JPS6278126A - Production of optical fiber and apparatus therefor - Google Patents

Production of optical fiber and apparatus therefor

Info

Publication number
JPS6278126A
JPS6278126A JP60216119A JP21611985A JPS6278126A JP S6278126 A JPS6278126 A JP S6278126A JP 60216119 A JP60216119 A JP 60216119A JP 21611985 A JP21611985 A JP 21611985A JP S6278126 A JPS6278126 A JP S6278126A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
preform
furnace
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60216119A
Other languages
Japanese (ja)
Other versions
JPH062603B2 (en
Inventor
Ichiro Yoshida
吉田 伊知朗
Shigeru Ito
茂 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60216119A priority Critical patent/JPH062603B2/en
Publication of JPS6278126A publication Critical patent/JPS6278126A/en
Publication of JPH062603B2 publication Critical patent/JPH062603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/14Re-forming fibres or filaments, i.e. changing their shape
    • C03B37/15Re-forming fibres or filaments, i.e. changing their shape with heat application, e.g. for making optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/56Annealing or re-heating the drawn fibre prior to coating

Abstract

PURPOSE:To obtain optical fibers having little defects and causing slight deterioration in characteristic on exposure to radiation and in hydrogen atmosphere, by drawing a preform into a fiber of a constant wire diameter and heat-treating the fiber before coating with a resin. CONSTITUTION:The heated and softened tip of a preform 1 is drawn into a wire under a constant tension while moving the preform 1 in the direction of a heating and melting furnace 4 by a moving device 3 and formed into a fiber 2 of a constnat wire diameter, which is then introduced into a heat-treating furnace 10 and annealed to remove defects therefrom. The resultant fiber 2 is then introduced into a coating unit 5 and subjected to resin coating. Thereby, the fiber 2 is heat-treated before the resin coating and defects of the optical fiber 2 can be removed without causing deterioration in the synthetic resin. When the temperature on the side of the heating and melting furnace 4 is in creased and the temperature on the outlet side is decreased, the annealing effect can be further improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、光ファイバの製造方法および装置の改良に
係り、更に詳しくは欠陥が少なく放射線被曝や水素雰囲
気下においても特性劣化が少ない光ファイバの製造方法
および装置に関する。ただし、光ファイバ製造は、通常
はプリフォームの製造工程と、得られたプリフォームを
線引きする工程の両方を含めた意味であるが、本明細書
においては、プリフォームを線引きして光ファイバにす
る工程のみに限定して使用することとする。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to improvements in optical fiber manufacturing methods and equipment, and more specifically to the improvement of optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more particularly, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment, and more specifically, to improve optical fiber manufacturing methods and equipment. The present invention relates to a manufacturing method and apparatus. However, optical fiber manufacturing usually includes both the preform manufacturing process and the process of drawing the obtained preform, but in this specification, it refers to drawing the preform to make an optical fiber. It shall be used only in the processes that involve.

〈従来の技術) 光ファイバは、銅線ケーブルに比べて小型・軽量・低伝
送損失、高帯域伝送が可能のため、従来の銅線ケーブル
に代って次第に通信路線に取り入れられてきている。
<Conventional Technology> Optical fibers are smaller, lighter, lighter, have lower transmission loss, and are capable of high-bandwidth transmission than copper wire cables, so they are gradually being incorporated into communication lines in place of conventional copper wire cables.

ところが光ファイバは、γ線被曝下や水素雰囲気の下に
おいては伝送損失が増大することが知られている。また
、この伝送損失はガラスや石英中の欠陥に基因するもの
であることが知られており、欠陥が少なければ伝送損失
は少なくなる。
However, it is known that the transmission loss of optical fibers increases when exposed to gamma rays or in a hydrogen atmosphere. Furthermore, it is known that this transmission loss is caused by defects in glass or quartz, and the fewer defects there are, the lower the transmission loss will be.

光ファイバ中に生ずる欠陥のうち代表的なものとして酸
素空孔に基づ< E’センターがあり、この欠陥は光フ
ァイバの線引、放射線被曝によって誘発される。モして
E°センターが発生すると 0.2ル附近に吸収ピーク
が現われ、0.5〜0.8μの波長帯に伝送損失が生ず
る。
A typical defect occurring in an optical fiber is an <E' center based on oxygen vacancies, and this defect is induced by drawing the optical fiber or by exposure to radiation. When an E° center occurs, an absorption peak appears around 0.2μ, and transmission loss occurs in the wavelength range of 0.5 to 0.8μ.

光ファイバにおけるE′センターの発生および消滅につ
いて電子通信学会発行の、昭和80年電子通信学会総会
全国大講演会の講演予稿集1182.1183において
日々野、花房および山水は、E″センター高温で発生し
、線引き急冷過程において固定し熱処理により消滅でき
ることを報告している。
On the occurrence and disappearance of E' centers in optical fibers, in the Proceedings of the National Conference of the Institute of Electronics and Communication Engineers, published by the Institute of Electronics and Communication Engineers, 1182.1183, Hinino, Hanabusa, and Sansui state that E' centers occur at high temperatures. reported that it is fixed during the wire drawing and quenching process and can be eliminated by heat treatment.

従来の光ファイバ製造方法は第2図に示すように、移動
装置3に固定したプリフォームlを一定速度で降下し、
加熱炉4でプリフォーム1の先端を加熱軟化させてファ
イバ2に延伸し、コーティングユニット5およびキャプ
スタン6を通して一定張力で巻き取り装置7で巻き取る
ようにしていた。第2図中のキャプスタン6線径測定器
9、線径制御回路8および巻き取り装置7により。
As shown in FIG. 2, the conventional optical fiber manufacturing method lowers a preform l fixed to a moving device 3 at a constant speed.
The tip of the preform 1 was heated and softened in a heating furnace 4 and drawn into a fiber 2, passed through a coating unit 5 and a capstan 6, and wound up with a winding device 7 at a constant tension. By the capstan 6 wire diameter measuring device 9, wire diameter control circuit 8 and winding device 7 in FIG.

ファイバ2を一定張力で巻き取る手段を構成しており、
ファイバ2の線径は線径測定器9の出力信号により、線
径制御回路8で設定値と比較し、その差信号を制御信号
としてキャプスタン6に送り、ファイバ2に加える張力
を制御し、一定線径となるように巻き取っておった。
It constitutes a means for winding the fiber 2 with a constant tension,
The wire diameter of the fiber 2 is compared with a set value in the wire diameter control circuit 8 using the output signal of the wire diameter measuring device 9, and the difference signal is sent to the capstan 6 as a control signal to control the tension applied to the fiber 2. The wire was wound to have a constant wire diameter.

(発明が解決しようとする問題点〉 しかし、第2図に示す従来の光ファイバ製造方法ないし
装置を、上述した欠陥のない光ファイバの製造に使用し
ようとして、処理時間を短かくするため、熱処理温度を
高く(たとえば200℃以上)すると、合成樹脂の劣化
がおこる不具合があった。
(Problems to be Solved by the Invention) However, in an attempt to use the conventional optical fiber manufacturing method or apparatus shown in FIG. When the temperature is raised (for example, 200° C. or higher), there is a problem in that the synthetic resin deteriorates.

また、高温で熱処理するため1合成樹脂を除いた光ファ
イバは極めて傷つきやすく、傷ついた光ファイバは僅か
な外力が加わっても折れて了う欠点があった。
Furthermore, since the optical fibers are heat-treated at high temperatures, the optical fibers that do not contain one synthetic resin are extremely easily damaged, and the damaged optical fibers have the disadvantage of breaking even when a slight external force is applied.

この発明は、このような光ファイバ製造方法の欠点を除
くためになされたものであって、欠陥が少なく、放射線
被曝下や水素雰囲気下においても特性劣化の少ない光フ
ァイバ製造方法および装置を提供しようとするものであ
る。
The present invention has been made to eliminate the drawbacks of such optical fiber manufacturing methods, and aims to provide an optical fiber manufacturing method and apparatus that has fewer defects and exhibits less characteristic deterioration even under radiation exposure or hydrogen atmosphere. That is.

(問題点を解決するための手段) 上述した問題点を解決するため、この発明の光ファイバ
製造方法は、プリフォームを溶融加熱炉方向に移動しな
がら、加熱軟化プリフォーム先端を一定張力で線引きし
て一定線径のファイバに形成すると共に、当該ファイバ
に樹脂コーティングしてから巻き取る光ファイバの製造
方法において、一定線径に線引きされたファイバを樹脂
コーティングする前に熱処理することを特徴とするもの
である。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the optical fiber manufacturing method of the present invention draws the tip of the heat-softened preform with constant tension while moving the preform toward the melting and heating furnace. A method for manufacturing an optical fiber in which the fiber is formed into a fiber having a constant diameter, the fiber is coated with a resin, and then wound, the fiber being drawn to a constant diameter is heat treated before being coated with the resin. It is something.

また、光ファイバ製造装置は、プリフォームを固持し一
定方向に移動するプリフォーム移送手段と、プリフォー
ムの移送方向に配設された加熱溶融炉と、溶融加熱炉に
よって加熱軟化されたプリフォーム先端を一定張力で一
定線径のファイバに線引きする巻き取り手段と、線引き
されたファイバ樹脂コーティングするコーティングユニ
ー/ トからなる光ファイバ製造装置において、溶融加
熱炉とコーティングユニットとの間に線引きされたファ
イバの熱処理炉を設けたことを特徴とするものである。
The optical fiber manufacturing equipment also includes a preform transfer means that holds the preform and moves it in a fixed direction, a heating melting furnace disposed in the preform transfer direction, and a tip of the preform that is heated and softened by the melting heating furnace. In an optical fiber manufacturing device, the drawn fiber is connected between the melting furnace and the coating unit. It is characterized by being equipped with a heat treatment furnace.

〈作 用) このような構成になっているから、この発明の光ファイ
バ製造方法あるいは装置によると、加熱軟化したプリフ
ォーム先端から線引きされたファイバは樹脂コーティン
グされる前に処理炉によって7ニールされ欠陥を除かれ
てから、樹脂コーティングされるから樹脂劣化の不具合
もなくなり、放射線被曝下や水素雰囲気下で使用しても
特性劣化の少ない光ファイバを製造することができる。
(Function) With such a configuration, according to the optical fiber manufacturing method or apparatus of the present invention, the fiber drawn from the tip of the heated and softened preform is subjected to seven anneals in a processing furnace before being coated with resin. Since defects are removed and then resin coating is applied, there is no problem of resin deterioration, and it is possible to manufacture an optical fiber with little characteristic deterioration even when used under radiation exposure or hydrogen atmosphere.

〈実施例〉 つぎに、この発明にかかる光ファイバ製造装置の一実施
例について説明し、併せて光ファイバの製造方法につい
て説明する。
<Example> Next, an example of the optical fiber manufacturing apparatus according to the present invention will be described, and a method for manufacturing the optical fiber will also be described.

第1図は実施例の光ファイバ製造1置の概略構成図を示
し、3は移動装置、4は溶融加熱炉、5は合成樹脂のコ
ーティングユニット、6はキャプスタン、7は巻き取り
装置、8は線径制御回路。
FIG. 1 shows a schematic diagram of an optical fiber manufacturing plant according to an embodiment, in which 3 is a moving device, 4 is a melting furnace, 5 is a synthetic resin coating unit, 6 is a capstan, 7 is a winding device, and 8 is the wire diameter control circuit.

9は線径測定器、lOは熱処理炉である。9 is a wire diameter measuring device, and IO is a heat treatment furnace.

第1図の光ファイバ製造装置と、第2図に示す従来の光
ファイバ製造装置との相違は、第2図の装置は溶融加熱
炉4で加熱軟化したプリフォーム先端に一定の張力を加
えて線引して形成されたファイバ2を直接合成樹脂のコ
ーティングユニット5に延伸する構成になっているのに
比べて、第1図の装置はファイバ2を合成樹脂のコーテ
ィングユニット5に導く前に、−足熱処理炉lOを通し
てアニール(anneal) L 、欠陥を除いてから
コーティングユニット5に導くようにした点である。
The difference between the optical fiber manufacturing device shown in FIG. 1 and the conventional optical fiber manufacturing device shown in FIG. 2 is that the device shown in FIG. In contrast to the structure in which the fiber 2 formed by drawing is drawn directly to the synthetic resin coating unit 5, the apparatus shown in FIG. - The foot is passed through a heat treatment furnace 1O to be annealed (L) to remove defects before being introduced into the coating unit 5.

本装置によって光ファイバを製造する際に使用したプリ
フォームlは純シリカコア、フッ素ドープクラッドのも
のを使用した。熱処理炉10の加熱温度は400℃にし
、熱処理炉内のファイバの長さは約2mとし、線引き速
度30m/sin、で得られた光ファイバをAとした。
The preform l used in manufacturing an optical fiber with this apparatus had a pure silica core and a fluorine-doped cladding. The heating temperature of the heat treatment furnace 10 was set to 400° C., the length of the fiber in the heat treatment furnace was approximately 2 m, and the optical fiber obtained at a drawing speed of 30 m/sin was designated as A.

また、熱処理炉lOを使用しない以外は上記と同一の条
件で光ファイバBを作製した。
Further, optical fiber B was produced under the same conditions as above except that the heat treatment furnace IO was not used.

そして、上記A、B二種の光ファイバに、105R/h
のγ線を1時間照射した後、0.851Lでの損失増を
測定したところ、光ファイバAは8 dB/に層である
のに対し、Bの方は10dB八鵬であり、熱処理するこ
とにより欠陥が少く、特性劣化が少いことが判った。
Then, 105R/h is added to the above two types of optical fibers A and B.
After being irradiated with γ-rays for 1 hour, we measured the loss increase at 0.851L, and found that optical fiber A had a layer thickness of 8 dB/layer, while optical fiber B had a layer thickness of 10 dB/layer, indicating that heat treatment is not necessary. It was found that there were fewer defects and less deterioration of characteristics.

第1図の装置の熱処理炉lOは温度勾配をつけず、均−
炉のものについて例示したが、たとえば、熱処理炉lO
を入口側(溶融加熱炉側)で1800°C程度、出口側
(コーティングユニット5側)を500℃程度にし、中
間を入口側から出口側に向かって線形の温度勾配分布を
有するようにヒータを炉体に配設すると、より一層の効
果が得られる。もちろん上記温度勾配の条件については
、最適条件を求めて適用した方がよいことは言うまでも
ない。
The heat treatment furnace lO of the apparatus shown in Fig. 1 has no temperature gradient and is uniform.
Although the example is given for a furnace, for example, a heat treatment furnace lO
The inlet side (melting heating furnace side) is set to about 1800°C, the outlet side (coating unit 5 side) is set to about 500°C, and the heater is set so that there is a linear temperature gradient distribution from the inlet side to the outlet side in the middle. When placed in the furnace body, even greater effects can be obtained. Of course, it goes without saying that it is better to find and apply the optimum temperature gradient conditions.

また、熱処理炉lOとコーティングユニット5間間隔が
狭い場合は、そこで冷却窒素を吹きつけるなどして、フ
ァイバ2を冷やす方がコーティングは容易となるので好
ましい。
Furthermore, if the distance between the heat treatment furnace 1O and the coating unit 5 is narrow, it is preferable to cool the fiber 2 by blowing cooling nitrogen there, because coating becomes easier.

熱処理炉を上述したような温度勾配を与えるのは、アニ
ール温度が高い時は熱平衡状態に早く近づくが、熱平衡
状態での欠陥数は多い。
The reason why the heat treatment furnace is given the above-mentioned temperature gradient is that when the annealing temperature is high, the thermal equilibrium state is quickly approached, but the number of defects in the thermal equilibrium state is large.

しかし、アニール温度が低いときは熱平衡状態での欠陥
数は少いが熱平衡状態に近付くのが遅い、したがって線
引き速度と熱処理炉中のファイバの長さが一定でも、溶
融加熱炉側か高温で、コーティングユニット側が低温と
なるような温度勾配をつけておくことにより、アニール
条件を最適条件にすることができるからである。
However, when the annealing temperature is low, the number of defects in the thermal equilibrium state is small, but it is slow to approach the thermal equilibrium state.Therefore, even if the drawing speed and the length of the fiber in the heat treatment furnace are constant, at a high temperature on the melting furnace side, This is because by creating a temperature gradient such that the coating unit side is at a low temperature, the annealing conditions can be optimized.

ファイバの位置(りにおける欠陥密度n (菫)で表わ
される。ただし、 1 :熱処理炉中の位置 菫。 :熱処理炉の溶融加熱炉よりのXの値、xez熱
処理炉のコーティングユニットよりのXの値。
It is expressed as the defect density n (violet) at the position of the fiber. However, 1: the position in the heat treatment furnace. : the value of X from the melting heating furnace of the heat treatment furnace, the value of X from the coating unit of the xez heat treatment furnace value.

nQ:XQにおけるファイバの欠陥密度、E、:欠陥生
成の活性化エネルギ、 Ed:欠陥消滅の活性化エネルギ。
nQ: fiber defect density in XQ, E: activation energy for defect generation, Ed: activation energy for defect disappearance.

N :欠陥と欠陥の前駆体の密度の和、T(り: ファ
イバの位置Xでの温度、k :ポルツマン定数 C:比例定数である。
N: sum of densities of defects and defect precursors, T: temperature at position X of the fiber, k: Portzmann's constant, C: proportionality constant.

しかし、上記式にnが右辺にも入っているため簡単には
求まらないが、nはXとT(りの関数として表わすこと
ができる。
However, since n is included in the right-hand side of the above equation, it cannot be easily determined, but n can be expressed as a function of X and T(ri).

したがって、n (!e)が最小となるようなT(x)
をを与えれば、それが最適の温度分布である。
Therefore, T(x) such that n (!e) is minimum
If we give , then that is the optimal temperature distribution.

〈発明の効果) 以上の説明から明らかなように、この発明にかかる光フ
ァイバ製造方法又は装置によると、合成樹脂の劣化をお
こすことなく、光ファイバをアニールし、ファイバ中の
欠陥を除くことができ。
<Effects of the Invention> As is clear from the above description, according to the optical fiber manufacturing method or apparatus according to the present invention, it is possible to anneal an optical fiber and remove defects in the fiber without causing deterioration of the synthetic resin. I can do it.

放射線被曝又は水素雰囲気下のおいての特性劣化の少な
い光ファイバを製造することができる。
It is possible to manufacture an optical fiber with less characteristic deterioration when exposed to radiation or under a hydrogen atmosphere.

特に、熱処理炉に溶融加熱炉側か温度が高く、コーティ
ングユニット側温度が低くなるように温度勾配を与えて
おくと、光ファイバの7ニール効果を更に効果的ならし
めることができる。
In particular, if a temperature gradient is provided in the heat treatment furnace so that the temperature is higher on the melting furnace side and lower on the coating unit side, the 7-neel effect of the optical fiber can be made even more effective.

また、熱処理炉のアニール温度は室温から溶融加熱炉温
度近くまでの任意の温度に選ぶことができる。アニール
時間は熱処理炉内にあるファイバの長さと線引き速度で
決まるので、望む値に設定することができる。
Further, the annealing temperature of the heat treatment furnace can be selected to be any temperature from room temperature to near the melting furnace temperature. Since the annealing time is determined by the length of the fiber in the heat treatment furnace and the drawing speed, it can be set to a desired value.

また、熱処理炉の長さは通常1〜5m程度であるが、連
続処理できるので、光ファイバの生産性も良い。
Further, although the length of the heat treatment furnace is usually about 1 to 5 m, continuous treatment is possible, so the productivity of optical fibers is also good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の光ファイバ製造装置の概略
構成図、第2図は従来の光ファイバ製造装置の概略構成
図である。 図面中、l・・・プリフォーム、 2・・・ファイバ、 3・・・移動装置、 4・・・溶融加熱炉、 5・・・コーティングユニット、 6・・・キャプスタン、 7・・・巻き取り装置、 8・・・線径制御回路、 9・・・線径測定器、 10・・・熱処理炉。
FIG. 1 is a schematic diagram of an optical fiber manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a conventional optical fiber manufacturing apparatus. In the drawings, l... Preform, 2... Fiber, 3... Moving device, 4... Melting heating furnace, 5... Coating unit, 6... Capstan, 7... Winding removing device, 8... wire diameter control circuit, 9... wire diameter measuring device, 10... heat treatment furnace.

Claims (3)

【特許請求の範囲】[Claims] (1)プリフォームを溶融加熱炉方向に移動させながら
、加熱軟化プリフォーム先端を一定張力で線引きして一
定線径のファイバに形成すると共に、当該ファイバに樹
脂コーティングしてから巻き取る光ファイバの製造方法
において、一定線径に線引きされたファイバを樹脂コー
ティングする前に熱処理することを特徴とする光ファイ
バの製造方法。
(1) While moving the preform toward the melting and heating furnace, the tip of the heated and softened preform is drawn with a constant tension to form a fiber with a constant diameter, and the fiber is coated with resin and then wound into an optical fiber. A method for manufacturing an optical fiber, characterized in that the fiber drawn to a constant diameter is heat treated before being coated with a resin.
(2)プリフォームを固持し一定方向に移動するプリフ
ォーム移送手段と、プリフォームの移送方向に配設され
た溶融加熱炉と、溶融加熱炉によって加熱軟化されたプ
リフォーム先端を一定張力で一定線径のファイバに線引
する巻き取り手段と、線引きされたファイバに樹脂コー
ティングするコーティングユニットから成る光ファイバ
製造装置において、溶融加熱炉とコーティングユニット
との間に線引きされたファイバの熱処理炉を設けたこと
を特徴とする光ファイバ製造装置。
(2) A preform transfer means that holds the preform and moves it in a fixed direction, a melting heating furnace arranged in the direction of transferring the preform, and a preform tip heated and softened by the melting heating furnace with a constant tension. In an optical fiber manufacturing apparatus comprising a winding means for drawing a fiber of a certain diameter and a coating unit for coating the drawn fiber with a resin, a heat treatment furnace for the drawn fiber is provided between the melting heating furnace and the coating unit. An optical fiber manufacturing device characterized by:
(3)前記熱処理炉は溶融加熱炉側を高温に、コーティ
ングユニット側は低温に温度勾配を与えたものであるこ
とを特徴とする特許請求の範囲第(2)項記載の光ファ
イバ製造装置。
(3) The optical fiber manufacturing apparatus according to claim (2), wherein the heat treatment furnace has a temperature gradient such that the melting furnace side is heated to a high temperature and the coating unit side is heated to a low temperature.
JP60216119A 1985-10-01 1985-10-01 Method and apparatus for manufacturing optical fiber Expired - Lifetime JPH062603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60216119A JPH062603B2 (en) 1985-10-01 1985-10-01 Method and apparatus for manufacturing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60216119A JPH062603B2 (en) 1985-10-01 1985-10-01 Method and apparatus for manufacturing optical fiber

Publications (2)

Publication Number Publication Date
JPS6278126A true JPS6278126A (en) 1987-04-10
JPH062603B2 JPH062603B2 (en) 1994-01-12

Family

ID=16683544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60216119A Expired - Lifetime JPH062603B2 (en) 1985-10-01 1985-10-01 Method and apparatus for manufacturing optical fiber

Country Status (1)

Country Link
JP (1) JPH062603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887319A1 (en) * 1997-06-28 1998-12-30 Alcatel Method and apparatus for regulating the thickness of a coating of an optical fibre

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926939A (en) * 1982-08-07 1984-02-13 Dainichi Nippon Cables Ltd Preparation of optical fiber having resistance to radiation
JPS60221337A (en) * 1984-04-12 1985-11-06 Fujikura Ltd Preparation of optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926939A (en) * 1982-08-07 1984-02-13 Dainichi Nippon Cables Ltd Preparation of optical fiber having resistance to radiation
JPS60221337A (en) * 1984-04-12 1985-11-06 Fujikura Ltd Preparation of optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887319A1 (en) * 1997-06-28 1998-12-30 Alcatel Method and apparatus for regulating the thickness of a coating of an optical fibre

Also Published As

Publication number Publication date
JPH062603B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
JP4990430B2 (en) Cooling method of optical fiber during drawing
JP2002187733A (en) Method for manufacturing optical fiber preform and method for manufacturing optical fiber
JP2005162610A5 (en)
JP2006058494A (en) Optical fiber strand and its manufacturing method
JP4482954B2 (en) Optical fiber manufacturing method
RU2128630C1 (en) Method of drawing optical fiber and device for its embodiment
JP4302367B2 (en) Optical fiber drawing method and drawing apparatus
JPS6278126A (en) Production of optical fiber and apparatus therefor
JPH0471019B2 (en)
JPS60186430A (en) Method and apparatus for drawing optical fiber
US6935139B2 (en) Method of manufacturing optical fiber
JPS63129035A (en) Production of optical fiber
US5392375A (en) Glass having refractive index distribution
JPH04224144A (en) Manufacture of hermetically-coated fiber and its device thereof
JPS62119136A (en) Method and apparatus for drawing optical fiber
JPH07107568B2 (en) Method of manufacturing image fiber
JP2004256367A (en) Manufacturing method of optical fiber strand
JPH06271330A (en) Production of optical fiber
JPS60204641A (en) Production of core wire of optical fiber
JPS63129040A (en) Production of optical fiber
JP2002234751A (en) Method for spinning optical fiber
JPS63129039A (en) Production of optical fiber
JPS6334504A (en) Optical fiber
SU1728834A1 (en) Method of manufacturing fiber optical modules
JPS6311549A (en) Production of radiation-resistant optical fiber