JPS63175411A - Electrolytic capacitor driving electrolyte - Google Patents

Electrolytic capacitor driving electrolyte

Info

Publication number
JPS63175411A
JPS63175411A JP62006556A JP655687A JPS63175411A JP S63175411 A JPS63175411 A JP S63175411A JP 62006556 A JP62006556 A JP 62006556A JP 655687 A JP655687 A JP 655687A JP S63175411 A JPS63175411 A JP S63175411A
Authority
JP
Japan
Prior art keywords
mixed solvent
driving
electrolytic capacitor
electrolytic solution
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62006556A
Other languages
Japanese (ja)
Other versions
JPH048937B2 (en
Inventor
仁 井二
匡司 松田
吉水 康朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62006556A priority Critical patent/JPS63175411A/en
Publication of JPS63175411A publication Critical patent/JPS63175411A/en
Publication of JPH048937B2 publication Critical patent/JPH048937B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Valve Device For Special Equipments (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は電解コンデンサの改善に関し、特に高圧用の駆
動用電解液(以下電解液と略す)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to improvements in electrolytic capacitors, and particularly to a high-voltage driving electrolyte (hereinafter abbreviated as electrolyte).

(ロ) 従来の技術 従来、高圧用の電解液にはエチレングリコール(以下E
Gと略す)を主溶媒とし、溶質としてホウ酸やその塩お
よびアゼライン酸やセバシン酸等の有機酸やその塩が使
用されている。ところで特に高圧用の場合は耐電圧を高
く維持する必要があり、このため電解液にジエチレング
リコール(以下DECと略す)を添加したものも使用き
れているが、添加量が多くなると寿命特性が悪くなる等
の欠点があった。
(b) Conventional technology Conventionally, ethylene glycol (hereinafter referred to as E
G) is used as the main solvent, and boric acid and its salts, and organic acids and their salts such as azelaic acid and sebacic acid are used as the solutes. By the way, especially in the case of high voltage applications, it is necessary to maintain a high withstand voltage, and for this reason, electrolytes with diethylene glycol (hereinafter abbreviated as DEC) added are used, but the longer the amount added, the worse the life characteristics become. There were other drawbacks.

また特公昭51−7296号公報(HOIG  970
2.59E321)に示されるように、ベンジルアルコ
ール(以下BALと略す)を悉加する方法も提案きれて
いるが、耐電圧を満足させるためには添加量を多くする
必要があり、セパレーク紙として使用しているクラフト
紙とのなじみが悪く満足な特性が得られV、且つ高温負
荷における特性の劣化が起こり十分とはいえなかった。
Also, Special Publication No. 51-7296 (HOIG 970
2.59E321), a method of adding benzyl alcohol (hereinafter abbreviated as BAL) has been proposed, but in order to satisfy the withstand voltage, it is necessary to increase the amount of addition, so it is not suitable for use as a separate paper. The compatibility with the kraft paper used was poor, and satisfactory properties were not obtained, and the properties deteriorated under high-temperature loads, which could not be said to be sufficient.

(ハ) 発明が解決しようとする問題点本発明は、特に
高圧用電解コンデンサにおける上記問題点、即ち耐電圧
を高く維持するためにDECの添加量を多くすると寿命
特性が悪くなり、BALの添加量を多くするとクラフト
紙とのなじみが悪(満足な特性が得られず、且つ高温負
荷における特性の劣化が起る点を解決するもので、EG
、DEC,BALをある一定の範囲で組み合わせること
により十分な耐電圧と共に寿命特性の安定した電解液を
提供するものである。
(c) Problems to be Solved by the Invention The present invention solves the above-mentioned problems particularly in high-voltage electrolytic capacitors, that is, increasing the amount of DEC added in order to maintain a high withstand voltage deteriorates the life characteristics. This solves the problem of poor compatibility with kraft paper (unable to obtain satisfactory characteristics and deterioration of characteristics under high temperature loads) when the amount is increased.
By combining , DEC, and BAL within a certain range, an electrolytic solution with sufficient withstand voltage and stable life characteristics is provided.

(ニ)  問題点を解決するための手段本発明は、EG
30〜60重量%に対し、残部がBAL20〜30重量
%およびD E C20〜40!!量%からなる混合溶
媒100mlに対し、アゼライン酸またはセバシン酸の
塩を3〜8g溶解したことを特徴とする電解コンデンサ
駆動用電解液である。
(d) Means for solving the problems The present invention
30-60% by weight, the balance is BAL20-30% by weight and DE C20-40! ! This electrolytic solution for driving an electrolytic capacitor is characterized in that 3 to 8 g of azelaic acid or sebacic acid salt is dissolved in 100 ml of a mixed solvent consisting of %.

(ホ) 作用 DECの代りにDECよりも化学的に安定とみられるB
ALを添加してDECの混合比を低くしたので、電解液
の電導度の変化が少なくなり、その結果tanδの上昇
が低く抑えられるものと思われる。
(e) Effect B, which is considered to be more chemically stable than DEC, can be used instead of DEC.
It is thought that since the mixing ratio of DEC was lowered by adding AL, the change in the conductivity of the electrolytic solution was reduced, and as a result, the increase in tan δ was suppressed to a low level.

(へ)実施例 本発明において、溶媒としてはEC30〜6031 i
%に対し、Q部がBAL20〜30重量%およびDEC
20〜40重量%からなる混合溶媒が用いられ、溶質と
しではアゼライン酸またはセバシン酸の塩3〜8gが用
いられる。以下本発明を第1表〜第2表および第1図に
従い、具体的な実施例について詳述する。
(f) Examples In the present invention, the solvent is EC30-6031 i
%, Q part is BAL20-30% by weight and DEC
A mixed solvent consisting of 20 to 40% by weight is used, and 3 to 8 g of azelaic acid or sebacic acid salt is used as the solute. Hereinafter, the present invention will be described in detail with reference to Tables 1 to 2 and FIG. 1, with reference to specific examples.

第1表に本発明の典型的な実施例として5種類の電解液
(A)〜(D′)および参考例として2種類の電解液(
E八(F)、更に比較のための従来例として4種類の電
解液(G)〜(J)を示す。
Table 1 shows five types of electrolytes (A) to (D') as typical examples of the present invention and two types of electrolytes (D') as reference examples.
E8 (F) and four types of electrolytes (G) to (J) are shown as conventional examples for comparison.

(以下余白) 第   1   !! 第1表に示すようにエチレングリコール(EG)の組成
比率が高くなると耐電圧の低下が起こり、またジエチレ
ングリコール(DEG)あるいはベンジルアルコール(
BAL)の添加量が少なくなると耐電圧の低下が起こる
(Left below) 1st! ! As shown in Table 1, as the composition ratio of ethylene glycol (EG) increases, the withstand voltage decreases, and diethylene glycol (DEG) or benzyl alcohol (
When the amount of addition of BAL) decreases, the withstand voltage decreases.

ところで本発明は、高圧用特に4001dV用の電解液
を目的としているので、耐電圧は450V〜460 V
以上必要である。従って、第1表に示した10種類の電
解液の内、耐電圧が450 V以上を示す実施例(A)
〜(D′)、参考例(F)および従来例(H)、(J)
を使用し、400V −100μFのコンデンサを試作
し、105℃の高温負荷試験を行った。
By the way, since the present invention is aimed at an electrolytic solution for high voltage, especially 4001 dV, the withstand voltage is 450 V to 460 V.
The above is necessary. Therefore, among the 10 types of electrolytes shown in Table 1, Example (A) exhibits a withstand voltage of 450 V or more.
~(D'), Reference example (F) and conventional example (H), (J)
Using this, a 400V-100μF capacitor was prototyped and subjected to a high temperature load test at 105°C.

この高温負荷試験は105℃、2000時間の条件下で
行ない、tanδを初期(試験前)、1000時間後、
2000時間後に測定し、容量変化率ΔC/Cと共に第
2表に結果を示した。
This high-temperature load test was conducted at 105°C for 2000 hours, and tan δ was measured at the initial stage (before the test), after 1000 hours, and
Measurements were made after 2000 hours, and the results are shown in Table 2 along with the capacity change rate ΔC/C.

(以下余白) 第   2   表 (以下余白) 第2表から明らかなように、本実施例(A)〜(D′)
は105℃、2000時間の高温負荷試験においても特
性が安定している。これに比べBALの比率の高い参考
例(F)、従来例(J)では、105℃、2000時間
後においてtanδの急増が起こっている。またDEC
の比率の高い従来例(H)においても、105°C,2
000時間後のtanδが急増している。
(Hereinafter in the margin) Table 2 (Hereinafter in the margin) As is clear from Table 2, Examples (A) to (D')
The characteristics are stable even in a high temperature load test at 105°C for 2000 hours. In contrast, in the reference example (F) and the conventional example (J), which have a high BAL ratio, tan δ rapidly increases after 2000 hours at 105°C. Also DEC
Even in the conventional example (H) with a high ratio of
After 000 hours, tan δ increases rapidly.

次にイオノーゲンとしてのアゼライン酸の塩及びセバシ
ン酸の塩の添加量については、第1図の耐電圧曲線に示
すようにその耐電圧(450V )の点から、混合溶媒
100mg当り8g以下が有効である。また電導度の点
から混合溶媒1001Ila当り3g以上が有効である
。なお第1図は、EG40%、DEC40%、BAL2
0%からなる混合溶媒に対する溶質の添7IOtと耐電
圧の関係を示す特性図であり、(■)は溶質としてアゼ
ライン酸アンモニウム、(I)はセバシン酸アンモニウ
ムを使用した場合である。
Next, regarding the amount of azelaic acid salt and sebacic acid salt added as ionogens, it is effective to add 8 g or less per 100 mg of the mixed solvent in terms of the withstand voltage (450 V) as shown in the withstand voltage curve in Figure 1. be. From the viewpoint of electrical conductivity, it is effective to use 3 g or more per 1001 Ila of the mixed solvent. In addition, Figure 1 shows EG40%, DEC40%, BAL2
It is a characteristic diagram showing the relationship between solute addition 7IOt and withstand voltage for a mixed solvent consisting of 0%, where (■) is ammonium azelaate and (I) is ammonium sebacate as the solute.

また、酸化ホウ素、メタホウ酸を添加することにより耐
腐食性の向上が計れ、マンニットを添加することにより
寿命延長効果が得られる。更にジニトロベンゼンを添加
することにより水素ガス吸収の効果と寿命延長効果が得
られ、モノまたはジエチルリン酸を添加することにより
高温無負荷特性の改善が計れる。このように本発明の混
合溶媒にこれらの特性改善助剤を用いることにより一層
優れた効果を引き出すことができる。
Further, by adding boron oxide and metaboric acid, corrosion resistance can be improved, and by adding mannitol, a life extension effect can be obtained. Further, by adding dinitrobenzene, the effect of hydrogen gas absorption and the effect of extending the life can be obtained, and by adding mono- or diethyl phosphoric acid, the high temperature no-load characteristics can be improved. As described above, even more excellent effects can be brought out by using these property-improving aids in the mixed solvent of the present invention.

(ト)発明の詳細 な説明したように本発明によれば、特に高圧用電解コン
デンサの十分な耐電圧特性と安定した寿命特性が得られ
る。
(g) As described in detail, according to the present invention, sufficient withstand voltage characteristics and stable life characteristics can be obtained, especially for high voltage electrolytic capacitors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の電解液に対する溶質添加量と
耐電圧の関係を示す耐電圧特性曲線図であり、(りは溶
質としてアゼライン酸アンモニウム、(I)はセバシン
酸アンモニウムを使用した場合を示す。
FIG. 1 is a withstand voltage characteristic curve diagram showing the relationship between the amount of solute added to the electrolytic solution and the withstand voltage of an example of the present invention. Indicate the case.

Claims (5)

【特許請求の範囲】[Claims] (1)エチレングリコール30〜60重量%に対し、残
部がベンジルアルコール20〜30重量%およびジエチ
レングリコール10〜40重量%からなる混合溶媒10
0mlに対し、アゼライン酸またはセバシン酸の塩を3
〜8g溶解したことを特徴とする電解コンデンサ駆動用
電解液。
(1) Mixed solvent 10 consisting of 30-60% by weight of ethylene glycol, the balance being 20-30% by weight of benzyl alcohol and 10-40% by weight of diethylene glycol
Add 3 azelaic acid or sebacic acid salts to 0 ml.
An electrolytic solution for driving an electrolytic capacitor, characterized in that ~8g is dissolved.
(2)上記混合溶媒100mlに対し、酸化ホウ素また
はメタホウ酸2〜4gを溶解してなる特許請求の範囲第
1項記載の電解コンデンサ駆動用電解液。
(2) The electrolytic solution for driving an electrolytic capacitor according to claim 1, which is obtained by dissolving 2 to 4 g of boron oxide or metaboric acid in 100 ml of the mixed solvent.
(3)上記混合溶媒100mlに対し、マンニット1〜
2gを溶解してなる特許請求の範囲第1項、または第2
項記載の電解コンデンサ駆動用電解液。
(3) Mannitol 1 to 100 ml of the above mixed solvent
Claim 1 or 2 obtained by dissolving 2g of
Electrolytic solution for driving electrolytic capacitors as described in .
(4)上記混合溶媒100mlに対し、ジニトロベンゼ
ン0.5〜2gを溶解してなる特許請求の範囲第1項、
または第2項または第3項記載の電解コンデンサ駆動用
電解液。
(4) Claim 1, in which 0.5 to 2 g of dinitrobenzene is dissolved in 100 ml of the above mixed solvent;
Or the electrolytic solution for driving an electrolytic capacitor according to item 2 or 3.
(5)上記混合溶媒100mlに対し、モノまたはジエ
チルリン酸0.05〜0.5gを溶解してなる特許請求
の範囲第1項、または第2項または第3項または第4項
記載の電解コンデンサ駆動用電解液。
(5) The electrolysis according to claim 1, or 2, or 3, or 4, wherein 0.05 to 0.5 g of mono- or diethyl phosphoric acid is dissolved in 100 ml of the mixed solvent. Electrolyte for driving capacitors.
JP62006556A 1987-01-14 1987-01-14 Electrolytic capacitor driving electrolyte Granted JPS63175411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62006556A JPS63175411A (en) 1987-01-14 1987-01-14 Electrolytic capacitor driving electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62006556A JPS63175411A (en) 1987-01-14 1987-01-14 Electrolytic capacitor driving electrolyte

Publications (2)

Publication Number Publication Date
JPS63175411A true JPS63175411A (en) 1988-07-19
JPH048937B2 JPH048937B2 (en) 1992-02-18

Family

ID=11641604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62006556A Granted JPS63175411A (en) 1987-01-14 1987-01-14 Electrolytic capacitor driving electrolyte

Country Status (1)

Country Link
JP (1) JPS63175411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264389A (en) * 1995-03-28 1996-10-11 Marcon Electron Co Ltd Electrolyte for driving electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264389A (en) * 1995-03-28 1996-10-11 Marcon Electron Co Ltd Electrolyte for driving electrolytic capacitor

Also Published As

Publication number Publication date
JPH048937B2 (en) 1992-02-18

Similar Documents

Publication Publication Date Title
JP5761728B2 (en) Aluminum electrolytic capacitor electrolyte and aluminum electrolytic capacitor
JPS63175411A (en) Electrolytic capacitor driving electrolyte
JPS6032345B2 (en) Electrolyte for electrolytic capacitors
JPH11340097A (en) Electrolytic solution for driving electrolytic capacitor
JP2921363B2 (en) Electrolyte for electrolytic capacitors
JP2945766B2 (en) Electrolyte for driving electrolytic capacitors
JP3075789B2 (en) Electrolyte for electrolytic capacitors
JP3212322B2 (en) Electrolyte for driving electrolytic capacitors
JP3103369B2 (en) Electrolyte for driving electrolytic capacitors
JPH0963896A (en) Electrolyte for driving electrolytic capacitor
JP3217093B2 (en) Electrolyte for driving electrolytic capacitors
JP2992361B2 (en) Electrolyte for driving electrolytic capacitors
JP3487911B2 (en) Electrolyte for driving electrolytic capacitors
JP3169625B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP3214865B2 (en) Electrolyte for driving electrolytic capacitors
JP3169970B2 (en) Electrolyte for driving electrolytic capacitors
JPS63318121A (en) Electrolyte for driving electrolytic capacitor
JPS63261822A (en) Electrolyte for driving electrolytic capacitor
JPS6263416A (en) Electrolyte for driving aluminum electrolytic condenser
JPH0281417A (en) Electrolyte for driving electrolytic capacitor
JPH04364015A (en) Electrolytic capacitor driving electrolytic solution
JPH04290418A (en) Electrolyte for driving electrolytic capacitor and electrolytic capacitor using the electrolyte
JPH03125417A (en) Electrolyte for electrolytic capacitor
JPS63232409A (en) Electrolytic capacitor
JPS63216327A (en) Electrolyte for driving electrolytic capacitor