JPS60176218A - Electrolyte for aluminum electrolytic condenser - Google Patents

Electrolyte for aluminum electrolytic condenser

Info

Publication number
JPS60176218A
JPS60176218A JP3166484A JP3166484A JPS60176218A JP S60176218 A JPS60176218 A JP S60176218A JP 3166484 A JP3166484 A JP 3166484A JP 3166484 A JP3166484 A JP 3166484A JP S60176218 A JPS60176218 A JP S60176218A
Authority
JP
Japan
Prior art keywords
electrolyte
acid
aluminum electrolytic
dicarboxylic acid
electrolytic condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3166484A
Other languages
Japanese (ja)
Other versions
JPH0531286B2 (en
Inventor
中田 卓美
秀樹 島本
中井 宗明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3166484A priority Critical patent/JPS60176218A/en
Publication of JPS60176218A publication Critical patent/JPS60176218A/en
Publication of JPH0531286B2 publication Critical patent/JPH0531286B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルミ電解コンデンサの電解液に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electrolyte for an aluminum electrolytic capacitor.

従来例の構成とその問題点 従来、この種のアルミ電解コンデンサ用電解液とくに中
高圧用電解液としては、火花発生電圧を比較的高くでき
ることからエチレングリコールに電解質として硼酸また
は硼酸アンモニウムを溶解した電解液が用いられていた
Conventional Structure and Problems Conventionally, electrolytes for this type of aluminum electrolytic capacitors, especially for medium and high voltages, have been prepared using ethylene glycol with boric acid or ammonium borate dissolved as an electrolyte because the spark generation voltage can be relatively high. liquid was used.

しかし、このような電解液は硼酸から直接放出される結
晶水と、エチレングリコールと硼酸との間で起こるエス
テル化反応で生じる縮合水とで電解酸中に多量の水分が
生成するため、100℃を越えるアルミ電解コンデンサ
に使用すると、電解液中の水分が水蒸気となって蒸発し
、アルシミ電解コンデンザのバッグ−7内の内圧を上昇
し、これを破壊に至らしめるとい°う問題があった。そ
してこのような問題点を解決するために、電解質として
エチレングリコールとエステル化反応が非常に遅いアジ
ピン酸あるいは安息香酸等の荷載カルボン酸またはヤの
塩が検W”Jされた。しかし、これらの有機酸あるいは
その塩を用いた電解液ではエステル化反応が非常に遅い
ため、電解液中に生成される水分も非常に少量であり、
高温におけるアルtJコンデンサのパッケージ内の圧力
上昇を抑えることはできるが、これらの有機酸まだはそ
の塩だけでは必要とされる高い火花発生電圧を得ること
ができないという欠点があった。
However, in such an electrolytic solution, a large amount of water is generated in the electrolytic acid due to the crystallization water directly released from the boric acid and the condensed water generated by the esterification reaction between ethylene glycol and boric acid. When used in an aluminum electrolytic capacitor with a capacity exceeding 100 mL, water in the electrolyte becomes water vapor and evaporates, raising the internal pressure inside the bag 7 of the aluminum electrolytic capacitor, leading to its destruction. In order to solve these problems, loaded carboxylic acids such as adipic acid or benzoic acid or salts of carbon dioxide, which have a very slow esterification reaction with ethylene glycol, were investigated as electrolytes.However, these Since the esterification reaction in electrolytes using organic acids or their salts is very slow, the amount of water produced in the electrolyte is also very small.
Although it is possible to suppress the pressure increase inside the AltJ capacitor package at high temperatures, these organic acids and their salts alone have the disadvantage that the required high spark generation voltage cannot be obtained.

発明の目的 本発明はこのような従来の欠点を除去するもので、高温
時におけるアルミ電解コンデンサの内圧−上昇を抑制し
、かつ、比抵抗を高めることなく、火花発生電圧を十分
に高めたアルミ電解コンデンサの中高圧用電解液を提供
することを目的とするものである。
OBJECT OF THE INVENTION The present invention eliminates these conventional drawbacks, and aims to provide an aluminum electrolytic capacitor that suppresses the increase in internal pressure of aluminum electrolytic capacitors at high temperatures and sufficiently increases spark generation voltage without increasing resistivity. The purpose is to provide an electrolytic solution for medium and high voltages in electrolytic capacitors.

発明の構成 この目的を達成するために本発明においては、エチレン
グリコ−JVk主とした溶媒に有機酸、有機酸塩、無機
酸、無機酸塩のうちいずれか一種もしくはこれらの混合
物から構成されている溶質を溶解した溶液に、ポリオキ
シエチレンジカルボン酸を0.1〜30wt%溶解させ
たもので構成したものである。
Structure of the Invention In order to achieve this object, the present invention uses ethylene glyco-JVk as a main solvent consisting of any one of an organic acid, an organic acid salt, an inorganic acid, and an inorganic acid salt, or a mixture thereof. It is composed of a solution in which 0.1 to 30 wt % of polyoxyethylene dicarboxylic acid is dissolved in a solution in which a solute is dissolved.

ポリオキジエチレンジカルポン酸は以下に示されるよう
な化学式の高分子化@物である。
Polyoxyethylene dicarboxylic acid is a polymerized compound with the chemical formula shown below.

HooCCH,、(QC2H4)nOCH2COOHと
の構成によシ構成された電解液は、内部の水分含有量は
非常に少量で、従って高温時のアルミ電解コンデンサの
内圧上昇はほとんどなく、添加されるポリオキシエチレ
ンジカルボン酸の効果で電解液の比抵抗をほとんど上け
ることなく、火花発生電圧を高めることができる。
The electrolytic solution composed of HooCCH, (QC2H4)nOCH2COOH has a very small internal water content, so there is almost no increase in the internal pressure of the aluminum electrolytic capacitor at high temperatures, and the added polyoxy Due to the effect of ethylene dicarboxylic acid, the spark generation voltage can be increased without increasing the specific resistance of the electrolyte.

実施例の説明 以下、本発明による実施例について述べる。Description of examples Examples according to the present invention will be described below.

まず、本発明の実施例における電解液の組成を具体的に
例示しだ。従来の組成例と比較したものを第1表に示し
た。そして、第1表の中から選んだ実施例と従来例の定
電流化成による化成・放電特性の比較を図に示した。さ
らに第1表のそれぞれの組成に基ずく電解コンデンサ(
400V220μF)について105℃中で1000時
間の負荷試験を実施した結果を第2表および第3表に示
した。
First, the composition of the electrolytic solution in the example of the present invention will be specifically illustrated. Table 1 shows a comparison with conventional composition examples. A comparison of the chemical formation and discharge characteristics of the examples selected from Table 1 and the conventional example due to constant current chemical formation is shown in the figure. In addition, electrolytic capacitors based on each composition in Table 1 (
Tables 2 and 3 show the results of a 1000-hour load test conducted at 105° C. for 400 V, 220 μF).

なお第2表は負荷試験中のショート発生率、第3表は負
荷試験中の静電容量変化率、 41失角の正接(tal
Iδ)、漏れ電流の各特性を示した。
Table 2 shows the short circuit occurrence rate during the load test, Table 3 shows the capacitance change rate during the load test, and the tangent of the 41 loss angle (tal).
Iδ) and leakage current characteristics.

以 十−余 白 第1表 第2表 第1表および図から本発明の電解液は、従来例の電解液
に比べ比抵抗を大淋くすることなく、火花開始電圧を7
0〜80vも高くすることができることがわかる。
From Table 1, Table 2, Table 1 and the figures, the electrolytic solution of the present invention has a spark starting voltage of 7.5% without significantly decreasing the resistivity compared to conventional electrolytic solutions.
It can be seen that the voltage can be increased as high as 0 to 80V.

W2表、第3表から本発明の実施例1.実施例2の電解
液は従来例2.従来例3の電解液に比べ、106°Cの
高温負荷試験の結果、ショー1〜発生率。
Example 1 of the present invention from Table W2 and Table 3. The electrolyte of Example 2 was the same as that of Conventional Example 2. Compared to the electrolytic solution of Conventional Example 3, as a result of a high temperature load test at 106°C, the occurrence rate was 1 to 1.

容量変化率、tanδ変化率、外観変化のどの特性にお
いてもすぐれていることがわかる。
It can be seen that all the characteristics of the capacitance change rate, tan δ change rate, and appearance change are excellent.

ポリオキジエチレンジカルポン酸を加えることによる以
上のような効果は他のギ酸、酢酸、コハク酸、グルタル
酸、アゼライン酸等の協和カルボン酸、マレイン酸、フ
マール酸等の/I−飽和カルホン酸等の有機酸、硼酸等
の21(ζ機酸においても全く同様にみられる。
The above-mentioned effects of adding polyoxyethylene dicarboxylic acid are similar to other consonant carboxylic acids such as formic acid, acetic acid, succinic acid, glutaric acid, and azelaic acid, and /I-saturated carboxylic acids such as maleic acid and fumaric acid. The same thing can be seen in organic acids such as boric acid, etc. (ζ organic acids).

ところで、ポリオキシエチレンジカルボン酸の火花開始
電圧の上昇に関わる効果は、平均分子量に犬きく依存し
ている。
By the way, the effect of polyoxyethylene dicarboxylic acid on increasing the spark starting voltage is highly dependent on the average molecular weight.

\1を一均分子L1(が200以下では火花1311始
電圧上ゲ1効果は非常に低くなり、実用的ではない。
If the uniform molecule L1 (\1) is less than 200, the spark 1311 starting voltage and Ge1 effect will be very low, making it impractical.

平均分子量が20000を越えるとポリオキシエチレン
ジカルボン酸は電解液中への浴)眸性が悪くなり、電解
液中へ晶出するようになり、かえって′電解液特性に悪
影響を及はずようになる。
When the average molecular weight exceeds 20,000, polyoxyethylene dicarboxylic acid has poor compatibility with the electrolyte, crystallizes in the electrolyte, and has no negative effect on the properties of the electrolyte. .

従って、ポリオキシエチレンジカルボン酸は平均分子量
200〜20000の間で、火花開始電圧の上引幼朱、
晶出を考え合わせ、電pyr液中への添訓は0.1〜3
0wt%の範囲内で行なうのが好聾しい。
Therefore, polyoxyethylene dicarboxylic acid has an average molecular weight between 200 and 20,000, and has a high spark starting voltage.
Considering crystallization, the addition to the pyr solution is 0.1 to 3.
It is preferable to do this within a range of 0 wt%.

発明の効果 以−ヒのように不発明は、比抵抗を下けることなく、火
花開始霜4圧を旨くした中高圧用アルミ電解コンテンザ
用の電i!l’1′液を提供するもので、本発明の電解
液を1枦用することにより、非常に信頼性の高い中高圧
アルミ電解コンデンサを提供できる。
Effects of the Invention As shown in (a) above, the inventive feature is an electric i! for medium and high voltage aluminum electrolytic condensers that improves the spark starting frost 4 pressure without lowering the resistivity. By using one cup of the electrolytic solution of the present invention, it is possible to provide an extremely reliable medium-high voltage aluminum electrolytic capacitor.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の冥加例の市11N’液と従来例の電)膵
液との…jの定電流化成時における化成・放電特性の比
1咬を示した信日生図である。
The figure is a graph showing the ratio of chemical formation/discharge characteristics of the Ichi 11N' liquid of the additive example of the present invention and the pancreatic juice of the conventional example during constant current chemical formation.

Claims (2)

【特許請求の範囲】[Claims] (1)エチレングリコールを主とした溶媒に席質を溶解
した溶液に、ポリオキジエチレンジカルポン酸を0.1
 wt%〜30wt%溶解させたことを特徴とするアル
ミ電解コンデンサ用電解液。
(1) Add 0.1% polyoxydiethylene dicarboxylic acid to a solution of the substrate dissolved in a solvent mainly composed of ethylene glycol.
An electrolytic solution for aluminum electrolytic capacitors, characterized in that it is dissolved in wt% to 30wt%.
(2)有機酸、有機酸塩、無機酸、無機酸塩のうちいず
れか一種若しくはこれらの混合物から構成さく3)ポリ
オキジエチレンジカルポン酸の平均分子
(2) Consists of any one of organic acids, organic acid salts, inorganic acids, and inorganic acid salts, or a mixture thereof.3) Average molecule of polyoxydiethylene dicarboxylic acid.
JP3166484A 1984-02-22 1984-02-22 Electrolyte for aluminum electrolytic condenser Granted JPS60176218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3166484A JPS60176218A (en) 1984-02-22 1984-02-22 Electrolyte for aluminum electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3166484A JPS60176218A (en) 1984-02-22 1984-02-22 Electrolyte for aluminum electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS60176218A true JPS60176218A (en) 1985-09-10
JPH0531286B2 JPH0531286B2 (en) 1993-05-12

Family

ID=12337401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3166484A Granted JPS60176218A (en) 1984-02-22 1984-02-22 Electrolyte for aluminum electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS60176218A (en)

Also Published As

Publication number Publication date
JPH0531286B2 (en) 1993-05-12

Similar Documents

Publication Publication Date Title
JPS60176218A (en) Electrolyte for aluminum electrolytic condenser
JPS62254416A (en) Electrolyte for electrolytic capacitor
JPH11340097A (en) Electrolytic solution for driving electrolytic capacitor
JP4226123B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP3172204B2 (en) Electrolyte for driving electrolytic capacitors
JPH0770444B2 (en) Electrolytic solution for driving electrolytic capacitors
JP3078171B2 (en) Electrolyte for driving electrolytic capacitors
JPS63261820A (en) Electrolyte for driving electrolytic capacitor
JP3393673B2 (en) Electrolyte for driving electrolytic capacitors
JPS62254415A (en) Electrolyte for electrolytic capacitor
JPH04171913A (en) Electrolyte for driving electrolytic capacitor and electrolytic capacitor using same
JPH0376007B2 (en)
JP2819475B2 (en) Electrolyte for driving electrolytic capacitors
JP3281945B2 (en) Electrolyte for driving electrolytic capacitors
JP3217093B2 (en) Electrolyte for driving electrolytic capacitors
JPS63261822A (en) Electrolyte for driving electrolytic capacitor
JP3376749B2 (en) Electrolyte for driving electrolytic capacitors
JPS6351620A (en) Electrolytic capacitor driving electrolyte
JPS63175411A (en) Electrolytic capacitor driving electrolyte
JPS61294809A (en) Electrolytic liquid for driving electrolytic capacitor
JPH0628219B2 (en) Electrolytic solution for driving electrolytic capacitors
JPS63219116A (en) Electrolytic capacitor electrolyte
JPS6170711A (en) Electrolyte for driving electrolytic condenser
JPH07245246A (en) Drive electrolyte of electrolytic capacitor
JPS62276815A (en) New electrolytic capacitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term