JPS60176755A - Resin coated fiber product - Google Patents

Resin coated fiber product

Info

Publication number
JPS60176755A
JPS60176755A JP3402084A JP3402084A JPS60176755A JP S60176755 A JPS60176755 A JP S60176755A JP 3402084 A JP3402084 A JP 3402084A JP 3402084 A JP3402084 A JP 3402084A JP S60176755 A JPS60176755 A JP S60176755A
Authority
JP
Japan
Prior art keywords
chlorinated polyethylene
weight
parts
resin
rubbery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3402084A
Other languages
Japanese (ja)
Other versions
JPH0452209B2 (en
Inventor
東島 雅夫
佐々木 廣海
高名 宏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP3402084A priority Critical patent/JPS60176755A/en
Publication of JPS60176755A publication Critical patent/JPS60176755A/en
Publication of JPH0452209B2 publication Critical patent/JPH0452209B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はエチレン・ 1−ブテン共重合体を塩素化して
得られるゴム質塩素化ポリエチレンの組成物を積層せし
めた樹脂被覆M&維製品に関する。 従来、樹脂加工した布(以下加工布という)は各種織布
の防水性、撥水性、耐汚染性、耐候性、耐炎性、耐摩耗
性、耐薬品性、耐油性。 風合性等の物理的、化学的特性を付与する目的で、綿、
ポリエステル、ナイロン、ビニロン(商品名)、ガラス
等の天然繊維1合成繊維、再生1i11ffl、鉱物繊
維の単独またはこれらの混紡の織布または不織布に、天
然ゴム、合成ゴム、塩化ゴム、ポリ塩化ビニール、アク
リル樹脂、ウレタン樹脂、エチレン−酢酸ビニール樹脂
、シリコン樹脂、クロロスルボン化ポリエチレン樹脂等
がコーティング加工。 デツピング加工、カレンダー加工、フィルム状としての
ラミネート加工等の方法で加工被覆されている。これ等
の加工布は通常ゴム引布9重布、帆布、ターポリン地の
形態で車輌用、自動車用、船舶用、倉庫用、養生用のシ
−ト、カバーやテント、コンテナーバッグ等に加工使用
されている。  一般には加工性や比較的安定した物性を与えるポリ塩化
ビニール加工布が多量に使用されているが、ポリ塩化ビ
ニールは元来硬い樹脂でありまた繊維との接着性がない
ため、加工布を製造する場合には樹脂の流動性と膜の柔
軟性を付与し、また基布を毛羽室てて被覆する必要があ
る。このため可塑剤を多量に含有せしめ、かつ基布のア
ンカー効果を利用して加工しなければならない。このよ
うにして製造されたポリ塩化ビニール加工布は柔かく風
合性も良好であるが、反面可塑剤を多量に含有している
ために経時的に可塑剤が加工布の表面にブリードし、特
に油剤等の使用時にはこれにより可塑剤が抽出され被覆
層が硬化劣化する欠点がある。 またアクリル樹脂を被覆した加工布は耐候性が良好であ
るが、繰返し屈曲脆性、耐寒性。 耐食性に欠点を有し、またエチレン−酢酸ビニール樹脂
の場合は経済的に安価で耐寒性は良好であるが、耐油性
、耐摩耗性に問題があり使用用途はおのずから制限され
る。 本発明者らは低温特性およびゴム特性に優れた特定の塩
素化ポリエチレンをベース樹脂とした組成物を、全く可
塑剤を使用することなく繊維基材に積層せしめることに
より前述の様な問題点を解決しうろことを見出し本発明
を完成したものである。 すなわち、本発明はエチレン・ 1−ブテン共重合体を
塩素化して得られるゴム質塩素化ポリエチレンを含む組
成物またはその加硫物を繊N基材に積層してなる樹脂被
覆lIN製品である。 塩素化ポリエチレンは耐候性、耐薬品性。 耐油性、lt燃性、耐熱性等に優れた樹脂であり、ポリ
塩化ビニール樹脂の改質や可燃性樹脂とブレンドして難
燃性を付与するために使用されている。通常の塩素化ポ
リエチレンは結晶を有するポリエチレンを原料とするの
で、その塩素化物も多分にプラスチック的性質を残して
おりエラストマーとし″C数々の欠点を有している。た
とえば硬度(JIS A)は50以上と高く、100%
モジュラスが大きく低温特性が劣る等の点で比較的硬質
ゴム的な性状となる。この様な塩素化ポリエチレンをフ
ィルム状に加工するに゛は、高温を要し、さらに繊維基
材にラミネート加工するには樹脂の流動性が悪いので基
材との密着性も劣る。また得られた加工布の風合いは硬
くゴワゴワとし、耐寒性の点でも一20℃程度の低温に
は耐えられず実用性に欠ける。また縫製等の後加工には
高周波つ1ルダーによる接着加工を行うが、この様な加
工布は流動性が悪いことにより高い接着力が期待できな
い。そのため可塑剤の添加や流動性樹脂とのブレンド等
も考えられるが゛前述のように得られた加工布は表面の
ベタツキ、可塑剤のブリード、耐食性の低下等が生じ、
また塩素化ポリエチレンの長所である難燃性を有効に生
かすことができない。 本発明の原料となるエチレン・
 1−ブテン共重合体は密度が0.88〜0,94 、
エチレン含1i85〜97重量%、1−1テン含量15
〜3重量%、好ましくは密度が0.915〜0.930
、エチレン含量93〜97重量%、1−ブテン含ml〜
3重量%でDSC法結晶融点が115℃〜125℃であ
る少なくとも一部分が結晶性の線状エチレン共重合体が
好ましい。本発明に使用されるゴム質塩素化ポリエチレ
ンはこのようなエチレン・ 1−ブテン共重合体を水性
懸濁状態で約100〜130℃にて塩素含量20〜55
重量%、好ましくは25〜35重量%まぐ塩素化するこ
とによって得られ、重量平均分子量100.000以上
、DSC法結晶融解熱0.50allOr以下のものが
適当である。塩素含量が上記範囲より小であれば柔軟性
等が十分でなく、大であればゴム弾性が弱くて本発明に
適当ではない。このようなゴム質塩素化ポリエチレンは
、通常炭素原子100個あたり1〜2個のメチレン基を
有し、室温における100%モジュラスが10k(1/
cnr以下、−20℃にお1プる25%モジュラスが1
00k(J /cd以下で硬度が(JISA)50以下
と低〈従来の塩素化ポリエチレンと比較して、低温特性
およびゴム的性質に優れており、成形加]二時の流動性
が良いことから可塑剤を添加したり、他の樹脂とブレン
ドすることなく組成物としても比較的低温で加工できる
特徴を持っている。したがって通常のインフレーション
やカレンダー成形機により容易にフィルム状になり、そ
の流動特性により繊維基材へのくい込みが良く高度な密
着性を発揮し、低温時の屈曲性に優れ、従来の塩素化ポ
リエチレン系1により被覆した繊維製品にみられない独
特の風合いを持つ加工布が得られる。 本発明に使用されるゴム質塩素化ポリエチレンには充填
剤、顔料、加工助剤、加硫剤、受酸剤等を任意に配合す
ることができる。充填剤としては通常のゴム配合用充填
剤として使用される炭酸カルシウム、タルク、クレー。 アルミナ、マグネシア、シリカ、硫酸バリウム、カーボ
ン、アルミや亜鉛、鉛、鉄等の金属粉体等が挙げられ、
その添加量はゴム質塩素化ポリエチレン100重量部に
対し5〜300重量部が適当であり、SaWに被覆した
場合の成形加工性、低温特性、経済性等を考慮して5〜
100重量部が好ましい。顔料としては通常ゴムや樹脂
の加工時に使用される有機系、無機系顔料いずれも使用
することができ、ゴム質塩素化ポリエチレン100重量
部に対し0.3〜20重量部添加すれば自由に着色しう
る。 加工助剤としては、滑剤、安定剤、紫外線吸収剤、帯電
防止剤、老化防止剤等が挙げられる。滑剤としては、ス
テアリン酸、ラウリン酸、ナフテン酸、二塩基性ステア
リン酸、リシノール酸、2−エチルへキソイン酸等の金
属石ケン類、安定剤としては一般にポリ塩化ビニールに
使用しうる錫系安定剤、エポキシ樹脂等、紫外線吸収剤
としては、ベンゾフェノン系、ベンゾトリアゾール系、
サリチレート系等が挙げられる。これらの加工助剤の使
用量はゴム質塩素化ポリエチレン100重量部に対し0
.05〜3重量部添加することが望ましい。 このような塩素化ポリエチレン組成物は非加硫系でも使
用しうるが、引張り強度や硬度等の物性が比較的低く、
また軟化温度を上げるため軽度の加硫を行う事が望まし
く、この方法により繊維被覆時の材料物性とし“C塩素
化ポリエチレンの引張り強度100〜150k(] /
d、伸び400〜1000%のものが得られる。加硫に
より同時に耐熱性やクリープ性の改質が可能となる。 加硫剤としでは、ジクミルパーオキサイド。 【−ブチルクミルパーオキサイド、メチルイソ1チルケ
トンパーオキサイド等のパーオキリ゛イド系、メルカプ
トトリアジン類等があげられ、その添加量はゴム質塩素
化ポリエチレン100重量部に対し0.1〜5重量部、
好ましくL寸n 9.%−1!@m飢で急h 41番、
hブhト11アジン類とともに各種アミン類、チウラム
スルフィド類またはジオキシカルバミン酸塩類を0.1
〜5重石部、好ましくは0.2〜1重量部使用しうる。 またこの場合、スチレン、ジアリルフタレート、トリア
リルシアヌレート等の多官能性モノマーやプレポリマー
等の架橋剤の添加も可能である。受酸剤となる金属化合
物の適当な添加量は0.2〜10重量部好ましくは0.
2〜5重量部である。このJ:うに本発明に使用される
加硫剤の添加量が通常の塩素化ポリエチレン加硫の場合
に比較して少いのは、塩素化ポリエチレンをカレンダー
等で熱時成形加工して繊維に被覆し、さらに後加工の高
周波ウエルダー接着する際に、塩素化ポリエチレンの加
硫密度が大きすぎると流動性が悪くなり接着不良の原因
となる故である。 本発明におりる組成物の加工はゴム質塩素化ポリエチレ
ン、充填剤、顔料その他の添加剤を、あらかじめミキシ
ングロール、バンバリーミキサ−1各種ニーダー等で7
0〜110℃e約10〜30分間混練りしカレンダー成
形に供づるか、ざらに冷時ペレット化してインフレーシ
ョン成形機に供する。カレンダー成形機はロール本数や
配列によって種々の形式があるが、本発明にお()る組
成物は何れの方式でも成形温麿110〜170℃で0.
03〜数1m厚さのフィルムを自由に成形することがで
きる。 またインフレーション成形機による加工は成形機の密閉
形スクリュー濡反80〜120℃、先端ダイス渦電11
0〜140℃にてペレットを供給しブロー空気量を適宜
変化させることにより 0.02〜o、io、厚さのフ
ィルムに成形することができる。このように成形したフ
ィルムをカレンダーロールで繊維基材に圧着しCラミネ
ート(積層)し本発明の樹脂含浸被覆イ11が得られる
。ラミネートはカレンダー成形温度110〜170℃で
行うが、さらに好ましくは150〜110℃で熱ロール
プレスを行えば樹脂組成物のI維基材へのくい込みの完
全なものが得られる。 組成物の加硫を行うには前記のごとき加硫剤を添加し、
カレンダー成形時に、カレンダ一温度と速度の調節によ
りラミネートと加硫とを同時に行うこともできるが、好
ましくは140〜200℃に加熱することができるプレ
スロール、加熱ロール等で連続加硫する方法が経済的で
かつ安定性が良い。加硫条件は加硫剤量や種類により変
化するが、はぼ140℃〜180℃で0.5〜3分あれ
ば適度な架橋反応が進行する。 本発明に使用しうる繊維基材としては、綿。 羊毛、絹、麻等の天然繊維、ビスコース、人絹、アセテ
ート等の再生繊維、ポリアミド。 ポリエステル、ポリ塩化ごニリデン、ポリアクルロニト
リル、ポリ塩化ビニール、ポリプロピレン、ポリアミノ
酸等の合成繊維およびガラス、アスベスト等の鉱物m維
の各単濁系またはこれ等の混紡系による織布、不織布。 編物、フェルト、紙等が挙げられる。 このようにして製造されるゴム質塩素化ポリエチレンを
ベース樹脂とする組成物を繊維基材に被覆してなるシー
トは引張り強度、引裂ぎ強瓜、耐水性、耐摩耗性、耐薬
品性、耐油性、耐屈曲性等に十分な物性を有し、かつ−
20〜−30℃にJ3ける耐寒性を持ち高周波ウエルダ
ー接合が十分可能な製品である。 また加工時においても本発明に使用されるゴム質塩素化
ポリエチレン系の組成物では従来の塩素化ポリエチレン
系組成物が混練り時に 120〜150℃という高温加
熱を要するのに比べ、80〜120℃の低湿で作業が可
能ひある。 さらに加硫系においても従来品では混練り時に、せん断
発熱によ1混練り温度以上に組成物の温度が上昇するた
め、加硫反応が進行しスコーチ現象を生じ易いが、本発
明における組成物では流動性が良いためこのような現象
はほとんど生じない。 また本発明製品は塩素化ポリエチレンを使用しているた
め難燃性が付与されるのが特徴であるが、他の難燃剤た
とえばクレジルジフェニルホスフェート、アルキルジア
リルホスフェート、オクチルジフェニルボスフェート。 トリアリルホスフェート、トリブチルホスフェート、ト
リフェニルホスフェート、1〜リス(ジクロルプロピル
)ボスフェート、トリス(2,3,ジブロムプロピル)
ホスフェ−1へ。 アンモニウムホスフェート等のリン酸塩やりン化合物、
酸化アンチ℃ン、水酸化アルミ。 ジシアンアミド等をゴム質塩素化ポリエチレン100重
量部に対し約2〜10重硲部添加することにより難燃性
を向上させることもできる。 また本発明に使用されるゴム質塩素化ポリエチレンは従
来の塩素化ポリエチレンと併用することもできるが、こ
の場合カレンダー加工性および一20℃以下の耐寒性、
高周波ウエルダー接着性等を考慮して分子量10,00
0〜200.000、塩素含量20〜55重量%の塩素
化ボリエチレンを添加量50重量%以以下下使用するi ことが好ましい。またざらにLれ等と相溶して加工し得
る他のゴム性物質、樹脂等は通常30重量%以下の添加
で本発明にかかわる組成物の物性を保つことかできる。 このようにして本発明樹脂被覆繊維製品は従来の塩素化
ポリエチレンの使用時には考えられなかった可塑剤無添
加系で、かつ耐寒性に優れ、さらに柔軟な風合いと、耐
屈曲性。 耐摩耗性、耐食性、耐油性、耐水性に優れた製品であり
、特に加硫成形することによって榊られる樹脂被覆#I
A維シートは優れた高周波ウエルダー接着加工性によっ
て使用目的に応じた縫製製品を得ることができる。また
本発明に使用されるゴム質塩素化ポリエチレンは優れた
造膜性能を有す把ので市販品では見られない軽量樹脂被
覆製品の製造も可能である。 以下実施例、比較例により本発明を説明する。なお網中
、部、%ばいづれも重囲基準である。 実施例1.2、比較例1,2 密度0.92 、M I O,8,1−ブテン含量4.
8%、DSC法結晶融点120℃のエチレン・ 1−ブ
テン共重合体を原料とし、水性懸濁状態で塩素化して分
子量t8o、ooo、塩素含量28%のゴム質塩素化ポ
リエチレンを製造した(実施例1)。同様にして分子量
210,000、塩素含量34%のゴム質塩素化ポリエ
チレンを得た〈実施例2)。上記塩素化ポリエチレン1
00部に対して、酸化チタン10部、硫酸バリウム20
部、メチルペンタメチレンジチオカルバミン酸ピペリコ
ン0.8部、酸化マグネシウム2.5部、ステアリン酸
0.5部、ジブチル錫マレート 0.3部、2(2′−
ヒドロキシ−5′−メチルフェニル)ベンゾ1へリアゾ
ール0.3部を配合し、501容量のニーダ−で80〜
100℃、15〜20分間混練りした。次にこのものを
ミキシングロールに移し加硫剤トリチオシアヌル?11
0,4部を添加し、80℃〜100℃で約1〜5分間混
練りしカレンダー成形に供した。カレンダー成形機は逆
り型4本ロールで速度20m /分、温度120〜16
0℃で約4n厚さにシート化した。このシートをポリエ
ステル生l1N(長lJA維平織布、1oooo x 
1oooo 。 16x17本/1″)表裏面にラミネートしてから熱ロ
ール/レス160℃、線圧3kg/+aでロールプレス
した。次に連続しC熱風乾燥炉で160℃、2分間架橋
せしめ、冷却後、巻き取り厚さ 1111の塩素化ポリ
エチレン被覆シートを得た。上記ゴム質塩素化ポリ1チ
レンの加硫前および加硫後の物性を第1表に示す。 比較のため高密度ポリエチレンを原料とする塩素含量4
5%、35%の塩素化ポリエチレン2種(大阪曹達社製
品、商品名ダイソラツクG245およびH135、以下
実施例1および2とする)を用い上記と同様の薬剤を同
量添加して混線、加硫および同様の繊維基材にラミネー
ト加工を行った。 第2表に実施例、比較例の加工条件およびラミネート後
のシートの物性を示す。 第 1 表 第 2 表 第2表において(以下の実施例、比較例も同様)カレン
ダー性・・・ ○良好、△少し流動性悪し、生型への密
着性・・・ ○良好、△やや不良、風合い・・・ Q柔
かい、△少し硬い、×硬い耐屈曲疲労・・・O異常なし
、×繊組との剥離あり、 第2表の測定方法 (1)引張り強度、伸び、引裂強度、耐寒性、防水性は
JIS K−6328による。 (2)耐屈曲疲労性はデマッチャー試験機で速度300
回/分、50,000回くり返し屈曲後の状態を観察測
定 (3)風合いは試料の硬軟を触感測定 (4)耐油性、耐薬品性は所定の油、薬液に40℃の恒
温槽に10日間浸漬後の試料の外観、触感、汚れで測定 (5)高周波ウエルダー接着性は山水ビニター製機械で
接着し、せん断剥離強度(30X 20.、 t)、剥
離強度(30,幅)を測定 実施例3.比較例3 実施例1.2と同じエチレン・ブテン−1共重合体を原
料どし、水性懸濁状態eFA素化し、塩素含量32%、
分子量200,000のゴム質塩素化ポリエチレンを得
た。この塩素化ポリエチレン100部に対し、フタロシ
アニングリーン1部、炭酸カルシウム15部、リナージ
2.5部、トリアリルイソシアヌレート 0.5部、ジ
ブチル錫マレ−h 003部、ステアリン酸鉛0.5部
を配合し、50!容量のニーダ−で15〜20分間混練
りした。次にミキシングIコールでジクミルパーオキサ
イド0.8部を120℃で5分間混練りし、カレンダー
成形に供した。 カレンダー成形は実施例1〜2と同様にして行い、ナイ
ロン生機(長iIi維平織布500DX 5000.2
0X20本/ 1″)に表裏両面をラミネートし、熱風
乾燥炉で170℃にて 1分間加硫せしめ、厚さ0.6
.、のシートを得た。 上記ゴム質塩素化ポリエチレンの加硫前J3よび加硫後
の物性を第3表に示す。 比較のため高密度ポリエチレンを原料とする塩素含量4
0%の塩素化ポリエチレン(大阪曹達社製品、商品名ダ
イソラックMR104)を用い上記と同様の薬剤を同量
添加して混練加硫および同様の1itif基材にラミネ
ート加工を行った。 第4表に実施例、比較例の加工条件およびラミネート加
工後シート・の物性を示す。 第 3 表 第 4 表 実施例5 実施例2におけるゴム質塩素化ポリエチレン(塩素含量
34%、分子量220.000) 1σO部に対して、
フタロシアニンブルー 1部、酸化チタン5部、炭酸カ
ルシウム20部、ジペンタメチレンヂウラムテトラスル
フィド0.8部、水酸化マグネシウム3部、ジブチル錫
マレート 0.4部、滑剤(SCHI LL&SE l
 mAGHER社製、商品名ストラクトールWB−16
) 0.5部、三酸化アンチモン5部、トリクレジルホ
スフェート 1.5部を配合し、ニーダ−で100℃、
15分間混練り後、トリチオシアヌル酸0.4部添加し
110℃、2分間混練りし、実施例1.2と同様にして
カレンダー成形を行った。 成形後、ガラスクロス(カネボウ硝子繊維社製品、K 
S 1600.200Q/ M“)にラミネートし、次
に熱風乾燥炉で160℃、90秒加硫して厚さ0.4n
のシートを得た。 このシートのJIS K−6772による物性、および
JIS K−6911(!!、24 IA法)による耐
燃性試験の結果を第5表に示す。 第 5 表 実施例6 実施例3によるゴム質塩素化ポリエチレン(塩素含量3
2%、分子量200.000. A品とする)、比較例
1における塩素化ポリエチレン(塩素含量45%、大阪
曹達社製品、商品名ダイソラックG 245.8品とす
るンを第6表に示す種々の割合で混合し、その合計10
0部に対し、カーボンブラック5部、アルミナ30部、
ジペンタメチレンチウラムテトラスルフィド1部、ステ
アリン酸カルシウム0.5部、酸化マグネシウム2.5
部、ジブチル錫マレ−hO03部を配合しニーダ−で1
10℃、15分間混練り後、トリチオシアヌル酸0.5
部添加し110℃、2分間混練りしカレンダー成形に供
した。 カレンダー成形温度は140〜160℃ぐ行い
ナイロン生1(長繊維平織布420[) X420D 
)の表裏面に全厚み0.5nになるようにラミネートし
、熱ロールプレスで160℃、線圧2kQ/IIでプレ
ス後、熱風乾燥機で160℃、 1分間加硫して実施例
1.2と同様の方法で物性を測定した。結果を第6表に
示す。 第 6 表 第6表に示すように従来品の割合を増すと実用上の耐寒
性、高周波ウエルダー接着力の、低下する傾向が認めら
れる。 出願人 大阪曽達株式会社 代理人 弁理士 間予 透
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to resin-coated M & textile products laminated with a composition of rubbery chlorinated polyethylene obtained by chlorinating an ethylene/1-butene copolymer. Traditionally, resin-treated cloth (hereinafter referred to as treated cloth) has the waterproof, water-repellent, stain-resistant, weather-resistant, flame-resistant, abrasion-resistant, chemical-resistant, and oil-resistant properties of various woven fabrics. Cotton,
Natural fibers such as polyester, nylon, vinylon (trade name), glass, 1 synthetic fibers, recycled 1i11ffl, woven or non-woven fabrics of mineral fibers alone or in combination with these, natural rubber, synthetic rubber, chlorinated rubber, polyvinyl chloride, Coated with acrylic resin, urethane resin, ethylene-vinyl acetate resin, silicone resin, chlorosulfonated polyethylene resin, etc. It is processed and coated by methods such as depping processing, calendar processing, and lamination processing in the form of a film. These processed fabrics are usually in the form of rubberized 9-ply fabric, canvas, or tarpaulin fabric, and are processed and used to make sheets, covers, tents, container bags, etc. for vehicles, automobiles, ships, warehouses, and curing. has been done. Generally, a large amount of polyvinyl chloride-treated fabric is used because it provides processability and relatively stable physical properties, but polyvinyl chloride is originally a hard resin and does not have adhesive properties with fibers, so processed fabrics are not manufactured. In this case, it is necessary to provide fluidity of the resin and flexibility of the membrane, and also to coat the base fabric with fluff. For this reason, it is necessary to contain a large amount of plasticizer and process using the anchor effect of the base fabric. The polyvinyl chloride processed fabric produced in this way is soft and has a good texture, but on the other hand, because it contains a large amount of plasticizer, the plasticizer bleeds onto the surface of the processed fabric over time. When using an oil agent, the plasticizer is extracted and the coating layer hardens and deteriorates. In addition, processed fabrics coated with acrylic resin have good weather resistance, but are brittle and cold resistant when repeatedly bent. It has a drawback in corrosion resistance, and although ethylene-vinyl acetate resin is economically inexpensive and has good cold resistance, it has problems with oil resistance and abrasion resistance, which naturally limits its usage. The present inventors solved the above-mentioned problems by laminating a composition based on a specific chlorinated polyethylene, which has excellent low-temperature properties and rubber properties, on a fiber base material without using any plasticizer. The present invention was completed by finding a solution to the problem. That is, the present invention is a resin-coated IN product made by laminating a composition containing rubbery chlorinated polyethylene obtained by chlorinating an ethylene/1-butene copolymer or a vulcanized product thereof on a fiber N base material. Chlorinated polyethylene is weather and chemical resistant. It is a resin with excellent oil resistance, flammability, heat resistance, etc., and is used to modify polyvinyl chloride resin or blend it with flammable resins to impart flame retardancy. Ordinary chlorinated polyethylene is made from polyethylene with crystals, so the chlorinated product also retains plastic properties and has many drawbacks when used as an elastomer.For example, the hardness (JIS A) is 50. Higher and higher, 100%
It has relatively hard rubber-like properties, such as a high modulus and poor low-temperature properties. Processing such chlorinated polyethylene into a film requires high temperatures, and when laminated onto a fiber base material, the fluidity of the resin is poor, resulting in poor adhesion to the base material. In addition, the texture of the resulting processed cloth is hard and stiff, and in terms of cold resistance, it cannot withstand temperatures as low as -20°C, making it impractical. Further, in post-processing such as sewing, adhesive processing is performed using a high-frequency gluer, but such processed fabrics cannot be expected to have high adhesive strength because of their poor fluidity. For this reason, adding a plasticizer or blending with a fluid resin may be considered, but as mentioned above, the resulting processed fabric may have a sticky surface, bleed of plasticizer, and a decrease in corrosion resistance.
Moreover, the advantage of flame retardancy, which is the advantage of chlorinated polyethylene, cannot be effectively utilized. Ethylene, the raw material for the present invention
The 1-butene copolymer has a density of 0.88 to 0.94,
Ethylene content 1i 85-97% by weight, 1-1 tenene content 15
~3% by weight, preferably with a density of 0.915-0.930
, ethylene content 93-97% by weight, 1-butene content ml~
An at least partially crystalline linear ethylene copolymer having a DSC crystal melting point of 115° C. to 125° C. at 3% by weight is preferred. The rubbery chlorinated polyethylene used in the present invention is prepared by preparing such an ethylene/1-butene copolymer in an aqueous suspension at a temperature of about 100 to 130°C with a chlorine content of 20 to 55%.
It is suitable that it is obtained by chlorinating 25 to 35% by weight, preferably 25 to 35% by weight, and has a weight average molecular weight of 100.000 or more and a DSC crystal heat of fusion of 0.50allOr or less. If the chlorine content is smaller than the above range, the flexibility etc. will be insufficient, and if it is larger, the rubber elasticity will be weak and it is not suitable for the present invention. Such rubbery chlorinated polyethylene usually has 1 to 2 methylene groups per 100 carbon atoms, and has a 100% modulus of 10k (1/1) at room temperature.
Below cnr, the 25% modulus of 1 at -20℃ is 1
Low hardness (JISA) of 50 or less at 00k (J/cd or less) (Compared to conventional chlorinated polyethylene, it has excellent low temperature properties and rubbery properties, and has good fluidity during molding) It has the characteristic that it can be processed as a composition at relatively low temperatures without adding plasticizers or blending with other resins.Therefore, it can be easily formed into a film using a normal inflation or calendar molding machine, and its flow properties The result is a processed fabric that penetrates well into the fiber base material, exhibits high adhesion, has excellent flexibility at low temperatures, and has a unique texture not found in textile products coated with conventional chlorinated polyethylene 1. Fillers, pigments, processing aids, vulcanizing agents, acid acceptors, etc. can be optionally blended into the rubbery chlorinated polyethylene used in the present invention.As fillers, ordinary rubber compounding agents can be added. Calcium carbonate, talc, and clay used as fillers. Examples include alumina, magnesia, silica, barium sulfate, carbon, and metal powders such as aluminum, zinc, lead, and iron.
The appropriate amount to add is 5 to 300 parts by weight per 100 parts by weight of rubbery chlorinated polyethylene.
100 parts by weight is preferred. As pigments, both organic and inorganic pigments that are normally used in the processing of rubber and resin can be used, and if 0.3 to 20 parts by weight are added to 100 parts by weight of rubbery chlorinated polyethylene, coloring can be achieved freely. I can do it. Examples of processing aids include lubricants, stabilizers, ultraviolet absorbers, antistatic agents, and antiaging agents. Lubricants include metal soaps such as stearic acid, lauric acid, naphthenic acid, dibasic stearic acid, ricinoleic acid, and 2-ethylhexoic acid. Stabilizers include tin-based stabilizers that can generally be used for polyvinyl chloride. UV absorbers include benzophenone, benzotriazole,
Examples include salicylates. The amount of these processing aids used is 0 per 100 parts by weight of rubbery chlorinated polyethylene.
.. It is desirable to add 0.5 to 3 parts by weight. Such chlorinated polyethylene compositions can also be used in non-vulcanized systems, but their physical properties such as tensile strength and hardness are relatively low;
In addition, it is desirable to perform mild vulcanization to increase the softening temperature, and by this method, the physical properties of the material when covered with fibers can be improved, such as the tensile strength of C chlorinated polyethylene of 100 to 150 k (] /
d. A product with an elongation of 400 to 1000% can be obtained. Vulcanization also makes it possible to modify heat resistance and creep properties. Dicumyl peroxide is used as a vulcanizing agent. [-Peroxylides such as butyl cumyl peroxide, methyl iso-1 methyl ketone peroxide, mercaptotriazines, etc. are mentioned, and the amount added is 0.1 to 5 parts by weight per 100 parts by weight of rubbery chlorinated polyethylene,
Preferably L dimension n9. %-1! @m starvation sudden h number 41,
11 Add various amines, thiuram sulfides or dioxycarbamates along with azines at 0.1
~5 parts by weight may be used, preferably 0.2 to 1 part by weight. In this case, it is also possible to add a crosslinking agent such as a polyfunctional monomer such as styrene, diallyl phthalate, or triallyl cyanurate, or a prepolymer. The appropriate amount of the metal compound to be added as an acid acceptor is 0.2 to 10 parts by weight, preferably 0.2 to 10 parts by weight.
It is 2 to 5 parts by weight. This J: Sea urchin The reason why the amount of the vulcanizing agent used in the present invention is smaller than in the case of ordinary chlorinated polyethylene vulcanization is that the chlorinated polyethylene is hot-molded using a calender or the like to form fibers. This is because, when coating and bonding using a high-frequency welder in post-processing, if the vulcanized density of the chlorinated polyethylene is too high, the fluidity will deteriorate, causing poor adhesion. Processing of the composition according to the present invention involves mixing rubbery chlorinated polyethylene, fillers, pigments, and other additives in advance with a mixing roll, a Banbury mixer, various kneaders, etc.
The mixture is kneaded at 0 to 110°C for about 10 to 30 minutes and subjected to calender molding, or roughly pelletized when cooled and subjected to an inflation molding machine. There are various types of calender molding machines depending on the number and arrangement of rolls, but the composition according to the present invention can be molded at a molding temperature of 110 to 170°C with a temperature of 0.
Films with a thickness of 0.3 to several meters can be freely formed. In addition, processing using an inflation molding machine is performed at a temperature of 80 to 120°C for the closed type screw of the molding machine, and a temperature of 11°C for the tip of the eddy electric die.
By supplying the pellets at a temperature of 0 to 140°C and appropriately changing the amount of blowing air, it is possible to form a film with a thickness of 0.02 to 1000 io. The film formed in this way is pressed onto a fiber base material using a calendar roll and C-laminated (laminated) to obtain the resin-impregnated coating 11 of the present invention. Lamination is carried out at a calendering temperature of 110 to 170°C, but more preferably hot roll pressing is carried out at 150 to 110°C to ensure complete penetration of the resin composition into the I-fiber base material. To vulcanize the composition, add a vulcanizing agent as described above,
During calender molding, lamination and vulcanization can be carried out simultaneously by adjusting the temperature and speed of the calender, but it is preferable to carry out continuous vulcanization using press rolls, heating rolls, etc. that can be heated to 140 to 200°C. Economical and stable. Vulcanization conditions vary depending on the amount and type of vulcanizing agent, but a moderate crosslinking reaction will proceed at approximately 140°C to 180°C for 0.5 to 3 minutes. The fiber base material that can be used in the present invention is cotton. Natural fibers such as wool, silk, and linen, recycled fibers such as viscose, human silk, and acetate, and polyamide. Woven fabrics and non-woven fabrics made of synthetic fibers such as polyester, polynylidene chloride, polyacrylonitrile, polyvinyl chloride, polypropylene, and polyamino acids, and monoturbid systems of mineral fibers such as glass and asbestos, or blends of these. Examples include knitted fabrics, felt, and paper. A sheet made by coating a fiber substrate with a composition based on rubbery chlorinated polyethylene produced in this way has excellent tensile strength, tear strength, water resistance, abrasion resistance, chemical resistance, and oil resistance. It has sufficient physical properties such as strength and bending resistance, and -
This product has cold resistance of J3 from 20 to -30°C and is fully capable of high-frequency welder bonding. Furthermore, during processing, the rubbery chlorinated polyethylene composition used in the present invention requires heating at a high temperature of 80 to 120°C during kneading, whereas conventional chlorinated polyethylene compositions require high temperature heating of 120 to 150°C. It is possible to work in low humidity. Furthermore, in conventional vulcanization systems, during kneading, the temperature of the composition rises above the kneading temperature due to shear heat generation, so the vulcanization reaction progresses and the scorch phenomenon tends to occur, but the composition of the present invention Because of its good fluidity, this phenomenon rarely occurs. Furthermore, the product of the present invention is characterized by its flame retardancy due to the use of chlorinated polyethylene, but other flame retardants such as cresyl diphenyl phosphate, alkyl diallyl phosphate, and octyldiphenyl bosphate are also used. Triallyl phosphate, tributyl phosphate, triphenyl phosphate, 1-lis(dichloropropyl)bosphate, tris(2,3, dibromopropyl)
Go to Phosphe-1. Phosphate and phosphorus compounds such as ammonium phosphate,
Antioxidant, aluminum hydroxide. Flame retardancy can also be improved by adding about 2 to 10 parts by weight of dicyanamide or the like to 100 parts by weight of rubbery chlorinated polyethylene. Furthermore, the rubbery chlorinated polyethylene used in the present invention can be used in combination with conventional chlorinated polyethylene, but in this case, it has good calenderability and cold resistance below -20°C.
Molecular weight 10.00 considering high frequency welder adhesion etc.
It is preferable to use chlorinated polyethylene having a chlorine content of 0 to 200.000% and a chlorine content of 20 to 55% by weight, in an amount of 50% by weight or less. In addition, other rubbery substances, resins, etc. that can be processed in a compatible manner with the grains can be added in an amount of 30% by weight or less to maintain the physical properties of the composition according to the present invention. In this way, the resin-coated fiber products of the present invention are plasticizer-free, which was unthinkable when using conventional chlorinated polyethylene, and have excellent cold resistance, as well as a soft texture and bending resistance. It is a product with excellent wear resistance, corrosion resistance, oil resistance, and water resistance, especially resin coating #I that is made by vulcanization molding.
The A-fiber sheet has excellent high-frequency welding adhesion processability, so it is possible to obtain sewn products according to the purpose of use. Furthermore, since the rubbery chlorinated polyethylene used in the present invention has excellent film-forming performance, it is also possible to manufacture lightweight resin-coated products that are not available on the market. The present invention will be explained below with reference to Examples and Comparative Examples. Note that all of the net center, part, and % are based on heavy encircling standards. Example 1.2, Comparative Examples 1 and 2 Density 0.92, MIO, 8,1-butene content 4.
A rubbery chlorinated polyethylene with a molecular weight of t8o, ooo and a chlorine content of 28% was produced by chlorinating it in an aqueous suspension using an ethylene/1-butene copolymer with a DSC crystal melting point of 120°C as a raw material. Example 1). Similarly, a rubbery chlorinated polyethylene having a molecular weight of 210,000 and a chlorine content of 34% was obtained (Example 2). The above chlorinated polyethylene 1
00 parts, 10 parts of titanium oxide, 20 parts of barium sulfate
part, 0.8 part of methylpentamethylene dithiocarbamate pipericone, 2.5 parts of magnesium oxide, 0.5 part of stearic acid, 0.3 part of dibutyltin malate, 2(2'-
Add 0.3 parts of hydroxy-5'-methylphenyl) benzo 1 heliazole and mix in a kneader with a capacity of 80~
The mixture was kneaded at 100°C for 15 to 20 minutes. Next, transfer this to a mixing roll and use the vulcanizing agent trithiocyanuric? 11
0.4 parts were added, kneaded at 80° C. to 100° C. for about 1 to 5 minutes, and subjected to calender molding. The calender molding machine has 4 inverted rolls at a speed of 20 m/min and a temperature of 120 to 16 m/min.
It was formed into a sheet with a thickness of about 4 nm at 0°C. This sheet is made of polyester raw l1N (long lJA weihei woven fabric, 1oooo x
1oooo. After laminating on the front and back sides (16 x 17 pieces/1"), it was roll-pressed at 160°C with a hot roll/less and a linear pressure of 3kg/+a. Next, it was continuously crosslinked in a C hot air drying oven at 160°C for 2 minutes, and after cooling, A chlorinated polyethylene coated sheet with a winding thickness of 1111 was obtained.The physical properties of the rubbery chlorinated polyethylene 1-ethylene before and after vulcanization are shown in Table 1.For comparison, high-density polyethylene was used as the raw material. Chlorine content 4
Using two types of 5% and 35% chlorinated polyethylene (products of Osaka Soda Co., Ltd., product names Daisolak G245 and H135, hereinafter referred to as Examples 1 and 2), the same amount of the same chemicals as above were added, cross-wired, and vulcanized. and a similar fiber base material was laminated. Table 2 shows the processing conditions of Examples and Comparative Examples and the physical properties of the sheets after lamination. Table 1 Table 2 In Table 2 (the same applies to the following Examples and Comparative Examples), calendering property... ○ Good, △ Slightly poor fluidity, Adhesion to green mold... ○ Good, △ Slightly poor , Texture... Q Soft, △ Slightly hard, × Hard Bending fatigue resistance...O No abnormality, × Peeling from fiber braid, Measurement method in Table 2 (1) Tensile strength, elongation, tear strength, cold resistance The properties and waterproofness are based on JIS K-6328. (2) Flexural fatigue resistance was measured using a dematcher tester at a speed of 300.
Observe and measure the condition after bending 50,000 times per minute. (3) Texture is measured by tactile measurement of the hardness and softness of the sample. (4) Oil resistance and chemical resistance are measured using specified oils and chemicals in a constant temperature bath at 40℃ for 10 minutes. Measuring the appearance, feel, and dirt of the sample after immersion for one day (5) High-frequency welder adhesion was adhered using a machine manufactured by Sansui Vinita, and the shear peel strength (30 x 20., t) and peel strength (30, width) were measured. Example 3. Comparative Example 3 The same ethylene-butene-1 copolymer as in Example 1.2 was used as a raw material and subjected to eFA hydrogenation in an aqueous suspension state, with a chlorine content of 32%,
A rubbery chlorinated polyethylene having a molecular weight of 200,000 was obtained. To 100 parts of this chlorinated polyethylene, 1 part of phthalocyanine green, 15 parts of calcium carbonate, 2.5 parts of lineage, 0.5 part of triallyl isocyanurate, 3 parts of dibutyltin male-h, and 0.5 parts of lead stearate were added. Combined, 50! The mixture was kneaded for 15 to 20 minutes in a high capacity kneader. Next, 0.8 part of dicumyl peroxide was kneaded at 120° C. for 5 minutes using a mixing I call, and the mixture was calendered. Calendar molding was carried out in the same manner as in Examples 1 and 2.
Laminate the front and back sides of 0x20 pieces/1") and vulcanize in a hot air drying oven at 170℃ for 1 minute to a thickness of 0.6
.. , got a sheet of. Table 3 shows the physical properties of J3 before vulcanization and after vulcanization of the rubbery chlorinated polyethylene. For comparison, chlorine content 4 made from high-density polyethylene
Using 0% chlorinated polyethylene (manufactured by Osaka Soda Co., Ltd., trade name: Daisolac MR104) and adding the same amount of the same chemicals as above, kneading and vulcanization and lamination on the same 1itif base material were performed. Table 4 shows the processing conditions of Examples and Comparative Examples and the physical properties of the laminated sheets. Table 3 Table 4 Example 5 For 1σO part of rubbery chlorinated polyethylene (chlorine content 34%, molecular weight 220.000) in Example 2,
Phthalocyanine blue 1 part, titanium oxide 5 parts, calcium carbonate 20 parts, dipentamethylene diuram tetrasulfide 0.8 parts, magnesium hydroxide 3 parts, dibutyltin malate 0.4 parts, lubricant (SCHI LL&SE l)
Manufactured by mAGHER, trade name Structol WB-16
), 5 parts of antimony trioxide, and 1.5 parts of tricresyl phosphate, and heated at 100°C in a kneader.
After kneading for 15 minutes, 0.4 part of trithiocyanuric acid was added, kneading was carried out at 110° C. for 2 minutes, and calender molding was performed in the same manner as in Example 1.2. After molding, glass cloth (Kanebo Glass Fiber Co., Ltd. product, K
S 1600.200Q/M") and then vulcanized in a hot air drying oven at 160℃ for 90 seconds to a thickness of 0.4n.
I got a sheet of Table 5 shows the physical properties of this sheet according to JIS K-6772 and the results of the flame resistance test according to JIS K-6911 (!!, 24 IA method). Table 5 Example 6 Rubbery chlorinated polyethylene according to Example 3 (chlorine content 3
2%, molecular weight 200.000. Product A) and chlorinated polyethylene in Comparative Example 1 (chlorine content 45%, Osaka Soda Co., Ltd. product, trade name Daisolac G 245.8 product) were mixed in various proportions shown in Table 6, and the total 10
0 parts, 5 parts of carbon black, 30 parts of alumina,
1 part of dipentamethylenethiuram tetrasulfide, 0.5 part of calcium stearate, 2.5 parts of magnesium oxide
1 part, dibutyltin male-hO0 3 parts and kneader to 1 part.
After kneading at 10°C for 15 minutes, trithiocyanuric acid 0.5
The mixture was kneaded at 110°C for 2 minutes and subjected to calender molding. The calendering temperature was 140 to 160℃ Nylon raw 1 (long fiber plain woven fabric 420[) X420D
) was laminated to a total thickness of 0.5 nm on the front and back surfaces, pressed with a hot roll press at 160°C and a linear pressure of 2 kQ/II, and then vulcanized in a hot air dryer at 160°C for 1 minute to obtain Example 1. Physical properties were measured in the same manner as in 2. The results are shown in Table 6. Table 6 As shown in Table 6, when the proportion of conventional products is increased, there is a tendency for the practical cold resistance and high frequency welder adhesive strength to decrease. Applicant Osaka Sotatsu Co., Ltd. Agent Patent Attorney Toru Mayo

Claims (3)

【特許請求の範囲】[Claims] (1)エチレン・ 1−ブテン共重合体を塩素化し°C
得られるゴム質塩素化ポリエチレンを含む組成物または
その加硫物を繊維基材に積層してなる樹脂被覆繊維製品
(1) Chlorinated ethylene/1-butene copolymer °C
A resin-coated fiber product obtained by laminating a composition containing the obtained rubbery chlorinated polyethylene or a vulcanized product thereof on a fiber base material.
(2)エチレン・ 1−ブテン共重合体はエチレン含量
85〜97重量%、1−ブテン含量15〜3重量%であ
る特許請求の範囲第1項記載の樹脂被覆m紐製品。
(2) The resin-coated m-string product according to claim 1, wherein the ethylene/1-butene copolymer has an ethylene content of 85 to 97% by weight and a 1-butene content of 15 to 3% by weight.
(3)ゴム質塩素化ポリエチレンは塩素含量20〜55
重量%、重量平均分子量ioo、ooo以上、DSCS
語法融解熱が0.5cal /gr以下である特許請求
の範囲第1項もしくは第2項記載の樹脂被覆繊維製品。
(3) Rubber chlorinated polyethylene has a chlorine content of 20 to 55
Weight %, weight average molecular weight ioo, ooo or more, DSCS
The resin-coated fiber product according to claim 1 or 2, which has a heat of fusion of 0.5 cal/gr or less.
JP3402084A 1984-02-23 1984-02-23 Resin coated fiber product Granted JPS60176755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3402084A JPS60176755A (en) 1984-02-23 1984-02-23 Resin coated fiber product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3402084A JPS60176755A (en) 1984-02-23 1984-02-23 Resin coated fiber product

Publications (2)

Publication Number Publication Date
JPS60176755A true JPS60176755A (en) 1985-09-10
JPH0452209B2 JPH0452209B2 (en) 1992-08-21

Family

ID=12402699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3402084A Granted JPS60176755A (en) 1984-02-23 1984-02-23 Resin coated fiber product

Country Status (1)

Country Link
JP (1) JPS60176755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07148893A (en) * 1992-07-22 1995-06-13 Yasuki Oba Rubberized fabric and sportswear
CN103507365A (en) * 2013-10-23 2014-01-15 吴江市万盟纺织有限公司 Corrosion resisting polyester fiber fabric

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472281A (en) * 1977-11-18 1979-06-09 Nitto Electric Ind Co Ltd Waterproof sheet
JPS591512A (en) * 1982-06-25 1984-01-06 Osaka Soda Co Ltd Post-chlorinated ethylene copolymer and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472281A (en) * 1977-11-18 1979-06-09 Nitto Electric Ind Co Ltd Waterproof sheet
JPS591512A (en) * 1982-06-25 1984-01-06 Osaka Soda Co Ltd Post-chlorinated ethylene copolymer and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07148893A (en) * 1992-07-22 1995-06-13 Yasuki Oba Rubberized fabric and sportswear
JP2514146B2 (en) * 1992-07-22 1996-07-10 泰樹 大庭 Rubberized cloth and sportswear, and method of manufacturing rubberized cloth
CN103507365A (en) * 2013-10-23 2014-01-15 吴江市万盟纺织有限公司 Corrosion resisting polyester fiber fabric

Also Published As

Publication number Publication date
JPH0452209B2 (en) 1992-08-21

Similar Documents

Publication Publication Date Title
Sen Coated textiles: principles and applications
US4035440A (en) Blend of thermoplastic polyurethane elastomer with chlorinated polyethylene
US20040058603A1 (en) Laminated tarp material
US7138175B2 (en) Thermoplastic polymer composition
US5277969A (en) Laminate material having a microfibrous polyurethanic base sheet and process for its preparation
DE60015952T2 (en) MULTILAYER STRUCTURES
US4367316A (en) Vulcanized elastomeric molded article
Akovali Advances in polymer coated textiles
US2725309A (en) Coated non-woven fabric and method of making
KR100375876B1 (en) Polyolefin Type Resin Composition Used in Coating Cloth and Coating Film Comprising Such Resin Composition
JPS60176755A (en) Resin coated fiber product
JP2001114911A (en) Upholstery for automobile interior trim
JP4253779B2 (en) Polyester block copolymer composition and molded article thereof
US5130182A (en) Waterproof rubber sheet
JP3781263B2 (en) Long flooring
JP4131465B2 (en) Flame retardant sheet
KR100444297B1 (en) A Manufacture Method for Manufacture Coating Cloth Including Polyolefin Type Resin Composion
JP4671833B2 (en) Polypropylene leather
JPS6020981A (en) Soft material-base adhesive for antistatic treatment and use
JPH08142290A (en) Fiber reinforced sheet and its manufacture
JPS61172736A (en) Flame-retardant sheet material
JPS58147355A (en) Flexible laminate
JP2003147685A (en) Resin-coated sheet
JPH06198820A (en) Conductive vinyl chloride resin laminated sheet
Sen Coated textiles