発明の要旨を逸脱
することなくその他種々の構成が採り得ることは勿論で
ある。
Note that the present invention is not limited to the above-described embodiments, and it goes without saying that various other configurations can be adopted without departing from the gist of the present invention.

発明の効果 本発明垂直記録再生用磁気ヘッドは、非磁性材料により
形成された基板と一端が磁気記録媒体摺動面まで延在し
中間に切除部を有する主磁極と、主磁極の他端側の磁路
を内側にするように形成した記録巻線と切除部に主磁極
と磁気的につながるような感磁部を有するMR素子を有
する構成としたので、磁束応答型で非常に高感度である
MR素子により磁気記録媒体と磁気ヘッドの相対速度に
無関係に再生電圧が得られる。 “′−゛−゛−゛ 非
常に 高感度のMR素子により再生信号を検出するようにした
ので磁束応答型で磁気記録媒体と磁気ヘッドの相対速度
が小さくなっても単磁極の磁気ヘッドで信号記録と共に
所望の良好な再生信号が得られる利益がある。また、M
R素子そのものの構造が簡単であり、また多チャンネル
磁気ヘッドが容易に製造できる利益がある。
Effects of the Invention The magnetic head for perpendicular recording and reproducing of the present invention comprises a substrate made of a non-magnetic material, a main pole whose one end extends to the sliding surface of the magnetic recording medium and has a cutout in the middle, and the other end of the main pole. The recording winding is formed so that the magnetic path is on the inside, and the MR element has a magnetically sensitive part that is magnetically connected to the main pole in the cutout part, so it is magnetic flux responsive and extremely sensitive. A certain MR element allows a reproduction voltage to be obtained regardless of the relative speed between the magnetic recording medium and the magnetic head. "'-゛-゛-゛ Since the reproduced signal is detected by a very highly sensitive MR element, it is a magnetic flux response type, so even if the relative speed between the magnetic recording medium and the magnetic head becomes small, the single-pole magnetic head can still output the signal. There is an advantage that a desired good reproduction signal can be obtained as well as recording.
The structure of the R element itself is simple, and there is an advantage that a multi-channel magnetic head can be manufactured easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図及び第4図は従来の垂直記録再
生用磁気ヘッドの例を示す線図、第5図は本発明垂直記
録用磁気ヘッドの一実施例の要部の例を示す線図、第6
図は第5図例の接続図、第7図、第8図、第9図、第1
0図、第11図、第12図、第13図、第14図、第1
5図、第16図、第17図は第5図に示す例の製造工程
例を示す線図、第18図は本発明の他の実施例の要部の
例を示す断面図、第19図は本発明の他の実施例を示す
断面図である。 (1)は非磁性基板、(2)は主磁極、(2d)は切除
部、(41は記録巻線、00)は磁気抵抗効果素子、(
3)は磁気記録媒体、(9)は磁性材部である。 第1図 b 第18図 4d 第19図 4d 峠
1, 2, 3, and 4 are diagrams showing examples of conventional magnetic heads for perpendicular recording and reproduction, and FIG. 5 shows essential parts of an embodiment of the magnetic head for perpendicular recording of the present invention. Diagram showing examples, No. 6
The diagrams are the connection diagram of the example in Figure 5, Figures 7, 8, 9, and 1.
Figure 0, Figure 11, Figure 12, Figure 13, Figure 14, Figure 1
5, 16, and 17 are diagrams showing an example of the manufacturing process of the example shown in FIG. 5, FIG. 18 is a sectional view showing an example of the main part of another embodiment of the present invention, and FIG. 19 FIG. 3 is a sectional view showing another embodiment of the present invention. (1) is a non-magnetic substrate, (2) is a main magnetic pole, (2d) is a cutout part, (41 is a recording winding, 00) is a magnetoresistive element, (
3) is a magnetic recording medium, and (9) is a magnetic material part. Figure 1b Figure 18 4d Figure 19 4d Pass

Claims (1)

【特許請求の範囲】[Claims] 非磁性材料により形成された基板と、一端が磁気記録媒
体摺動面まで延在し切除部を有する主磁極と、該主磁極
の他端側の磁路を内側にするように形成した記録巻線と
、前記切除部に前記主磁極と磁気的につながるような感
磁部を有する磁気抵抗効果素子と、前記磁気記録媒体摺
動面側の非磁性材部と前記記録巻線内を貫通して前記主
磁極に磁気的に接続する磁性材部とを有する複合コアと
を有することを特徴とする垂直記録再生用磁気ヘッド。
A substrate formed of a non-magnetic material, a main magnetic pole whose one end extends to the magnetic recording medium sliding surface and has a cutout, and a recording winding formed so that the magnetic path on the other end side of the main magnetic pole is on the inside. a magnetoresistive element having a magnetically sensitive part in the cutout part to be magnetically connected to the main magnetic pole; a magnetoresistive element that penetrates through the nonmagnetic material part on the sliding surface side of the magnetic recording medium and the inside of the recording winding; 1. A magnetic head for perpendicular recording/reproduction, comprising: a composite core having a magnetic material portion magnetically connected to the main magnetic pole;
JP3327784A 1984-02-23 1984-02-23 Magnetic head for vertical recording and reproducing Pending JPS60177409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3327784A JPS60177409A (en) 1984-02-23 1984-02-23 Magnetic head for vertical recording and reproducing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3327784A JPS60177409A (en) 1984-02-23 1984-02-23 Magnetic head for vertical recording and reproducing

Publications (1)

Publication Number Publication Date
JPS60177409A true JPS60177409A (en) 1985-09-11

Family

ID=12382031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3327784A Pending JPS60177409A (en) 1984-02-23 1984-02-23 Magnetic head for vertical recording and reproducing

Country Status (1)

Country Link
JP (1) JPS60177409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726839A (en) * 1993-12-08 1998-03-10 Fujitsu Limited Magnetic head having bypass magnetic path and set magnetic reluctance relationship

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726839A (en) * 1993-12-08 1998-03-10 Fujitsu Limited Magnetic head having bypass magnetic path and set magnetic reluctance relationship

Similar Documents

Publication Publication Date Title
JPH05114119A (en) Magnetoresistance effect type magnetic head
JP2002032903A (en) Thin film magnetic head for perpendicular magnetic recording
JPH05290331A (en) Thin-film magnetic converter
JPH05266426A (en) Thin-film magnetic head
US4700252A (en) Magnetic thin film head
JPS61120318A (en) Unified thin film magnetic head
US6424508B1 (en) Magnetic tunnel junction magnetoresistive head
JPH064832A (en) Combine thin film magnetic head
JPS60177409A (en) Magnetic head for vertical recording and reproducing
JPS6275924A (en) Unified thin film magnetic head
JPH05151536A (en) Coupling reading/writing magnetic head
EP0482642A2 (en) Composite magnetoresistive thin-film magnetic head
JPH05234170A (en) Magnetic head
JP2661560B2 (en) Magnetoresistive element and reproducing method thereof
JPS60191406A (en) Vertical recording and reproducing magnetic head
JP2863543B2 (en) Magnetic head
JPS62102411A (en) Magneto-resistance effect head
JP2863552B2 (en) Thin-film magnetic head and recording / reproducing apparatus using this thin-film magnetic head
JPH0554340A (en) Composite magnetic head
JP2780483B2 (en) Magnetoresistive magnetic head
JP3040892B2 (en) Magnetoresistive thin film magnetic head
JPH0944817A (en) Thin film megnetic head
JPS62146420A (en) Thin film magnetic head
JPH07153023A (en) Magnetic thin-film head for read and write
JPS626420A (en) Thin film magnetic head