JPS60176008A - Optical fiber core - Google Patents

Optical fiber core

Info

Publication number
JPS60176008A
JPS60176008A JP59031485A JP3148584A JPS60176008A JP S60176008 A JPS60176008 A JP S60176008A JP 59031485 A JP59031485 A JP 59031485A JP 3148584 A JP3148584 A JP 3148584A JP S60176008 A JPS60176008 A JP S60176008A
Authority
JP
Japan
Prior art keywords
optical fiber
coating
core wire
silicone resin
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59031485A
Other languages
Japanese (ja)
Inventor
Shigeru Tanaka
茂 田中
Minoru Watanabe
稔 渡辺
Nobuo Inagaki
稲垣 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59031485A priority Critical patent/JPS60176008A/en
Publication of JPS60176008A publication Critical patent/JPS60176008A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To flatten the frequency characteristics by forming an inner layer of silicone resin around an optical fiber, carrying out heat annealing, and forming an outer layer of thermoplastic resin. CONSTITUTION:A silicone resin coating 2 and a nylon coating 3 are successively formed around an optical fiber 1. At this time, the silicone resin coating 2 is formed, annealing is carried out by holding at 150 deg.C for 14hr, and the nylon coating 3 is formed. Annealing may be carried out by holding at 120 deg.C for 10hr after forming the coating 2, 3. Loss at about 1.4mum wavelength of light is considerably reduced.

Description

【発明の詳細な説明】 (技術分野) 本発明は光ファイバに関し、特に光ファイバの周囲に被
覆を施した光フアイバ心線に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an optical fiber, and more particularly to a coated optical fiber in which the periphery of the optical fiber is coated.

(背景技術) 光ファイバに被覆を施した光フアイバ心線(以下心線と
いう)のうち、標準的に用いられているシリコン樹脂と
熱可塑性プラスチックを被覆した心線の構造の一例を第
1図に示す。第1図において1は光7アイパ、2はシリ
コン樹脂被覆体、3はナイロン被覆体である。このよう
な心線を例えば200Cに昇温すると伝送損失の異常な
増加をきたすという欠点があった。
(Background Art) Among optical fiber cores (hereinafter referred to as core fibers), which are coated optical fibers, Figure 1 shows an example of the structure of a core wire coated with silicone resin and thermoplastic plastic, which are commonly used. Shown below. In FIG. 1, reference numeral 1 indicates an optical 7-iper, 2 a silicone resin coating, and 3 a nylon coating. When the temperature of such a core wire is raised to, for example, 200C, there is a drawback that transmission loss increases abnormally.

第1図において光ファイバ1が酸化ゲルマニウムをドー
プした直径50μm のコアを有するマルチモードファ
イバである心線の場合、伝送損失の初期特性は第2図の
実線に示すとおりであるが、この心線を200Cに昇温
し200Cにて5時間保持した後の伝送損失波長特性は
第2図中の点線で示されるように、1.4μm 付近の
OH吸収増大や、1.5〜1.8μm にかけての長波
長損失増加が著しい。このように高温における特性の不
安定性は、光ファイバを高温で使用する場合や、これ程
の高温ではない場合でも長期間の使用を考えた場合に不
都合である。
In Fig. 1, when the optical fiber 1 is a multimode fiber doped with germanium oxide and having a core with a diameter of 50 μm, the initial characteristic of transmission loss is as shown by the solid line in Fig. 2. As shown by the dotted line in Figure 2, the transmission loss wavelength characteristics after heating to 200C and holding at 200C for 5 hours show an increase in OH absorption around 1.4 μm and an increase in wavelength from 1.5 to 1.8 μm. There is a significant increase in long wavelength loss. The instability of the characteristics at high temperatures is disadvantageous when using the optical fiber at high temperatures, or when considering long-term use even at low temperatures.

(発明の目的) 本発明は高温下及び常温下での長期特性の安定性が改善
された光フアイバ心線の提供を目的とするものである。
(Objective of the Invention) An object of the present invention is to provide an optical fiber core wire with improved stability of long-term characteristics at high temperatures and at room temperatures.

例えば200[程度にまでも昇温された場合にも、伝送
損失の劣化の少ない心線を提供するものである。
For example, the present invention provides a core wire with little deterioration in transmission loss even when the temperature is raised to about 200°C.

(発明の構成) 第2図に示されるような、高温下での伝送損失の劣化は
、高温化でのシリコン樹脂2と熱可塑性プラスチック3
の変質及びガラス1の変質に起因していると考えられる
(Structure of the Invention) As shown in FIG. 2, the deterioration of transmission loss at high temperatures is caused by
This is considered to be due to the deterioration of the glass 1 and the deterioration of the glass 1.

本発明者らは研究の結果、予め光フアイバ心線の各部材
料について、高温でアニール処理して材料中の欠陥を除
去しておくことが上記伝送損失劣化の改善に有効である
ことを見出し本発明に至った。
As a result of research, the present inventors discovered that it is effective to improve the transmission loss deterioration described above by annealing the materials of each part of the optical fiber at high temperatures to remove defects in the materials. This led to the invention.

すなわち本発明の要旨とするところは光フアイバ素線の
外周に2層以上の被覆を施こし【なり、その被覆最外層
が熱可塑性プラスチックである光フアイバ心線であって
、該素線に1層以上の被覆を施こした段#において高温
に保持する処理を予め施されたことを特徴とする光ファ
イバ6巌を提供することkある。
That is, the gist of the present invention is to provide an optical fiber core wire in which two or more layers of coating are applied to the outer periphery of an optical fiber wire, the outermost layer of the coating being a thermoplastic plastic, It is an object of the present invention to provide an optical fiber 6, which is characterized in that the stage #, which has been coated with more than one layer, has been previously subjected to a treatment to maintain it at a high temperature.

アニール処理は、最終の光ファイバ6輸までの加工が終
了した後に行ってもよいし、その途中の工程で行っても
かまわない。しかし光ファイバの場合、線引き時には約
20001rでガラス母材を溶融するので、この工程以
前に行ったアニール処理は線引き工程で履歴が消滅して
しまうため、線引き工程以後にアニール処理を施す必要
がある。従って、アニール処理すなわち高温処理を施す
工程としては、光ファイバ1にシリコン樹脂2を被覆し
た後に行う場合と、シリコン樹脂2の外周に熱可塑性プ
ラスチック3を被覆した後に行う場合の二つの工程が可
能である。
The annealing treatment may be performed after the final six optical fibers have been processed, or may be performed during the process. However, in the case of optical fibers, the glass base material is melted at approximately 20001r during drawing, so any annealing performed before this process will be erased in the drawing process, so annealing must be performed after the drawing process. . Therefore, there are two possible processes for performing annealing treatment, that is, high-temperature treatment: after coating the optical fiber 1 with the silicone resin 2, and after coating the outer periphery of the silicone resin 2 with the thermoplastic plastic 3. It is.

該高温処理の温度については、適用可能な温度の上限と
、アニール効果を達成するのに要する時間とのかねあい
から、シリコン樹脂被覆段階で床温処理する場合は、1
00C以上が、又熱可塑性プラスチックを被覆して高温
処理する場合は800以上が適当である。
Regarding the temperature of the high-temperature treatment, due to the conflict between the upper limit of the applicable temperature and the time required to achieve the annealing effect, when performing the bed temperature treatment at the silicone resin coating stage, 1.
A value of 00C or more is suitable, and a value of 800 or more is suitable when a thermoplastic is coated and subjected to high temperature treatment.

以下に高温処理により特性を安定化された本発明の光フ
アイバ心線の実施例を述べる。
Examples of the optical fiber core wire of the present invention whose characteristics have been stabilized by high-temperature treatment will be described below.

実施例1 第2図にその伝送損失特性を示したものと同じ設計、す
なわちGeO2をドープした直径50μm のコアを有
するマルチモードファイバをシリコンゴムで被覆して直
径400μm とした後に、大気雰囲気中1500にて
14時間保持し高温処理した後に、ナイロンを押出し被
覆して直径900μm の心線を作成した。
Example 1 A multimode fiber of the same design as the one whose transmission loss characteristics are shown in FIG. After being held for 14 hours and treated at high temperature, nylon was extruded and coated to prepare a core wire with a diameter of 900 μm.

この心線を用いて200Cにて5時間保持の昇温試験を
行った結果を第6図のグラフに示す。
Using this core wire, a heating test was conducted at 200C for 5 hours, and the results are shown in the graph of FIG.

亀3図において実線は該心線の伝送損失の初期特性を示
し点線は昇温後の伝送損失特性を示す。
In Figure 3, the solid line indicates the initial transmission loss characteristic of the core wire, and the dotted line indicates the transmission loss characteristic after temperature rise.

第3図に示されるように、1.4μm付近のOH吸収や
1.5〜1.8μmでの損失値はそれぞれ0.46B/
i程度の増加を示してはいるものの、高温処理を行って
いない従来の心線の場合(第一2図)での、波長1.4
μm付近における昇温試験後の損失増加すなわち△α(
1,4μm)は約5 dB/Krn及び波長1.6μm
付近での損失増加Δα(1,6μm)は約i aB/K
mであるのに比べれば、非常な改善効果が認められる。
As shown in Figure 3, the OH absorption near 1.4 μm and the loss value between 1.5 and 1.8 μm are 0.46B/
Although it shows an increase of about
Increase in loss after temperature increase test near μm, i.e. △α(
1.4 μm) is approximately 5 dB/Krn and wavelength 1.6 μm
The loss increase Δα (1.6 μm) in the vicinity is approximately i aB/K
A significant improvement effect can be seen compared to the case of m.

特に1.4μmのOH吸収ピークの安定化の効果は大き
い。
In particular, the effect of stabilizing the OH absorption peak at 1.4 μm is significant.

上記では高温処理条件が150Cで14時間保持の場合
の心線を示したが、処理温度や処理時間を変えた場合に
も第3図に示すものと同等の損失特性を改善された心線
が得られた。
The above shows the cord when the high temperature treatment condition is 150C and held for 14 hours, but even when the treatment temperature and treatment time are changed, the cord with improved loss characteristics equivalent to that shown in Figure 3 can be obtained. Obtained.

実施例2 実施例1(及び第2図)に用いたものと同じマルチモー
ドファイバについて、シリコン被覆して直径400μm
 とした後に、直ちにナイロン被覆を行い直径900μ
m の心線を作成した。
Example 2 The same multimode fiber used in Example 1 (and Figure 2) was coated with silicon to have a diameter of 400 μm.
After that, immediately coated with nylon and made into a diameter of 900 μm.
m core wires were created.

該心線を120Cにて10時間保持する高温処理を行っ
た。高温処理後の心線について200Cにて5時間保持
する昇温試験を行った結果を第4図に示す。第4図にお
いて実線は該心線の伝送損失の初期特性曲線であり、点
線は200Cにて5時間保持波の伝送損失特性を示す、
第4図に示されるように、波長1.4μm付近でのOH
吸収損失において200C5時間保持後の損失増加Δα
=1〜1.56B / Kmと、高温処理を行っていな
い従来の心線の場合(第2図)K比べ損失増加は%程度
に抑えられている。
The core wire was subjected to high temperature treatment at 120C for 10 hours. FIG. 4 shows the results of a heating test in which the core wire after high-temperature treatment was held at 200C for 5 hours. In FIG. 4, the solid line is the initial characteristic curve of the transmission loss of the core wire, and the dotted line is the transmission loss characteristic of the wave maintained for 5 hours at 200C.
As shown in Figure 4, OH at a wavelength of around 1.4 μm
Absorption loss increase Δα after holding 200C for 5 hours
= 1 to 1.56 B/Km, and the increase in loss is suppressed to about % compared to K in the case of a conventional core wire that has not been subjected to high temperature treatment (Fig. 2).

このようにナイロン被覆まで施した後に高温処理を行う
方法において、上記の処理条件と処理温度、処理条件を
変えた場合でも第4図に示したものと同等の効果を得ら
れたことは実施例1と同じである。
In this method of performing high-temperature treatment after applying the nylon coating, even when the above-mentioned treatment conditions, treatment temperature, and treatment conditions were changed, the same effect as that shown in Fig. 4 was obtained as an example. Same as 1.

(発明の効果) 実施例1及び2に述べたところからも明らかなように、
本発明の光フアイバ心線は、高温下における伝送特性及
び長期間に亘る伝送特性が従来のものに比して非常に安
定化された優れた心線である。
(Effect of the invention) As is clear from the description in Examples 1 and 2,
The optical fiber core wire of the present invention is an excellent core wire whose transmission characteristics at high temperatures and transmission characteristics over a long period of time are much more stable than those of conventional fibers.

なお説明にあたっては、最外層としてはナイロンを用い
た場合を例示したが、ナイロン以外の熱可塑性材料例え
ばポリエチレン、フッ素樹脂等を用いたものについても
本発明の適用を受けることを制約するものではない。さ
らに光フアイバ素線の外周に2層以上の多層を被覆した
光フアイバ心線について本発明の方法を用いて有効であ
ることも言うまでもない。
In the explanation, the case where nylon is used as the outermost layer is exemplified, but this does not limit the application of the present invention to thermoplastic materials other than nylon, such as polyethylene, fluorine resin, etc. . Furthermore, it goes without saying that the method of the present invention is effective for use with optical fiber core wires in which the outer periphery of the optical fiber wire is coated with two or more multilayers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光フアイバ心線構造の一例を説明する図である
。 第2〜4図は第1図の構造をもつ光フアイバ心線の伝送
損失特性曲線であって、実線は常温での初期特性、点線
は200Cの昇温特性を示しており、m2図は従来の心
線の場合、第3図は実施例1の高温処理を行った本発明
の心線の場合、および第4図は実施例2の高温処理を行
った本発明の心線の場合を示す− 第1図 鬼2図 八 波 斐 [μmn、] 第3図 児4図 波 長 −〕
FIG. 1 is a diagram illustrating an example of an optical fiber core structure. Figures 2 to 4 show the transmission loss characteristic curves of the optical fiber core wire having the structure shown in Figure 1, where the solid line shows the initial characteristic at room temperature, the dotted line shows the temperature rise characteristic at 200C, and the m2 diagram shows the conventional In the case of the cord of the present invention, FIG. 3 shows the case of the cord of the present invention subjected to the high temperature treatment of Example 1, and FIG. 4 shows the case of the cord of the present invention subjected to the high temperature treatment of Example 2. - Fig. 1 Demon 2 Fig. 8 wave [μmn,] Fig. 3 Child 4 Wavelength -]

Claims (1)

【特許請求の範囲】 (11光フアイバ素線の外周に2層以上の被覆を施こし
てなり、その被覆最外層が熱可塑性プラスチックである
光フアイバ心線であって、該素線に1層以上の被覆を施
こした段階において高温に保持する処理を予め施された
ことを特徴とする光フアイバ心線。 (2) 被覆の第1層がシリコン樹脂であり第2層が熱
可塑性プラスチックであって、シリコン樹脂を被覆した
段階で100C以上の高温に保持する処理を予め施こさ
れた特許請求の範囲第(1)項に記載される光フアイバ
心線。 (3) 被覆の第1層がシリコン樹脂であり、第2層が
熱可塑性プラスチックであって、該熱可塑性プラスチッ
ク被覆を施こした後に80C以上の高温に保持する処理
を予め施こされた特許請求の範囲第(11項に記載され
る光フアイバ心線。
[Scope of Claims] (11) An optical fiber core wire formed by applying two or more layers of coating to the outer periphery of an optical fiber strand, the outermost layer of the coating being a thermoplastic plastic; An optical fiber core wire characterized in that it has been previously subjected to a treatment to maintain it at a high temperature at the stage where the above-mentioned coating is applied. (2) The first layer of the coating is made of silicone resin and the second layer is made of thermoplastic plastic. The optical fiber core wire according to claim (1), which has been previously subjected to treatment to be maintained at a high temperature of 100 C or more at the stage of coating with silicone resin. (3) First layer of coating is a silicone resin, the second layer is a thermoplastic, and after applying the thermoplastic plastic coating, a treatment is performed in advance to maintain the thermoplastic at a high temperature of 80C or higher. Optical fiber core as described.
JP59031485A 1984-02-23 1984-02-23 Optical fiber core Pending JPS60176008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59031485A JPS60176008A (en) 1984-02-23 1984-02-23 Optical fiber core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59031485A JPS60176008A (en) 1984-02-23 1984-02-23 Optical fiber core

Publications (1)

Publication Number Publication Date
JPS60176008A true JPS60176008A (en) 1985-09-10

Family

ID=12332566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59031485A Pending JPS60176008A (en) 1984-02-23 1984-02-23 Optical fiber core

Country Status (1)

Country Link
JP (1) JPS60176008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117444A (en) * 1984-07-02 1986-01-25 Hitachi Cable Ltd Manufacture of optical fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312341A (en) * 1976-07-20 1978-02-03 Furukawa Electric Co Ltd:The Improvement of optical fiber characteristic
JPS54116420A (en) * 1978-03-02 1979-09-10 Nippon Telegr & Teleph Corp <Ntt> Reinforcing of optical fiber core wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312341A (en) * 1976-07-20 1978-02-03 Furukawa Electric Co Ltd:The Improvement of optical fiber characteristic
JPS54116420A (en) * 1978-03-02 1979-09-10 Nippon Telegr & Teleph Corp <Ntt> Reinforcing of optical fiber core wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117444A (en) * 1984-07-02 1986-01-25 Hitachi Cable Ltd Manufacture of optical fiber

Similar Documents

Publication Publication Date Title
KR940007341Y1 (en) Fiber optic cannister with compliant base layer
JP4663277B2 (en) Optical fiber and manufacturing method thereof
JPH044988B2 (en)
JPS60176008A (en) Optical fiber core
JP2635475B2 (en) Optical fiber coating forming method
JPH0313563B2 (en)
JPS60204641A (en) Production of core wire of optical fiber
JPS587962B2 (en) Hikari Eyever No Seizouhouhou
JPH0471019B2 (en)
JPS63129035A (en) Production of optical fiber
JPS60186430A (en) Method and apparatus for drawing optical fiber
JP3174537B2 (en) Method for manufacturing flame-retardant optical fiber core
JPS6117444A (en) Manufacture of optical fiber
JPS6110044A (en) Production of fiber for optical transmission
JPS6311549A (en) Production of radiation-resistant optical fiber
JPH01183435A (en) Production of optical fiber
JP2968680B2 (en) Optical fiber manufacturing method
JPS63129039A (en) Production of optical fiber
JPH01157438A (en) Production of coated optical fiber
SU1728834A1 (en) Method of manufacturing fiber optical modules
JP2007063030A (en) Method for manufacturing bare optical fiber, method and apparatus for manufacturing optical fiber strand, and optical fiber strand
JPS63129040A (en) Production of optical fiber
JPS63195144A (en) Production of optical fiber
JPH08188450A (en) Colored core fiber of optical fiber and its production
JP3960896B2 (en) Optical fiber manufacturing method