JPS60177233A - Multiple force component detector - Google Patents

Multiple force component detector

Info

Publication number
JPS60177233A
JPS60177233A JP59032497A JP3249784A JPS60177233A JP S60177233 A JPS60177233 A JP S60177233A JP 59032497 A JP59032497 A JP 59032497A JP 3249784 A JP3249784 A JP 3249784A JP S60177233 A JPS60177233 A JP S60177233A
Authority
JP
Japan
Prior art keywords
disk
sensors
displacement
ring
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59032497A
Other languages
Japanese (ja)
Other versions
JPH0565809B2 (en
Inventor
Kunitoshi Nishimura
国俊 西村
Haruhisa Kawasaki
晴久 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59032497A priority Critical patent/JPS60177233A/en
Publication of JPS60177233A publication Critical patent/JPS60177233A/en
Publication of JPH0565809B2 publication Critical patent/JPH0565809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/166Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using photoelectric means

Abstract

PURPOSE:To realize a titled small-sized, inexpensive multiple force component detector by arranging a disk body and an annular body concentrically, and arranging plural position sensors which detect their relative displacement at the outer periphery of the disk body and the inner periphery of the annular body. CONSTITUTION:The disk 4 is provided with four image sensors 5 (5a,...), the ring 9 is four light emission bodies 10 (10a,...), and leaf springs 6 (6a,...) are arranged between the disk 4 and ring 9. Centers of facing surfaces of the sensors 6 and light emission bodies 10 are denoted as A and B; and X-axial distance between points A and B is denoted as (p) and Y-axial distance is represented as (q). Then, output characteristics obtained by processing outputs of the sensors 5 show that the distances (p) and (q) are in specific relation, so the outputs of the sensors are measured to detect displacement in each direction and force proportional to the displacement.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、小形で安価な多分力検出器に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a small and inexpensive multi-force detector.

〔従来技術〕[Prior art]

産業用ロボットのような複雑な構造体において、各関節
等が受ける”力”や“モーメント”の複合力を同時に高
精度で検出するにめの多分力検出器忙おいて、従来、歪
ゲージや圧電素子を用いたものがあるが、いずれも高価
であり、しかも大形であるので卓上形ロボットのような
小形のロボットには使用できないという欠点があった。
In complex structures such as industrial robots, multi-force detectors are used to simultaneously and accurately detect the complex force and moment exerted on each joint, etc. Conventionally, strain gauges and Some devices use piezoelectric elements, but they are both expensive and large, so they cannot be used in small robots such as tabletop robots.

〔発明の概要〕[Summary of the invention]

この発明は、こnらの欠点を解決するため、複数の位置
センサを組み合せ、両者の相対位置の変化により各方向
に作用する力を検出するようにしkものであり、七力目
的は小形で安価な多分力検出器を実現することVCある
。以下、この発明を図面について説明する。
In order to solve these drawbacks, this invention combines a plurality of position sensors and detects the forces acting in each direction based on changes in their relative positions. It is possible to realize an inexpensive multi-force detector. Hereinafter, this invention will be explained with reference to the drawings.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例であり、多分力検出器の外
観を示している。この図で、1は筐体で、円柱状をして
おり1円柱の軸と同軸上忙軸2が設けられている。なお
、この明細書では、第1図の軸2の細心方向を2軸、こ
れと直角をな丁子面上の直交方向をX軸、y軸と定義て
る。軸2は筐体1に対し、半径方向および円周方向に移
動可能であり、軸2の軸心を2軸とした場合、ziil
lまわりnモーメン)M、、およびX軸方向の力F、、
)r軸方向の力Fアが軸2に作用1石場合、そnK応じ
た出力が信号#3より出力さjる構造となっている。
FIG. 1 is an embodiment of the present invention, and shows the external appearance of a multi-force detector. In this figure, reference numeral 1 denotes a housing, which has a cylindrical shape and is provided with a busy shaft 2 coaxial with the shaft of the cylinder. In this specification, the fine direction of the axis 2 in FIG. 1 is defined as two axes, and the orthogonal directions on the clove surface that are perpendicular to this are defined as the X axis and the y axis. The shaft 2 is movable in the radial and circumferential directions with respect to the housing 1, and when the axis of the shaft 2 is set as two axes, the ziil
n moments around l) M, and force F in the X-axis direction,
) When a force F in the r-axis direction acts on the shaft 2, the structure is such that an output corresponding to the force F is outputted from the signal #3.

第2図に第1図の多分力検出器を分解した様子を示す。FIG. 2 shows an exploded view of the multi-force detector shown in FIG. 1.

軸2KG!円盤4が固定さjており、円盤4の円周上に
は等間隔VC4個のイメージセ/す5an 5 br 
50. 5 d (以下総称するときは5という。他の
符号についても同様とする)および板ばね6a、6b、
6c、6dが内側を固着して設けられている。また、円
盤4の上面には摩擦係数の小さな材料よりなる板、例え
ば弗素樹脂板7があり、上部板Bとの間を滑り易<シ工
いる。円盤4の外側には円盤4とiぼ同じ厚さをもつリ
ング9が位貴し、板ばね6八〜6dの外側はリング9の
内側に固定され、リング9と円盤4は同心構造となって
いる。また、リング9の内側には発光体10a、10b
、10c、10dが4個等間隔に設けらniおり、イメ
ージセンサ5a〜5dと対向している。リング9の下方
には下部板11があり、下部板11の上面には摩擦係数
の小さな材料、例えば弗素樹脂板12があり、円盤4が
下部板11に対し滑り易くなっている。
Axis 2KG! A disk 4 is fixed, and four VC images are arranged at equal intervals on the circumference of the disk 4.
50. 5 d (hereinafter collectively referred to as 5. The same applies to other symbols) and leaf springs 6a, 6b,
6c and 6d are fixed on the inside. Further, on the upper surface of the disk 4, there is a plate made of a material with a small coefficient of friction, such as a fluororesin plate 7, which easily slides between it and the upper plate B. A ring 9 having approximately the same thickness as the disk 4 is placed on the outside of the disk 4, and the outside of the leaf springs 68 to 6d are fixed to the inside of the ring 9, so that the ring 9 and the disk 4 have a concentric structure. ing. Furthermore, inside the ring 9, there are light emitters 10a and 10b.
, 10c, and 10d are provided at equal intervals and face the image sensors 5a to 5d. There is a lower plate 11 below the ring 9, and on the upper surface of the lower plate 11 there is a material with a small coefficient of friction, such as a fluororesin plate 12, so that the disk 4 can easily slide against the lower plate 11.

上記のように、円盤4は弗素樹脂板7,12を介して上
部板8と下部板11Vc拘束さ贅ており、2@まわり、
およびx、X軸方向のみ移動可能となっている。また、
板ばね68〜6dの作用により2軸まわり、およびxy
軸方向の力に比例した変位をするよう忙構成されている
。発光体10は第3図に示すように、発光素子13.ス
リント14゜ケース15よりなり、平行+16を発てる
ように構成されている。
As mentioned above, the disk 4 is restrained by the upper plate 8 and the lower plate 11Vc via the fluororesin plates 7 and 12, and around 2
And it is movable only in the x and X axis directions. Also,
Around two axes and xy due to the action of leaf springs 68 to 6d
It is configured to have a displacement proportional to the axial force. As shown in FIG. 3, the light emitter 10 includes a light emitting element 13. It consists of a slint 14° and a case 15, and is configured to emit parallel +16.

第4図は2軸忙直角な面での断面図である。イメージセ
ンサ5a〜5d、発光体10a〜10dl板ばね6a〜
6dの位置関係がより明確に示さjている。板ばね6&
〜6dは、前述のように力に比例した変位を生じせしめ
る役目であり、板はねに限ることな(円盤4とリング9
0間を埋める高、分子材料等の弾性材であってもよい。
FIG. 4 is a sectional view taken in a plane perpendicular to the two axes. Image sensors 5a-5d, light emitters 10a-10dl leaf springs 6a-
The positional relationship of 6d is shown more clearly. Leaf spring 6&
~6d has the role of producing a displacement proportional to the force as mentioned above, and is not limited to the plate spring (disc 4 and ring 9).
It may be an elastic material such as a high or molecular material that fills the space between zero.

次に、このような構成により力が検出できる原理を説明
する。
Next, the principle by which force can be detected with such a configuration will be explained.

第5図はイメージセンサ5と発光体1oを対向させた様
子を示している。それぞjの向い合った面の中心をA、
Bとするとき、A点、B点間のX軸方向の距離なp、y
軸方向の距離をqとてる。
FIG. 5 shows the image sensor 5 and the light emitter 1o facing each other. The center of the facing faces of j is A,
When B, the distance between points A and B in the X-axis direction is p, y
Let the distance in the axial direction be q.

発光体10より出Tこ元はイメージセンサ5に入るが、
イメージセンサ5の出力は演算回路17に入り、イメー
ジセンサ5の久方位置等のデ〜りを基に所要の演算処理
が施されて、その出方特性は第6図の火線で示さするよ
うに、X軸方向の距離pに比例した特性となる。この出
力特性は、y軸方向の距離qici!はとんど依存しな
い。
The light emitted from the light emitter 10 enters the image sensor 5,
The output of the image sensor 5 enters the arithmetic circuit 17, and is subjected to necessary arithmetic processing based on the distance position of the image sensor 5, etc., and its output characteristics are as shown by the caustic line in Fig. 6. The characteristic is proportional to the distance p in the X-axis direction. This output characteristic is determined by the distance qici! in the y-axis direction. is hardly dependent.

この出力特性を V二αP で表1゜こ〜にαは定数である。This output characteristic V2αP In Table 1, α is a constant.

第7図は、第4図に示す基準位置からθ方向にδだけ移
動し定状態を示したものである。
FIG. 7 shows a steady state after moving by δ in the θ direction from the reference position shown in FIG.

この状態において、イメージセンサ5a〜5dと発光体
10a〜IQdのそれぞれの対向面の横方向のずれ一3
t(第5図におけるX軸方向の移動量つまり距離pK相
当)は、イメージセンサ5aにおいてp+、5bVcお
いてp2+5cにおい一′Cp3゜5dにおいてp4 
と置けば、 p+”δe08θ1p2−δaimθ1p3=δcos
θ。
In this state, there is a lateral shift of the opposing surfaces of the image sensors 5a to 5d and the light emitters 10a to IQd.
t (corresponding to the amount of movement in the X-axis direction in FIG. 5, that is, the distance pK) is p+ at the image sensor 5a, p2+5c at 5bVc, p4 at 5'Cp3°, and p4 at 5d.
If we put, p+”δe08θ1p2−δaimθ1p3=δcos
θ.

p4−δsimθ であるから、各イメージセンサ5a〜5dの演算後の出
力は、それぞれ ■、=−αδeollθ、v、=−αδainθIV、
−−αδcoIIθ、■4−αδsinθとなる。
Since p4-δsimθ, the outputs of the image sensors 5a to 5d after calculation are respectively ■, =-αδeollθ, v, =-αδainθIV,
--αδcoIIθ, ■4−αδsinθ.

第8図は、第4図に示す基準位置がθ′だけ回転した場
合であり、この時の出方は、円盤4の半径なrとすると
同様にして V; =v; =V’、=v: =α r a in 
f)’xct r fl’となる。
FIG. 8 shows a case where the reference position shown in FIG. 4 has been rotated by θ', and in this case, if r is the radius of the disk 4, then V; =v; =V', = v: = α r a in
f) 'xct r fl'.

両者が混在する場合は和となり、各出力はE+ =Vr
 +V’+ 、E x =Vs 十V’z 。
If both are mixed, it will be the sum, and each output will be E+ = Vr
+V'+, Ex = Vs +V'z.

E J =’Vs +V′j、E4 ”V4+V’<と
なる。
E J ='Vs +V'j, E4 ``V4+V'<.

さて、これらの出力を用い、適宜の周知演算手段により
演算を行えば、各方向の変位を検出゛できることになる
By using these outputs and performing calculations using appropriate well-known calculation means, displacement in each direction can be detected.

回転方向 E 、 = E + +E x + E s
 +B 4 = 4αrθ′y軸方向 E、=E4 E
2”2αδainθX軸方向 E X = E B E
 1= 2αδcotθすなわち、 θ′二E、/4αr 6=土丙F■ 2α ′FJx θ=jan’− E。
Rotation direction E, = E + +E x + E s
+B 4 = 4αrθ′y-axis direction E, =E4 E
2”2αδainθX-axis direction E X = E B E
1=2αδcotθ, that is, θ′2E,/4αr 6=ToheiF■ 2α′FJx θ=jan′−E.

により、そjぞrの変位を検出できる。iた、変位はそ
の方向に作用する力に比例するので、結局。
Accordingly, the displacement of j and r can be detected. After all, since the displacement is proportional to the force acting in that direction.

力の大きさ、方向を検出できることになる。This means that the magnitude and direction of force can be detected.

なお、以上の説明では、リング9に発光体10を、円盤
4にイメージセンサ5を配置したが、逆n配置でもよい
ことは、その原理より考え明らかである。また、発光体
10とイメージセンサ5の゛組み合せに限ることなく、
第6図に示すよ5な特2性が得らnる位置センサであれ
ば、この発明に適用できる。
In the above description, the light emitter 10 is arranged on the ring 9 and the image sensor 5 is arranged on the disk 4, but it is obvious from the principle that an inverted n arrangement is also possible. Furthermore, the combination of the light emitting body 10 and the image sensor 5 is not limited;
Any position sensor that can obtain the characteristics shown in FIG. 6 can be applied to the present invention.

さらに、上記実施例では円盤4とリング9を用一般的に
は盤体であればよい。また、同様にリング9も他の形状
のものでよ(、環状体であnばよい。マタ、複数個の位
置センサは必ずしも等間隔に配置する必要はなく、不等
間隔でも補正を加え詐はよい。
Further, in the above embodiment, the disk 4 and ring 9 are used, but generally any disk body may be used. Similarly, the ring 9 may also be of another shape (or an annular body). However, it is not necessary to arrange the plurality of position sensors at equal intervals, and even if they are arranged at irregular intervals, correction may be made to prevent false alarms. Yes.

〔発明の効果〕〔Effect of the invention〕

以上説明し瓦ように、この発明は盤体を環状体の中に同
心となるように力に比例しに変位を生ずる弾性体で支持
し、盤体の外周と環状体の内周との間に位置センサを複
数個設けて、環状体と盤体との相対位置を検出し、その
位置の変化により多1向に作用する力を同時に検出で會
ろようにシたので、安価で、しかも小形の多分力検出器
が実現できる利点がある。
As explained above, this invention supports a disc body concentrically within an annular body with an elastic body that generates displacement in proportion to force, and between the outer periphery of the disc body and the inner periphery of the annular body. It is possible to detect the relative position between the annular body and the disc body by installing multiple position sensors on the body, and to simultaneously detect and combine the forces that act in multiple directions due to changes in the position, which is inexpensive and yet effective. There is an advantage that a compact multi-force detector can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の外観図、第2図ノはその
内部の構成を示す分解斜視図、第3図は発光体の細部を
示す側断面図、第4図は第1図の実施例の平断面図、第
5図は発光体とイメージセンサの位置関係を説明する1
こめの図、第6図はイメージセンサの出力特性図、第7
図、第8図はそiぞれリング状体と円盤の相対変位を説
明するための図である。 図中、1は筐体、2は軸、3は信号線、4は円盤、5は
イメージセンサ、6は板ばね、7,12は弗素樹脂板、
8は上部板、9はリング、10は発光体、11は下部板
、13は発光素子、14iまスリット、15はケース、
16は平行光、17は演算回路である。 第1図 第2図 第3図 投 第4図 第5図 ]l 第6図
Fig. 1 is an external view of one embodiment of the present invention, Fig. 2 is an exploded perspective view showing its internal structure, Fig. 3 is a side sectional view showing details of the light emitting body, and Fig. 4 is the same as that shown in Fig. 1. FIG. 5 is a plan cross-sectional view of the embodiment of 1, which explains the positional relationship between the light emitting body and the image sensor.
Figure 6 is the output characteristic diagram of the image sensor, Figure 7 is the output characteristic diagram of the image sensor.
8 and 8 are diagrams for explaining the relative displacement between the ring-shaped body and the disk, respectively. In the figure, 1 is a housing, 2 is a shaft, 3 is a signal line, 4 is a disk, 5 is an image sensor, 6 is a leaf spring, 7 and 12 are fluororesin plates,
8 is an upper plate, 9 is a ring, 10 is a light emitter, 11 is a lower plate, 13 is a light emitting element, 14i is a slit, 15 is a case,
16 is parallel light, and 17 is an arithmetic circuit. Figure 1 Figure 2 Figure 3 Throw Figure 4 Figure 5] Figure 6

Claims (1)

【特許請求の範囲】 盤体な環状体の中に同心となるように力に比例しん変位
を生ずる弾性体で2軸のまわりとX軸。 X軸方向に変位可能に支持するとともに、前記盤体力外
周と前記環状体の内周との間に対向するように前記盤体
と環状体の相対変位を検出する位置センサを複数個配置
したことを特徴とする多分力検出器。
[Claims] An elastic body that produces a concentric displacement in proportion to force in an annular disc-shaped body around two axes and the X-axis. A plurality of position sensors are disposed so as to be displaceable in the X-axis direction, and are arranged to face each other between the outer circumference of the disk body and the inner circumference of the annular body and detect relative displacement between the disk body and the annular body. A multi-force detector featuring:
JP59032497A 1984-02-24 1984-02-24 Multiple force component detector Granted JPS60177233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59032497A JPS60177233A (en) 1984-02-24 1984-02-24 Multiple force component detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59032497A JPS60177233A (en) 1984-02-24 1984-02-24 Multiple force component detector

Publications (2)

Publication Number Publication Date
JPS60177233A true JPS60177233A (en) 1985-09-11
JPH0565809B2 JPH0565809B2 (en) 1993-09-20

Family

ID=12360629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59032497A Granted JPS60177233A (en) 1984-02-24 1984-02-24 Multiple force component detector

Country Status (1)

Country Link
JP (1) JPS60177233A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646836A (en) * 1987-06-30 1989-01-11 Japan Res Dev Corp Optical force sensor
JPH0259634A (en) * 1988-08-25 1990-02-28 Meidensha Corp Force sensor and detection for force
EP1195580A2 (en) * 2000-07-14 2002-04-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device to monitor movements of an object
WO2004063693A1 (en) * 2003-01-14 2004-07-29 3Dconnexion Gmbh Compact optical detection of relative movements through a slotted perforated plate
WO2013021799A1 (en) * 2011-08-05 2013-02-14 独立行政法人科学技術振興機構 Sensor module and sensor system for soft object
JP2017096929A (en) * 2015-11-18 2017-06-01 キヤノン株式会社 Sensor, drive mechanism, and robot
US10350767B2 (en) 2015-11-18 2019-07-16 Canon Kabushiki Kaisha Sensor, driving mechanism, and robot

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646836A (en) * 1987-06-30 1989-01-11 Japan Res Dev Corp Optical force sensor
JPH0259634A (en) * 1988-08-25 1990-02-28 Meidensha Corp Force sensor and detection for force
EP1195580A2 (en) * 2000-07-14 2002-04-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device to monitor movements of an object
EP1195580A3 (en) * 2000-07-14 2002-08-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device to monitor relative movements of an object
WO2004063693A1 (en) * 2003-01-14 2004-07-29 3Dconnexion Gmbh Compact optical detection of relative movements through a slotted perforated plate
WO2013021799A1 (en) * 2011-08-05 2013-02-14 独立行政法人科学技術振興機構 Sensor module and sensor system for soft object
JP2017096929A (en) * 2015-11-18 2017-06-01 キヤノン株式会社 Sensor, drive mechanism, and robot
US10350767B2 (en) 2015-11-18 2019-07-16 Canon Kabushiki Kaisha Sensor, driving mechanism, and robot

Also Published As

Publication number Publication date
JPH0565809B2 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
US4843387A (en) Variable capacitance type encoder
US9366587B2 (en) Optical force sensor and apparatus using optical force sensor
JP4693318B2 (en) Rotational displacement device using differential measurement method
US4936148A (en) Hall effect pressure transducer
JP6918647B2 (en) Force sensor, torque sensor, force sensor, fingertip force sensor, and their manufacturing method
TW201932808A (en) Torque sensor
GB2072345A (en) Transducer with six degrees of freedom
KR20030044751A (en) Arrangement for the detection of relative movements or relative positions of two objects
JPS60177233A (en) Multiple force component detector
JP4141637B2 (en) Head for inspecting the linear dimensions of parts
JPH02503231A (en) optical position encoder
WO2019078314A1 (en) Force sensor and device comprising said sensor
JPH0565808B2 (en)
US5295399A (en) Force moment sensor
JP5216030B2 (en) Multi-directional input device
JPH06149474A (en) Magnetic coordinate position indicating device
US4334166A (en) Rotary magnetic sensor
JPS6128835A (en) Multiple component forces detector
US4506221A (en) Magnetic heading transducer having dual-axis magnetometer with electromagnet mounted to permit pivotal vibration thereof
JPH11264779A (en) Torque and thrust detecting device
JPS58167934A (en) Torque detecting device
JP2566883Y2 (en) Axial force sensor
JPH0511893B2 (en)
JPH09280982A (en) Three-dimensional load sensor
JP2022071531A (en) Wall surface earth pressure gauge