JPH09280982A - Three-dimensional load sensor - Google Patents

Three-dimensional load sensor

Info

Publication number
JPH09280982A
JPH09280982A JP8087876A JP8787696A JPH09280982A JP H09280982 A JPH09280982 A JP H09280982A JP 8087876 A JP8087876 A JP 8087876A JP 8787696 A JP8787696 A JP 8787696A JP H09280982 A JPH09280982 A JP H09280982A
Authority
JP
Japan
Prior art keywords
cantilever
mounting base
strain
strain detecting
main shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8087876A
Other languages
Japanese (ja)
Inventor
Yoshihiro Arakawa
好弘 荒川
Takashi Kawai
孝士 川井
Makoto Kamei
誠 亀井
Akio Toda
明夫 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8087876A priority Critical patent/JPH09280982A/en
Publication of JPH09280982A publication Critical patent/JPH09280982A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to output a three-dimensional coordinate signal by providing a mounting base having a cantilever and a first strain detector between-the free end and fixed end of the beam, and a sub-shaft or an operating unit in contact with the free end of the beam. SOLUTION: A first strain detector 23 is formed by printing between the free end 24 and the fixed end 25 of a cantilever beam 22 of a mounting base 21 having the beam 22, a main shaft 26 having a through hole 28 therein formed by printing second strain detectors 29, 30 and third strain detectors 31, 32 on the upper surface is press fitted fixedly into the surface. A sub-shaft 35 is inserted into the hole 28, and assembled fixedly so that the through hole 34 of an operating unit 33 is engaged with the shaft 35. The shaft 35 is projected to the upper surface of the unit 33. The shaft 26 is deformed by the force applied to the unit 33, the resistances of the detectors 29, 30, 31, 32 are changed, and the load is detected as X-axis, Y-axis signals. When the shaft 35 is pressed, the end 24 of the beam 22 is pressed, and the load is detected as the signal of the Z-axis signal due to the resistance change of the detector 23 to input the three-dimensional signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、パーソナルコンピ
ュータや携帯端末や電子手帳を始めとするマルチメディ
ア機器や、ゲーム機器等の位置入力に使用される3次元
用荷重センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional load sensor used for position input of multimedia devices such as personal computers, portable terminals, electronic notebooks, and game devices.

【0002】[0002]

【従来の技術】近年、2次元の座標入力用機器として、
パーソナルコンピュータ(以下、「パソコン」と記
す。)等のGUI(グラフィカル・ユーザー・インター
フェース)操作入力装置として、ポインティングデバイ
スが重要な入力機器として注目されている。このポイン
ティングデバイスの一つとしてマウスとは異なり、操作
するための平面を必要としない荷重センサの開発が要求
されている。
2. Description of the Related Art Recently, as a two-dimensional coordinate input device,
As a GUI (Graphical User Interface) operation input device such as a personal computer (hereinafter, referred to as “personal computer”), a pointing device has been attracting attention as an important input device. Unlike the mouse, one of the pointing devices is required to develop a load sensor that does not require a plane for operating.

【0003】従来の荷重センサは、特開平7−2445
59号公報に開示されたものが知られている。
A conventional load sensor is disclosed in Japanese Patent Laid-Open No. 7-24445.
The one disclosed in Japanese Patent Publication No. 59 is known.

【0004】以下に従来の荷重センサについて、図面を
参照しながら説明する。図6は、従来の荷重センサの斜
視図である。
A conventional load sensor will be described below with reference to the drawings. FIG. 6 is a perspective view of a conventional load sensor.

【0005】図において、1は板からなる取付台であ
る。2は取付台1の上面に固定され側面に歪検出素子3
を有する四角柱状の検出部4を備えた主軸である。5は
主軸2の上部に設けられた円柱形状の操作部である。
In the figure, reference numeral 1 is a mount made of a plate. 2 is fixed to the upper surface of the mounting base 1 and the strain detecting element 3 is provided on the side surface.
It is a spindle provided with a detection unit 4 in the form of a quadrangular prism having. Reference numeral 5 denotes a columnar operation portion provided on the upper portion of the main shaft 2.

【0006】以上のように構成された従来の荷重センサ
について、以下にその動作を説明する。操作部5に加え
られた力によって、主軸2と垂直な分力により主軸2が
変形し、この変形に応じて歪検出素子3が伸縮し、抵抗
値が変化する。この歪検出素子3は主軸2の中心軸と対
称な1組を一対としておりこの二組の歪検出素子3は互
いに直角に配置されているので、主軸2の変形を2つの
座標に分割することができる。パソコン等の演算処理装
置は、2つの座標軸の信号が入力することにより、操作
部5に加えた荷重の方向と大きさを検知して、ディスプ
レイ(図示せず)上のポインタを動かす信号を発生し、
ポインタの位置を確定していた。
The operation of the conventional load sensor constructed as above will be described below. Due to the force applied to the operation unit 5, the main shaft 2 is deformed by a component force perpendicular to the main shaft 2, and the strain detecting element 3 expands and contracts according to this deformation, and the resistance value changes. This strain detecting element 3 has one set that is symmetrical with respect to the central axis of the main shaft 2, and these two sets of strain detecting elements 3 are arranged at right angles to each other. You can An arithmetic processing device such as a personal computer detects the direction and magnitude of the load applied to the operation unit 5 by inputting signals of two coordinate axes and generates a signal for moving a pointer on a display (not shown). Then
The position of the pointer was fixed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の構成においては、取付台1に平行な2次元の荷重の
方向と大きさしか検出できないため、3次元の座標信号
を出力できないという課題を有していた。
However, in the above-mentioned conventional structure, there is a problem that a three-dimensional coordinate signal cannot be output because only the direction and magnitude of the two-dimensional load parallel to the mounting base 1 can be detected. Was.

【0008】本発明は上記従来の課題を解決するもの
で、3次元の座標信号を出力できる3次元用荷重センサ
を提供することを目的とするものである。
The present invention solves the above-mentioned conventional problems, and an object thereof is to provide a three-dimensional load sensor capable of outputting a three-dimensional coordinate signal.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明は、片持梁を有するとともにこの片持梁の自由
端と固定端との間に第1の歪検出素子を備えた取付台
と、この取付台の片持梁の自由端に当接する副軸または
操作部を有する構成としたものである。
In order to achieve the above-mentioned object, the present invention has a cantilever, and an attachment having a first strain detecting element between a free end and a fixed end of the cantilever. It is configured to have a base and an auxiliary shaft or an operating portion that comes into contact with the free end of the cantilever of the mounting base.

【0010】この発明によれば、3次元座標信号を出力
する3次元用荷重センサが得られるものである。
According to the present invention, a three-dimensional load sensor that outputs a three-dimensional coordinate signal can be obtained.

【0011】[0011]

【発明の実施の形態】本発明請求項1に記載の発明は、
片持梁を有するとともにこの片持梁の自由端と固定端と
の間に第1の歪検出素子を備えてなる取付台と、この取
付台の上面に設けられ内部に貫通孔を有するとともに前
記片持梁と対向する面に凹部を備えた角柱状の主軸と、
この主軸の側面に交互に設けられた第2の歪検出素子お
よび第3の歪検出素子と、前記主軸の貫通孔内に配設さ
れるとともに前記片持梁の自由端に当接しかつ前記主軸
の上面より突出する副軸と、前記第1、第2、第3の歪
検出素子からの検出信号を入力して3次元処理をする処
理手段とからなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is
A mounting base having a cantilever and a first strain detecting element between a free end and a fixed end of the cantilever; and a through hole provided on the upper surface of the mounting base and having a through hole therein. A prismatic main shaft having a concave portion on the surface facing the cantilever,
Second strain sensing elements and third strain sensing elements, which are alternately provided on the side surfaces of the spindle, are arranged in the through holes of the spindle and are in contact with the free ends of the cantilever beams, and the spindle. And a processing means for inputting the detection signals from the first, second and third strain detecting elements and performing three-dimensional processing.

【0012】また、請求項2に記載の発明は、片持梁を
有するとともにこの片持梁の自由端と固定端との間に第
1の歪検出素子を備えてなる取付台と、この取付台の上
面に設けられた角柱状の主軸と、この主軸の側面に交互
に設けられた第2の歪検出素子および第3の歪検出素子
と、前記主軸の上面に前記取付台の片持梁の上面に向か
って突出する突出部を有する副軸と、前記第1、第2、
第3の歪検出素子からの検出信号を入力して3次元処理
をする処理手段とからなるものである。
The invention according to claim 2 has a mounting base having a cantilever and a first strain detecting element between the free end and the fixed end of the cantilever, and the mounting base. A prismatic main shaft provided on the upper surface of the table, second strain sensing elements and third strain sensing elements provided alternately on the side surfaces of the spindle, and a cantilever of the mounting table on the upper surface of the spindle. A sub-shaft having a protrusion protruding toward the upper surface of the first shaft, the first shaft, the second shaft,
And a processing means for receiving a detection signal from the third strain detecting element and performing three-dimensional processing.

【0013】また、請求項3に記載の発明は、片持梁を
有するとともにこの片持梁の自由端と固定端との間に第
1の歪検出素子を備えてなる取付台と、この取付台の上
面に直交するように設けられた第2、第3の歪検出素子
と、前記取付台の上面に前記第2、第3の歪検出素子と
接しないように設けられた内部に貫通孔を有する主軸
と、前記主軸の貫通孔内に配設されるとともに前記片持
梁の自由端に当接しかつ前記主軸の上面より突出する副
軸と、前記第1、第2、第3の歪検出素子からの検出信
号を入力して3次元処理をする処理手段とからなるもの
である。
The invention according to claim 3 is a mounting base having a cantilever and a first strain detecting element between the free end and the fixed end of the cantilever, and the mounting base. Second and third strain detecting elements provided so as to be orthogonal to the upper surface of the table, and through holes provided inside the upper surface of the mounting table so as not to contact the second and third strain detecting elements. A main shaft having a main shaft, a sub-shaft disposed in a through hole of the main shaft and abutting on a free end of the cantilever and projecting from an upper surface of the main shaft; It comprises a processing means for receiving a detection signal from the detection element and performing three-dimensional processing.

【0014】また、請求項4に記載の発明は、片持梁を
有するとともにこの片持梁の自由端と固定端との間に第
1の歪検出素子を備えてなる取付台と、この取付台の上
面に直交するように設けられた第2、第3の歪検出素子
と、前記取付台の上面に前記第2、第3の歪検出素子と
接しないように設けられた主軸と、この主軸の上面に前
記取付台の片持梁と当接する突出部を有する操作部と、
前記第1、第2、第3の歪検出素子からの検出信号を入
力して3次元処理をする処理手段とからなるものであ
る。
The invention according to claim 4 is a mount having a cantilever and a first strain detecting element between the free end and the fixed end of the cantilever, and the mount. Second and third strain detecting elements provided so as to be orthogonal to the upper surface of the table, and a spindle provided on the upper surface of the mounting table so as not to contact the second and third strain detecting elements, An operating portion having a protrusion on the upper surface of the main shaft that abuts the cantilever of the mounting base,
And a processing means for receiving the detection signals from the first, second and third strain detecting elements and performing three-dimensional processing.

【0015】また、請求項5に記載の発明は、請求項1
または2記載の発明の主軸は、4n角柱(nは自然数)
からなるものである。
The invention described in claim 5 is the same as claim 1.
Or the main axis of the invention described in 2 is a 4n prism (n is a natural number)
It consists of

【0016】(実施の形態1)以下、本発明の実施の形
態1における荷重センサについて、図面を参照しながら
説明する。
(Embodiment 1) Hereinafter, a load sensor according to Embodiment 1 of the present invention will be described with reference to the drawings.

【0017】図1は本発明の実施の形態1における3次
元用荷重センサの透視した分解斜視図、図2は同透視し
た斜視図である。
FIG. 1 is a perspective exploded perspective view of a three-dimensional load sensor according to a first embodiment of the present invention, and FIG. 2 is a perspective perspective view thereof.

【0018】図において、21は略中央に片持梁22を
有するフェノール、ガラスエポキシ等の樹脂またはセラ
ミック等からなる板状の弾性を有する取付台である。2
3は片持梁22の自由端24と固定端25との間に設け
られたz軸方向を検知する歪ゲージからなる第1の歪検
出素子である。26は取付台21の上面に片持梁22と
対向する側に凹部27を有しかつ内部に貫通孔28を有
する樹脂またはセラミック等からなる四角柱状の弾性を
有する主軸である。29,30は主軸26の対向する側
面に設けられたx軸方向を検知する歪ゲージからなる第
2の歪検出素子である。31,32は主軸26の第2の
歪検出素子29,30を設けていない対向する側面に設
けられたy軸方向を検知する歪ゲージからなる第3の歪
検出素子である。33は主軸26の取付台21の対向す
る上部に設けられ、内部に主軸26の貫通孔28と同形
状の操作部貫通孔34を有する軟質ゴム等からなる操作
部である。35は主軸26の貫通孔28と操作部33の
操作部貫通孔34とを挿通して取付台21の片持梁22
と当接するとともに操作部の上面より突出するように設
けられたポリブチレンフタレート等の樹脂材料からなる
副軸である。36は第1、第2、第3の歪検出素子2
3,29,30,31,32と電気的に接続し、この第
1、第2、第3の歪検出素子23,29,30,31,
32の検出信号を入力し、3次元の出力信号に処理する
処理手段で、取付台21の上面に設けても取付台21以
外に設けても良い。
In the figure, reference numeral 21 is a plate-like elastic mounting base made of a resin such as phenol, glass epoxy or the like or a ceramic or the like having a cantilever 22 at the substantially center thereof. Two
Reference numeral 3 is a first strain detecting element which is provided between the free end 24 and the fixed end 25 of the cantilever 22 and which is a strain gauge for detecting the z-axis direction. Reference numeral 26 is a quadrangular prism-shaped main shaft made of resin, ceramic or the like having a recess 27 on the upper surface of the mounting base 21 on the side facing the cantilever 22 and having a through hole 28 inside thereof. Reference numerals 29 and 30 denote second strain detection elements which are provided on opposite side surfaces of the main shaft 26 and which are strain gauges for detecting the x-axis direction. Reference numerals 31 and 32 denote third strain detection elements, which are provided on opposite side surfaces of the main shaft 26 where the second strain detection elements 29 and 30 are not provided, and which are strain gauges for detecting the y-axis direction. Reference numeral 33 denotes an operating portion which is provided at an upper portion of the mounting base 21 of the main shaft 26 facing each other, and has an operating portion through hole 34 having the same shape as the through hole 28 of the main shaft 26 therein, and which is made of soft rubber or the like. Reference numeral 35 denotes a cantilever beam 22 of the mount 21 by inserting the through hole 28 of the main shaft 26 and the operation portion through hole 34 of the operation portion 33.
The auxiliary shaft is made of a resin material such as polybutylene phthalate and is provided so as to come into contact with and project from the upper surface of the operating portion. 36 is the first, second, and third strain detection elements 2
3, 29, 30, 31, 32 are electrically connected to the first, second, and third strain detection elements 23, 29, 30, 31,
It is a processing means for inputting 32 detection signals and processing it into a three-dimensional output signal, and may be provided on the upper surface of the mounting base 21 or other than the mounting base 21.

【0019】以上のように構成された本発明の実施の形
態1における3次元用荷重センサについて、以下にその
組立方法を説明する。
The assembling method of the three-dimensional load sensor according to the first embodiment of the present invention configured as above will be described below.

【0020】片持梁22を有する取付台21の片持梁2
2の自由端24と固定端25との間に第1の歪検出素子
23を印刷して形成し、その上面にあらかじめ側面に第
2の歪検出素子29,30および第3の歪検出素子3
1,32を印刷により形成された内部に貫通孔を有する
主軸26を圧入し固定する。そして主軸26の貫通孔2
8に副軸35を挿入し、さらに操作部33の操作部貫通
孔34が副軸35と嵌合するように上方向から下面に接
着剤を塗布した操作部33を組み付け固定する。この
際、操作部33の上面より副軸35が突出するように設
けるものである。
Cantilever 2 of mount 21 having cantilever 22
The first strain sensing element 23 is printed and formed between the free end 24 and the fixed end 25 of the second strain sensing element 23, and the second strain sensing elements 29 and 30 and the third strain sensing element 3 are previously formed on the upper surface of the first strain sensing element 23.
The main shaft 26 having a through hole is press-fitted and fixed in the inside formed by printing 1, 32. And the through hole 2 of the main shaft 26
The auxiliary shaft 35 is inserted into the shaft 8, and the operating part 33 having an adhesive applied to the lower surface from above is assembled and fixed so that the operating part through hole 34 of the operating part 33 fits with the auxiliary shaft 35. At this time, the auxiliary shaft 35 is provided so as to protrude from the upper surface of the operation portion 33.

【0021】以上のように構成された本発明の一実施の
形態における3次元用荷重センサについて、以下にその
動作を説明する。
The operation of the three-dimensional load sensor having the above-mentioned structure according to the embodiment of the present invention will be described below.

【0022】操作部33に加えられた力によって、主軸
26の軸方向と垂直な分力により主軸26が変形し、こ
の変形に応じて第2の歪検出素子29,30および第3
の歪検出素子31,32が伸縮し、抵抗値が変化する。
この第2、第3の歪検出素子29,30,31,32は
それぞれ主軸26に対して隣り合うように配置されてい
るので、主軸26の変形を2つの座標x軸、y軸に分割
することができる。つまり、第2の歪検出素子29,3
0の抵抗値変化による電圧差をx軸の座標軸方向の信号
とし、第3の歪検出素子31,32の抵抗値変化による
電圧差をy軸の座標軸方向の信号として荷重を検出す
る。そして、処理手段36にx軸、y軸の座標軸の信号
入力を受け、操作部33に加わる荷重の方向と大きさに
伴うディスプレイ(図示せず)上のポインタを動かす。
それから、副軸35の上部を下方に向かって押込むと副
軸25が片持梁22の自由端を押すため、第1の歪検出
素子23は取付台21の下方に変形する。この変形によ
り、第1の歪検出素子23の抵抗値は高くなり、副軸3
5に加えられた荷重を検知することができる。第1の歪
検出素子23の抵抗値変化を処理手段36に入力し、z
軸方向の信号を出力することによって、3次元の信号の
入力を実現することができる。
Due to the force applied to the operating portion 33, the main shaft 26 is deformed by a component force perpendicular to the axial direction of the main shaft 26, and the second strain detecting elements 29, 30 and the third strain detecting element 29, 30
The strain detecting elements 31 and 32 expand and contract, and the resistance value changes.
Since the second and third strain detection elements 29, 30, 31, 32 are arranged adjacent to the main shaft 26, the deformation of the main shaft 26 is divided into two coordinates, x-axis and y-axis. be able to. That is, the second strain detection elements 29, 3
The load is detected by using the voltage difference due to the resistance value change of 0 as a signal in the x-axis coordinate axis direction and the voltage difference due to the resistance value change of the third strain detection elements 31 and 32 as a signal in the y-axis coordinate axis direction. Then, the processing means 36 receives a signal input from the x-axis and y-axis coordinate axes, and moves a pointer on a display (not shown) according to the direction and magnitude of the load applied to the operation unit 33.
Then, when the upper portion of the counter shaft 35 is pushed downward, the counter shaft 25 pushes the free end of the cantilever 22, so that the first strain detecting element 23 is deformed below the mount 21. Due to this deformation, the resistance value of the first strain detection element 23 becomes high, and the auxiliary shaft 3
The load applied to 5 can be detected. The resistance value change of the first strain detecting element 23 is input to the processing means 36, and z
By outputting a signal in the axial direction, input of a three-dimensional signal can be realized.

【0023】なお、本実施の形態1では主軸26を四角
柱状としたが、4n角柱状(nは自然数)とし、第1、
第2の歪検出素子を隣り合うように配置すれば良い。
In the first embodiment, the main shaft 26 has a quadrangular prism shape, but it has a 4n prism shape (n is a natural number).
The second strain detecting elements may be arranged adjacent to each other.

【0024】(実施の形態2)以下、本発明の実施の形
態2における3次元用荷重センサについて、図面を参照
しながら説明する。
(Second Embodiment) A three-dimensional load sensor according to a second embodiment of the present invention will be described below with reference to the drawings.

【0025】図3は、本発明の実施の形態2における3
次元用荷重センサの透視した分解斜視図である。
FIG. 3 shows a third embodiment of the present invention.
It is the see-through disassembled perspective view of the load sensor for dimensions.

【0026】図において、41は略中央に片持梁42を
有するフェノール、ガラスエポキシ等の樹脂またはセラ
ミック等からなる板状の弾性を有する取付台である。4
3は片持梁42の自由端44と固定端45との間に設け
られたz軸方向を検知する歪ゲージからなる第1の歪検
出素子である。46は取付台41の上面に設けられた四
角柱状の弾性を有する主軸である。47,48は主軸4
6の対向する側面に設けられたx軸方向を検知する歪ゲ
ージからなる第2の歪検出素子である。49,50は主
軸46の第2の歪検出素子47,48を設けていない対
向する側面に設けられたy軸方向を検知する歪ゲージか
らなる第3の歪検出素子である。51は主軸46の取付
台41の対向する上部に設けられた軟質ゴム等からなる
操作部である。52は操作部51を覆うとともに取付台
41の片持梁42の上面に向かって突出する突出部53
を有するポリエチレンテレフタレート等の樹脂からなる
副軸である。54は第1、第2、第3の歪検出素子4
3,47,48,49,50と電気的に接続し、この第
1、第2、第3の歪検出素子43,47,48,49,
50の検出信号を入力し、3次元の出力信号に処理する
処理手段で、取付台41の上面に設けても取付台41以
外に設けても良い。
In the figure, reference numeral 41 is a plate-like elastic mounting base made of a resin such as phenol, glass epoxy or the like, or a ceramic having a cantilever 42 in the approximate center. Four
Reference numeral 3 is a first strain detecting element which is provided between the free end 44 and the fixed end 45 of the cantilever 42 and which is a strain gauge for detecting the z-axis direction. Reference numeral 46 denotes a square columnar elastic spindle provided on the upper surface of the mount 41. 47 and 48 are spindles 4
6 is a second strain detection element formed of a strain gauge provided on opposite side surfaces of 6 to detect the x-axis direction. Reference numerals 49 and 50 denote third strain detecting elements, which are strain gauges provided on the opposite side surfaces of the main shaft 46 where the second strain detecting elements 47 and 48 are not provided and which detect the y-axis direction. Reference numeral 51 denotes an operation section made of soft rubber or the like, which is provided on an upper portion of the mounting base 41 of the main shaft 46 that faces the main shaft 46. Reference numeral 52 denotes a projecting portion 53 which covers the operating portion 51 and projects toward the upper surface of the cantilever 42 of the mounting base 41.
It is a sub-shaft made of a resin such as polyethylene terephthalate. 54 is the first, second, and third strain detection elements 4
3, 47, 48, 49, 50 are electrically connected, and the first, second and third strain detecting elements 43, 47, 48, 49,
It is a processing means for inputting 50 detection signals and processing it into a three-dimensional output signal, which may be provided on the upper surface of the mounting base 41 or other than the mounting base 41.

【0027】以上のように構成された本発明の実施の形
態2における3次元用荷重センサについて、その組立方
法を説明する。
A method of assembling the three-dimensional load sensor having the above-described configuration according to the second embodiment of the present invention will be described.

【0028】片持梁42を有する取付台41の片持梁4
2の自由端44と固定端45との間に第1の歪検出素子
43を印刷して形成し、その上面にあらかじめ側面に第
2の歪検出素子47,48、第3の歪検出素子49,5
0を印刷により形成された主軸46を圧入し固定する。
そして、主軸46の上部に操作部51を設ける。その
後、操作部51を覆うように副軸52を設ける。この
際、副軸52の突出部53は取付台41の片持梁42の
上面に向かって突出するように設けるものである。
Cantilever 4 of mount 41 having cantilever 42
The first strain detecting element 43 is formed by printing between the second free end 44 and the fixed end 45, and the second strain detecting elements 47, 48 and the third strain detecting element 49 are formed on the upper surface of the first strain detecting element 43 in advance. , 5
The main shaft 46 formed by printing 0 is press-fitted and fixed.
Then, the operation unit 51 is provided above the main shaft 46. After that, the sub shaft 52 is provided so as to cover the operation unit 51. At this time, the protruding portion 53 of the auxiliary shaft 52 is provided so as to protrude toward the upper surface of the cantilever 42 of the mounting base 41.

【0029】なお、本実施の形態2の3次元用荷重セン
サの動作は、実施の形態1の副軸35と実施の形態2の
副軸52の突出部53とが同じような作用を有すれば同
じとなるので説明は省略する。
In the operation of the three-dimensional load sensor of the second embodiment, the auxiliary shaft 35 of the first embodiment and the protruding portion 53 of the auxiliary shaft 52 of the second embodiment have the same action. Therefore, the description will be omitted.

【0030】また、本実施の形態2の主軸46を四角柱
状としたが、4n角柱状(nは自然数)とし、第1、第
2の歪検出素子を隣り合うように配置すれば良い。
Further, although the spindle 46 of the second embodiment is a quadrangular prism, it may be a quadrangular prism (n is a natural number) and the first and second strain detecting elements may be arranged adjacent to each other.

【0031】(実施の形態3)以下、本発明の実施の形
態3における3次元用荷重センサについて、図面を参照
しながら説明する。
(Third Embodiment) A three-dimensional load sensor according to a third embodiment of the present invention will be described below with reference to the drawings.

【0032】図4は本発明の実施の形態3における3次
元用荷重センサの透視した斜視図である。ここで、実施
の形態1の図2と同じものは同一符号を付し説明を省略
する。
FIG. 4 is a see-through perspective view of a three-dimensional load sensor according to the third embodiment of the present invention. Here, the same components as those in FIG. 2 of the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0033】実施の形態1の図2と相違するのは、主軸
61を円柱状とし、第2の歪検出素子62,63と第3
の歪検出素子64,65とを取付台21の上面に直交す
るように設けた点である。このような構成にすることに
より、実施の形態1と同様な効果が得られるものであ
る。
The difference from the first embodiment shown in FIG. 2 is that the main shaft 61 has a cylindrical shape, and the second strain detecting elements 62 and 63 and the third strain detecting element are provided.
The strain detecting elements 64 and 65 are provided so as to be orthogonal to the upper surface of the mounting base 21. With such a configuration, the same effect as that of the first embodiment can be obtained.

【0034】(実施の形態4)以下、本発明の実施の形
態4における3次元用荷重センサについて、図面を参照
しながら説明する。
(Fourth Embodiment) A three-dimensional load sensor according to a fourth embodiment of the present invention will be described below with reference to the drawings.

【0035】図5は本発明の実施の形態4における3次
元用荷重センサの透視した斜視図である。ここで、実施
の形態2の図3と同じものは同一符号を付し説明を省略
する。
FIG. 5 is a see-through perspective view of a three-dimensional load sensor according to the fourth embodiment of the present invention. Here, the same components as those in FIG. 3 of the second embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0036】実施の形態2の図3と相違するのは、主軸
71を円柱状とし、第2の歪検出素子72,73と第3
の歪検出素子74,75とを取付台41の上面に直交す
るように設けた点である。このような構成にすることに
より、実施の形態2と同様な効果が得られるものであ
る。
The difference from the second embodiment shown in FIG. 3 is that the main shaft 71 is cylindrical and the second strain detecting elements 72, 73 and the third strain detecting element
The strain detecting elements 74 and 75 are provided so as to be orthogonal to the upper surface of the mounting base 41. With such a configuration, the same effect as that of the second embodiment can be obtained.

【0037】[0037]

【発明の効果】以上のように本発明は、取付台の片持梁
の固定端と自由端との間に歪検出素子を設け、この片持
梁の上面に副軸または副軸の突出部を配置する構成とし
たので、取付台に垂直な方向の力を検出でき、3次元座
標信号を入力する3次元用荷重センサを提供することが
できるものである。
As described above, according to the present invention, the strain detecting element is provided between the fixed end and the free end of the cantilever of the mount, and the counter shaft or the protrusion of the counter shaft is provided on the upper surface of the cantilever. Since the arrangement is provided, it is possible to provide a three-dimensional load sensor that can detect a force in a direction perpendicular to the mounting base and that inputs a three-dimensional coordinate signal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態における3次元用荷重セ
ンサの透視した分解斜視図
FIG. 1 is a perspective exploded perspective view of a three-dimensional load sensor according to an embodiment of the present invention.

【図2】同透視した斜視図FIG. 2 is a perspective view of the same.

【図3】本発明の実施の形態2における3次元用荷重セ
ンサの透視した分解斜視図
FIG. 3 is a see-through exploded perspective view of a three-dimensional load sensor according to a second embodiment of the present invention.

【図4】本発明の実施の形態3における3次元用荷重セ
ンサの透視した斜視図
FIG. 4 is a see-through perspective view of a three-dimensional load sensor according to a third embodiment of the present invention.

【図5】本発明の実施の形態4における3次元用荷重セ
ンサの透視した斜視図
FIG. 5 is a see-through perspective view of a three-dimensional load sensor according to a fourth embodiment of the present invention.

【図6】従来の荷重センサの斜視図FIG. 6 is a perspective view of a conventional load sensor.

【符号の説明】[Explanation of symbols]

21 取付台 22 片持梁 23 第1の歪検出素子 24 自由端 25 固定端 26 主軸 28 貫通孔 29,30 第2の歪検出素子 31,32 第3の歪検出素子 35 副軸 36 処理手段 21 Mounting Base 22 Cantilever 23 First Strain Detecting Element 24 Free End 25 Fixed End 26 Main Axis 28 Through Hole 29, 30 Second Strain Detecting Element 31, 32 Third Strain Detecting Element 35 Secondary Axis 36 Processing Means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戸田 明夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Akio Toda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 片持梁を有するとともにこの片持梁の自
由端と固定端との間に第1の歪検出素子を備えてなる取
付台と、この取付台の上面に設けられ内部に貫通孔を有
するとともに前記片持梁と対向する面に凹部を備えた角
柱状の主軸と、この主軸の側面に交互に設けられた第2
の歪検出素子および第3の歪検出素子と、前記主軸の貫
通孔内に配設されるとともに前記片持梁の自由端に当接
しかつ前記主軸の上面より突出する副軸と、前記第1、
第2、第3の歪検出素子からの検出信号を入力して3次
元処理をする処理手段とからなる3次元用荷重センサ。
1. A mounting base having a cantilever and a first strain detecting element between a free end and a fixed end of the cantilever, and a mounting base provided on an upper surface of the mounting base and penetrating into the interior. A prismatic main shaft having a hole and a recess on the surface facing the cantilever, and second main shafts alternately provided on the side surfaces of the main shaft.
A strain detecting element and a third strain detecting element, a sub-shaft disposed in a through hole of the main shaft, abutting against a free end of the cantilever beam, and protruding from an upper surface of the main shaft; ,
A three-dimensional load sensor including a processing unit that receives detection signals from the second and third strain detection elements and performs three-dimensional processing.
【請求項2】 片持梁を有するとともにこの片持梁の自
由端と固定端との間に第1の歪検出素子を備えてなる取
付台と、この取付台の上面に設けられた角柱状の主軸
と、この主軸の側面に交互に設けられた第2の歪検出素
子および第3の歪検出素子と、前記主軸の上面に前記取
付台の片持梁の上面に向かって突出する突出部を有する
副軸と、前記第1、第2、第3の歪検出素子からの検出
信号を入力して3次元処理する処理手段とからなる3次
元用荷重センサ。
2. A mounting base having a cantilever and a first strain detecting element between a free end and a fixed end of the cantilever, and a prism provided on an upper surface of the mounting base. And a second strain detecting element and a third strain detecting element alternately provided on the side surface of the spindle, and a protruding portion projecting on the upper surface of the spindle toward the upper surface of the cantilever of the mount. A three-dimensional load sensor comprising: a sub-axis having: and a processing unit that receives detection signals from the first, second, and third strain detection elements and performs three-dimensional processing.
【請求項3】 片持梁を有するとともにこの片持梁の自
由端と固定端との間に第1の歪検出素子を備えてなる取
付台と、この取付台の上面に直交するように設けられた
第2、第3の歪検出素子と、前記取付台の上面に前記第
2、第3の歪検出素子と接しないように設けられた内部
に貫通孔を有する主軸と、前記主軸の貫通孔内に配設さ
れるとともに前記片持梁の自由端に当接しかつ前記主軸
の上面より突出する副軸と、前記第1、第2、第3の歪
検出素子からの検出信号を入力して3次元処理する処理
手段とからなる3次元用荷重センサ。
3. A mount having a cantilever and a first strain detecting element between a free end and a fixed end of the cantilever, and a mount provided so as to be orthogonal to an upper surface of the mount. Second and third strain detecting elements, a main shaft having an inner through hole provided on the upper surface of the mounting base so as not to contact the second and third strain detecting elements, and a penetrating of the main shaft. A detection signal from the sub-shaft disposed in the hole and abutting on the free end of the cantilever and projecting from the upper surface of the main shaft, and the detection signals from the first, second, and third strain detection elements is input. A three-dimensional load sensor including a processing means for performing three-dimensional processing.
【請求項4】 片持梁を有するとともにこの片持梁の自
由端と固定端との間に第1の歪検出素子を備えてなる取
付台と、この取付台の上面に直交するように設けられた
第2、第3の歪検出素子と、前記取付台の上面に前記第
2、第3の歪検出素子と接しないように設けられた主軸
と、この主軸の上面に前記取付台の片持梁と当接する突
出部を有する操作部と、前記第1、第2、第3の歪検出
素子からの検出信号を入力して3次元処理する処理手段
とからなる3次元用荷重センサ。
4. A mounting base having a cantilever and having a first strain detecting element between a free end and a fixed end of the cantilever, and a mounting base orthogonal to an upper surface of the mounting base. Second and third strain detecting elements, a main shaft provided on the upper surface of the mounting base so as not to contact the second and third strain detecting elements, and a piece of the mounting base on the upper surface of the main shaft. A three-dimensional load sensor comprising: an operating portion having a protruding portion that comes into contact with a cantilever beam; and processing means that receives detection signals from the first, second, and third strain detecting elements and performs three-dimensional processing.
【請求項5】 主軸は、4n角柱(nは自然数)からな
る請求項1または2記載の3次元用荷重センサ。
5. The three-dimensional load sensor according to claim 1, wherein the main axis is a 4n prism (n is a natural number).
JP8087876A 1996-04-10 1996-04-10 Three-dimensional load sensor Pending JPH09280982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8087876A JPH09280982A (en) 1996-04-10 1996-04-10 Three-dimensional load sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8087876A JPH09280982A (en) 1996-04-10 1996-04-10 Three-dimensional load sensor

Publications (1)

Publication Number Publication Date
JPH09280982A true JPH09280982A (en) 1997-10-31

Family

ID=13927075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8087876A Pending JPH09280982A (en) 1996-04-10 1996-04-10 Three-dimensional load sensor

Country Status (1)

Country Link
JP (1) JPH09280982A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236548A (en) * 2001-02-09 2002-08-23 Alps Electric Co Ltd Coordinate input device and keyboard input device, and electronic equipment
CN102519635A (en) * 2011-11-30 2012-06-27 西安交通大学 Triaxial force sensor with overload protection function
CN104215380A (en) * 2014-09-12 2014-12-17 广西师范大学 Force measuring device for precisely measuring three-dimensional dynamic forces externally applied to fixed force body
CN112060566A (en) * 2020-08-24 2020-12-11 深圳市纵维立方科技有限公司 Three-dimensional printer and control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236548A (en) * 2001-02-09 2002-08-23 Alps Electric Co Ltd Coordinate input device and keyboard input device, and electronic equipment
CN102519635A (en) * 2011-11-30 2012-06-27 西安交通大学 Triaxial force sensor with overload protection function
CN104215380A (en) * 2014-09-12 2014-12-17 广西师范大学 Force measuring device for precisely measuring three-dimensional dynamic forces externally applied to fixed force body
CN104215380B (en) * 2014-09-12 2016-06-08 广西师范大学 The fixing beaer of a kind of accurate test bears the device for measuring force of externally applied Three-Dimensional Dynamic power
CN112060566A (en) * 2020-08-24 2020-12-11 深圳市纵维立方科技有限公司 Three-dimensional printer and control method

Similar Documents

Publication Publication Date Title
US10239213B1 (en) Flexure assembly for force/torque sensing
JP2001159953A (en) Coordinate input device
JPH05203667A (en) Capacitive three-axis acceleration sensor
JP2012088263A (en) Detector, electronic apparatus and robot
EP1956355A1 (en) Strain-inducing body, capacitance-type force sensor, and capacitance-type acceleration sensor
JP2841240B2 (en) Force / acceleration / magnetism detection device
JP2975907B2 (en) Force / acceleration / magnetism detection device
JP6624343B2 (en) Sensors, touch panels, and electronic devices
JP2001311671A (en) Force-detecting element and force sensor using the same
JPH09280982A (en) Three-dimensional load sensor
US8887583B2 (en) Manipulated position detection device
JP3378922B2 (en) Capacitive sensor
JP2002181640A (en) Force detector
JP3242204B2 (en) Force detection device
JP3275116B2 (en) Force / moment sensor
JP3136188U (en) Force detection device
JPH09265348A (en) Load sensor
JPH09280980A (en) Load sensor
JP3145979B2 (en) Force / acceleration / magnetism detection device
JPH085482A (en) Electrostatic capacity type tactile sensor
JPH11258082A (en) Triaxial sensor
JPH07302162A (en) Pointing device
WO2023032289A1 (en) Multi-directional input device
JPH09280981A (en) Load sensor
JPH11295163A (en) Load sensor