JPS6017595B2 - Treatment method for wastewater containing oxidizable substances - Google Patents

Treatment method for wastewater containing oxidizable substances

Info

Publication number
JPS6017595B2
JPS6017595B2 JP15026681A JP15026681A JPS6017595B2 JP S6017595 B2 JPS6017595 B2 JP S6017595B2 JP 15026681 A JP15026681 A JP 15026681A JP 15026681 A JP15026681 A JP 15026681A JP S6017595 B2 JPS6017595 B2 JP S6017595B2
Authority
JP
Japan
Prior art keywords
wastewater
copper
iron powder
hydrogen peroxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15026681A
Other languages
Japanese (ja)
Other versions
JPS5851982A (en
Inventor
昭 田中
久和 地引
寛一 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP15026681A priority Critical patent/JPS6017595B2/en
Publication of JPS5851982A publication Critical patent/JPS5851982A/en
Publication of JPS6017595B2 publication Critical patent/JPS6017595B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は被酸化性物質含有排水、特に写真排水例えば現
像液や定着液あるいは塗料排液や染色排液などの排水中
の被酸化性物質を酸化分解して浄化し、その高いCOD
値(化学的酸素要求量)を有する成分を容易に除去する
ことができる新規な処理方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention purifies oxidizable substances in wastewater containing oxidizable substances, particularly photographic wastewater, such as developer and fixer liquids, paint wastewater, and dyeing wastewater, by oxidizing and decomposing them. , its high COD
The object of the present invention is to provide a new treatment method that can easily remove components having a chemical oxygen demand.

近年、水質総量規制による汚濁防止目標としてCOD値
が定められ、その放流規制が次第に厳しくなって釆てお
り、COD値の充分な除去処理が急務となってている。
In recent years, the COD value has been set as a pollution prevention target under the total water quality control, and the discharge regulations have become increasingly strict, making it urgent to sufficiently remove the COD value.

従来、被酸化性物質含有排水の浄化方法としては、それ
が高濃度のときは次亜塩素酸塩による加熱酸化分解や電
解方法等があるが、長時間の加熱など処理に長時間を要
し、充分な分解除去も困難であり、また低濃度の場合に
は無機合成吸着剤による方法や活性炭吸着法、生物によ
る処理法、膿分解法、酸化法(オゾン、過酸化水素、塩
素、紫外線、超音波などの単独又は組合せによる)など
が行われているが、特に濃度が一定しないCOD値を含
む排液についてはこれらの適用は難しく、そのまま或い
は希釈して放流しているのが現状である。例えば医療機
関におけるX線写真の活用が非常に増加しており、これ
らの写真排水には現像液と定着液があり、現像液には現
像主薬のメトール、ハイドロキノン、フエニドンなどの
ほかP−フエニレレンジアミンの誘導体、フェノールあ
るいはナフトール誘導体、亜硫酸塩、アルカリ、ホルム
アルデヒド、ヒドロキシルアミン塩などを含んで数万か
ら10万脚のCOD値を有し、また定着液には主楽のチ
オ硫酸塩のほか亜硫酸塩、酢酸、ほう酸、明ばんを含み
、数万脚のCOD値を有し、かつ銀イオンを数千脚含有
している。
Conventionally, methods for purifying wastewater containing oxidizable substances include thermal oxidation decomposition using hypochlorite and electrolysis when the concentration of oxidizable substances is high; , sufficient decomposition and removal is difficult, and in the case of low concentrations, methods using inorganic synthetic adsorbents, activated carbon adsorption methods, biological treatment methods, pus decomposition methods, oxidation methods (ozone, hydrogen peroxide, chlorine, ultraviolet rays, Ultrasonic waves, etc. alone or in combination) are being used, but these methods are difficult to apply, especially for wastewater containing COD values with inconsistent concentrations, and currently they are discharged as is or after dilution. . For example, the use of X-ray photography in medical institutions has increased significantly, and these photographic wastewaters contain a developer and a fixer. It contains diamine derivatives, phenol or naphthol derivatives, sulfites, alkalis, formaldehyde, hydroxylamine salts, etc., and has a COD value ranging from tens of thousands to 100,000, and the fixing solution contains thiosulfate as well as the main ingredient. It contains sulfite, acetic acid, boric acid, and alum, has a COD value of tens of thousands of feet, and contains several thousand feet of silver ions.

また、染色排水には染料の種類によって例えばモノアゾ
系、アントラキノン系、フタロシアニン系等があり、そ
の他に中和剤、洗剤、柔軟剤、精練、漂白剤等が各工程
から入って非常に複雑な組成の混合排水となっている。
In addition, depending on the type of dye, for example, monoazo-based, anthraquinone-based, phthalocyanine-based dyes, etc. are used in dyeing wastewater, and in addition, neutralizing agents, detergents, softeners, scouring agents, bleaching agents, etc. are used in each process, resulting in a very complex composition. It is a mixed wastewater.

さらに羊毛のクロム嬢染染色においては排水中に六価ク
ロムが存在することもあり、COD値も3000脚と高
い濃度のものもあって、脱色と合せて処理する必要があ
り、非常に処理困難な排水の一つである。さらに、塗装
排水にはその原料により油性塗料、酒精塗料、セルロー
ス塗料、合成樹脂塗料、水性塗料等の製造排液があるが
、特に水溶性の水性塗料が問題となり、そのCOD値も
2700跡以上ともなる。
Furthermore, when dyeing wool with chromium, hexavalent chromium may be present in the wastewater, and the COD value can be as high as 3000, making treatment difficult as it must be treated in conjunction with bleaching. This is one of the major types of wastewater. Furthermore, paint wastewater includes manufacturing wastewater from oil-based paints, alcoholic paints, cellulose paints, synthetic resin paints, water-based paints, etc., depending on the raw material, but water-soluble water-based paints are particularly problematic, and their COD values are over 2,700 traces. It also becomes.

このように、排水中のCOD値は被酸化怪物の存在によ
るもので、ある種の酸化剤で酸化分解処理すればよいが
、その被酸化性物質の種類や含有量によって酸化剤の種
類や量が問題になり、特に写真擬液や消毒排液中の被酸
化性物質は非常に酸化されにくく、またもの含有量も多
くてしかもその量が一定していないのが普通である。
In this way, the COD value in wastewater is due to the presence of oxidizable monsters, which can be oxidized and decomposed using a certain type of oxidizing agent, but the type and amount of oxidizing agent depends on the type and content of the oxidizable substance. In particular, oxidizable substances in photographic simulated liquids and disinfectant waste liquids are extremely difficult to oxidize, and usually contain large amounts of substances, and the amount is not constant.

第一鉄塩と過酸化水素との混合液は古くからFento
n試薬((Tmns Fardey SM.,47.4
62(1951年),同47.591(1951年)に
その報告がある。
A mixture of ferrous salt and hydrogen peroxide has been known as Fento since ancient times.
n reagent ((Tmns Fardey SM., 47.4
62 (1951) and 47.591 (1951).

))という強力な酸化剤として知られているが、高濃度
被酸化性物質含有排液を酸化処理するにはCOD値の濃
度によって必要な第一鉄塩と過酸化水素の量が問題とな
り、高度に除去するには多量の試薬とかなり長い処理時
間を必要としなければならない。従って、高度の処理が
要求される排水処理では、これらの試薬を単位で使用す
ると効率が悪く、反応速度が遅すぎる等の欠点があるの
で、その対策として銅イオンと第一鉄イオンを触媒とし
て酸化分解反応を促進させる方法も提案されているが、
過酸化水素に第一鉄イオンを添加させる場合の反応熱に
よる突鍵の危険があって多量の処理は難かしく、鋼イオ
ンをもコントロールするとなると非常に難かしい。
)) is known as a strong oxidizing agent, but in order to oxidize wastewater containing highly concentrated oxidizable substances, the amount of ferrous salt and hydrogen peroxide required depends on the concentration of COD value. A high degree of removal must require large amounts of reagents and fairly long processing times. Therefore, in wastewater treatment that requires advanced treatment, using these reagents in units has disadvantages such as inefficiency and slow reaction rate, so as a countermeasure, copper ions and ferrous ions are used as catalysts. Methods to promote oxidative decomposition reactions have also been proposed, but
When ferrous ions are added to hydrogen peroxide, it is difficult to process a large amount due to the risk of explosion due to reaction heat, and it is extremely difficult to control steel ions as well.

そして、第一鉄イオンの添加量を決めるにはあらかじめ
排水中のCOD値を知る必要があり、連続処理などにお
いてはさらに困難となる。本発明は上記のような従来の
過酸化水素を使用する排水処理技術や過酸化水素と第一
鉄イオンあるいは遷移金属イオンを併用する排水処理技
術の問題点を解決し、低濃度から高濃度の被酸化性物質
を酸化分解除去し、同時に含まれている銀や六価クロム
等の金属イオンをも同時に除去することができる画期的
な排水処理方法を提供するものである。
In order to determine the amount of ferrous ions to be added, it is necessary to know the COD value in the wastewater in advance, which becomes even more difficult in continuous treatment. The present invention solves the above-mentioned problems with conventional wastewater treatment technology that uses hydrogen peroxide and wastewater treatment technology that uses hydrogen peroxide and ferrous ions or transition metal ions. The present invention provides an innovative wastewater treatment method that can remove oxidizable substances by oxidative decomposition and simultaneously remove contained metal ions such as silver and hexavalent chromium.

すなわち、本発明は被酸化性物質含有排水の母を調整し
た後、触媒として鋼被膜鉄粉を添加して燈辞した後、過
酸化水素を連続的に加えて酸化分解を行い、反応終了後
アルカリ剤を加えてpH8以上として沈殿物をつくり炉
過分離する方法である。
That is, in the present invention, after preparing a base of wastewater containing oxidizable substances, adding steel-coated iron powder as a catalyst and extinguishing it, hydrogen peroxide is continuously added to carry out oxidative decomposition, and after the reaction is completed, This is a method in which an alkaline agent is added to raise the pH to 8 or higher to form a precipitate, followed by over-separation in a furnace.

本発明の特長は触媒として銅被膜鉄粉を用いるところに
あり、鉄粉の反応を制御し、銅も同時にコントロールで
きるようにしているのである。
The feature of the present invention lies in the use of copper-coated iron powder as a catalyst, which allows the reaction of the iron powder to be controlled and the copper to be controlled at the same time.

この場合、銅の鉄粉表面への被膜の割合によって反応の
可否が左右され、また鉄粉の粒度すなわち表面積が処理
効率に大きく影響し、さらに銅の添加量により過酸化水
素水の量を減少させることができる上、濃度の低い排水
については反応終了後も鉄粉は完全に溶解せずに残って
いるためにアルカリ剤が少なくて済み、さらに沈降助剤
の役目を果して炉過性も優れている。本発明に使用する
銅被膜鉄粉について各種の鉄粉に銅の割合を変えて被膜
させて排液処理を行った結果、鉄粉は一200heah
60%以上の低密度鉄分が良く、これに約10%の銅を
被膜した鋼被膜鉄粉が排液の全濃度領域において特に良
好である結果を示した。
In this case, the rate of the reaction depends on the proportion of the copper film on the surface of the iron powder, and the grain size or surface area of the iron powder has a large effect on the processing efficiency, and the amount of hydrogen peroxide solution can be reduced depending on the amount of copper added. In addition, for low-concentration wastewater, the iron powder remains undissolved even after the reaction is complete, so less alkaline agent is required, and it also acts as a settling aid and has excellent furnace filtration properties. ing. Regarding the copper-coated iron powder used in the present invention, as a result of coating various iron powders with different proportions of copper and performing drainage treatment, the iron powder was 1200heah
A low-density iron content of 60% or more is good, and steel-coated iron powder obtained by coating this with about 10% copper showed particularly good results in the entire concentration range of the waste liquid.

第一鉄イオン又は金属鉄や銅イオン又は金属鋼を添加し
て被酸化怪物費含有排水を処理する方法は公知であるが
、本発明で使用する鋼被膜鉄粉は特殊鉄粉の表面に一定
割合の銅を被膜したもので、触媒の添加量の割合や反応
面でも異なり非常に有利に作用するのである。
The method of treating wastewater containing oxidized metal by adding ferrous ions, metallic iron, copper ions, or metallic steel is known, but the steel-coated iron powder used in the present invention is fixed on the surface of the special iron powder. They are coated with a certain amount of copper, and have very advantageous effects depending on the amount of catalyst added and the reaction.

以下、本発明についてさらに詳述する。The present invention will be described in further detail below.

本発明における被酸化怪物費の酸化分解除去機構につい
て説明すると、被酸化性物質含有排水のpHを2〜5(
好ましくは2〜3)に調整後、鋼被膜鉄粉を添加すると
まず銅が優先的に溶解し、次に鉄粉が溶けて第一鉄イオ
ンが存在する。
To explain the oxidative decomposition removal mechanism of oxidizable substances in the present invention, the pH of wastewater containing oxidizable substances is adjusted to 2 to 5 (
Preferably, after adjusting to 2 to 3), when steel-coated iron powder is added, copper is preferentially dissolved first, then iron powder is dissolved, and ferrous ions are present.

銅イオンと鉄粉が去存した場合の反応はイオン化頭向の
差により次の反応を生じる。
When copper ions and iron powder remain, the following reaction occurs due to the difference in ionization head direction.

Cぜ+十Fe→Fe2十十Cu ・
・・‘1ーこの反応は非常に速く、鋼イオンは金属銅に
還元され、鉄は第一鉄イオンとして溶出する。
Cze+10Fe→Fe210Cu ・
...'1 - This reaction is very fast; steel ions are reduced to metallic copper, and iron is eluted as ferrous ions.

次に過酸化水素水(日2Q)の添加により、反応式‘1
’から生じた第一鉄イオンと反応して強力な酸化剤であ
るヒドロキシラジカル(OH′)が生成される。Fe2
十十は02→Fe3十十OH+OH′ …■
Fe3十十伍02→Fe2十十H02′十日十
…‘3’上記反応式‘21は非常に遠い反応であるが
、反応式‘3’は律速段階で遅い反応である。
Next, by adding hydrogen peroxide solution (Japanese 2Q), reaction formula '1
Hydroxyl radicals (OH'), which are strong oxidants, are generated by reacting with the ferrous ions generated from '. Fe2
10 is 02 → Fe3 10 OH + OH'...■
Fe3 Jujugo 02 → Fe2 Juju H02' Jukkaju
...'3' Reaction formula '21 above is a very distant reaction, but reaction formula '3' is a slow reaction at the rate-determining step.

また、過酸化水素と第一鉄塩が共存すると次の反応も同
時に行なわれる。Fe2十十OH→Fe3十十OH′
・・・‘4’日202十OH→日2
0十日02 …(51Fe2十十
凡○→Fe3十十日02′ …‘6}F
e3十十日02→Fe2十十02十日十
…{7’上記反応は過酸化水素対第一鉄イオンの比が
小さい場合は反応式【4棚が支配的であり、過酸化水素
対第一鉄イオンの比が大きい場合は反応式‘61{7}
が支配的となる。
Furthermore, when hydrogen peroxide and ferrous salt coexist, the following reaction occurs simultaneously. Fe210OH→Fe310OH'
...'4' day 2020 OH → day 2
010 days 02...(51Fe210 days ○→Fe310 days 02'...'6}F
e3 10th day 02 → Fe2 10th day 02 10th day
...{7' The above reaction is expressed by reaction formula '61 when the ratio of hydrogen peroxide to ferrous ions is small and the 4-shelf is dominant, and when the ratio of hydrogen peroxide to ferrous ions is large {7}
becomes dominant.

本発明法は反応式{1’に示すように第一鉄イオンが徐
々に溶解され、また銅イオンが金属鋼として鉄粉表面に
置換して覆うため、反応式としては側7〕が主体的であ
る。溶出した第一鉄イオンは反応式脚6’のように第二
鉄イオンに酸化されるが、酸化された第二鉄イオンは金
属銅を酸化して銅イオンを生成すると共に第一鉄イオン
を生ずる。
In the method of the present invention, as shown in reaction formula {1', ferrous ions are gradually dissolved, and copper ions replace and cover the surface of the iron powder as metal steel, so side 7 in the reaction formula is dominant. It is. The eluted ferrous ions are oxidized to ferric ions as shown in leg 6' of the reaction equation, but the oxidized ferric ions oxidize metallic copper to produce copper ions as well as ferrous ions. arise.

Cu+がhe3十→Cu2十十2Fe2十
…■このように、銅イオンが共存すると反応にサ
イクルが生じ、反応式脚の律遠段階が打ち消されるので
効率が更に良くなる。
Cu+ is he30→Cu2102Fe20
...■ In this way, when copper ions coexist, a cycle occurs in the reaction, which cancels out the finite phase of the reaction formula, further improving efficiency.

さらに第一鉄イオンと金属銅の共存においても、反応式
■より生成した第二鉄イオンと過酸化水素により銅は溶
出して銅イオンが生成するので前述のようなサイクル反
応を生起する。なお、上記した反応以外に鉄粉がイオン
として溶ける際の発生機の水素による環元力は第一鉄イ
オンによる還元力より強く、六価クロムを三個に環元し
、また銭イオンが存在している場合においても鉄粉の介
在により銀イオンが容易に置換して金属として析出除去
することができる。
Furthermore, even in the coexistence of ferrous ions and metallic copper, copper is eluted by the ferric ions and hydrogen peroxide produced according to reaction formula (1), and copper ions are produced, so that the above-mentioned cyclic reaction occurs. In addition, in addition to the above-mentioned reaction, when iron powder is dissolved as ions, the oxidizing force due to hydrogen in the generator is stronger than the reducing force due to ferrous ions, and the hexavalent chromium is cyclized into three pieces, and there are also ions. Even in the case where the iron powder is present, silver ions can be easily substituted and removed as metal by the presence of iron powder.

以上の反応のサイクルのほか、過酸化水素の単独反応及
び排水中の他の各イオンへの酸化反応も生じるが、銅を
自動的に優先溶解させるという点において触媒が効率よ
く作用し、また必要によりシリコーン系乳液等の消泡剤
を添加することにより発熱・発泡を防止でき、クレゾー
ル石鹸液等を安全に処理することができる。
In addition to the above reaction cycle, hydrogen peroxide reacts alone and oxidizes other ions in the wastewater, but the catalyst works efficiently and is necessary in that it automatically preferentially dissolves copper. By adding an antifoaming agent such as a silicone emulsion, heat generation and foaming can be prevented, and cresol soap solutions and the like can be safely processed.

さらに本発明の特長を述べると、鋼イオン、第一鉄イオ
ンを添加する従来法に比べて塩類の蓄積を起すこともな
く、アルカリ剤の消費量則ち沈殿量が少なくて済み、さ
らに鉄粉の溶解によるpH上昇の特異な反応も加わるこ
とにより一層アルカリ剤を節約できる。
Further, the features of the present invention are that, compared to the conventional method of adding steel ions and ferrous ions, there is no accumulation of salts, the consumption of alkaline agents and the amount of precipitation is small, and iron powder By adding the unique reaction of increasing the pH due to the dissolution of the alkali agent, the amount of alkaline agent can be further saved.

反応終了時においては、鉄分の溶解が止まり、余分な鉄
は溶解されずに金属鉄として溶液中に残留する。
At the end of the reaction, dissolution of iron stops, and excess iron remains in the solution as metallic iron without being dissolved.

これにより後処理工程における凝集沈降を速め、また炉
過助剤の役目も果し、処理時間を短縮できる。なお、触
媒として金属鋼および金属鉄を薄板状、線状又は粒状で
加える方法もあるが、反応に一環性がなく、銅量をコン
トロールすることが驚かしい、本発明においては粉状の
表面積の大きい低密度鋼被膜鉄粉を使用するため、鉄に
対する銅量をコントロールでき、銅と鉄の反応を進行さ
せて反応がサイクル化するようにし、反応も遠く行なわ
れるよう考慮している。
This speeds up coagulation and sedimentation in the post-treatment process, and also serves as a furnace filter aid, reducing treatment time. There is also a method of adding metal steel and metal iron in the form of thin plates, lines, or particles as catalysts, but the reaction is inconsistent and it is surprising that the amount of copper is controlled.In the present invention, the surface area of the powder is Because we use large, low-density steel-coated iron powder, we can control the amount of copper relative to iron, allowing the reaction between copper and iron to proceed in a cyclical manner, and allowing the reaction to occur over a long distance.

被酸化性物質が過酸化水素と第一鉄イオンによって酸化
分解する場合、強力な酸化剤であるヒドロキシルラジカ
ルが生成され、この際に酸化反応熱が多量に発生するこ
とは前述したが、鱗液によっては反応熱が発生しないで
酸化分解が行らない場合もあるので、必要によりこれら
の鱗液を処理するため、液温を30℃以上に昇温してや
ることにより反応が自然に進行する。
When an oxidizable substance is oxidized and decomposed by hydrogen peroxide and ferrous ions, hydroxyl radicals, which are strong oxidizing agents, are generated, and as mentioned above, a large amount of oxidation reaction heat is generated. In some cases, reaction heat is not generated and oxidative decomposition does not occur, so in order to treat these scale liquids as necessary, the liquid temperature is raised to 30° C. or higher to allow the reaction to proceed naturally.

本発明は写真排液や、染料排液、塗料排液に含有してい
る被酸化性物質を上記の反応で酸化分解し、そのCOD
値を規制値以下に低下せしめ、さらに排液中に含有して
いる重金属をも簡単に同時回収することができる効率の
高い処理方法である。
The present invention oxidizes and decomposes oxidizable substances contained in photographic waste liquid, dye waste liquid, and paint waste liquid through the above reaction, and the COD
It is a highly efficient treatment method that can reduce the value below the regulatory value and also easily recover heavy metals contained in the waste liquid at the same time.

次に、本発明の処理工程について設明する。Next, the processing steps of the present invention will be explained.

‘11被酸化性物質含有排水をpH2〜5に調整する。
排水の初期解と残留COD値との関係を第I図に示す。
'11 Adjust the pH of the oxidizable substance-containing wastewater to 2 to 5.
Figure I shows the relationship between the initial solution of drainage and the residual COD value.

この図は、染色排水ならびに現像液に硫酸を添加し、各
液の餌(初期解)を1〜6の間で何′点か設定し、次い
で液温が30〜40℃になるように加溢後、鋼被膜鉄粉
と過酸化水素を添加して縄拝し、次いでアルカリ剤を添
加してpH8以上に調整した後、凝集剤を添加し凝集分
離を行なって処理した結果である。この結果から知れる
ことは、初期府は排水の種類によって若干異なるが、染
色排水の場合は餌2が良い結果を示し、それよりも餌の
高い又は低い設定はCOD値を高くしている。現像液の
場合は過酸化水素の添加により過酸化水素が分解するこ
とで靴が下がるものの、やはり初期設定斑は2〜5にす
るのが好ましい。従って、本発明においては初期軸調整
は鍵酸を用いて2〜5に設定するが、好ましくは2〜3
とする。
This figure shows that sulfuric acid is added to the dyeing wastewater and developer solution, the bait (initial solution) for each solution is set at several points between 1 and 6, and then the solution temperature is heated to 30 to 40°C. After overflowing, steel coated iron powder and hydrogen peroxide were added and mixed, an alkali agent was added to adjust the pH to 8 or higher, and a coagulant was added to perform coagulation separation. What can be seen from these results is that the initial stage differs slightly depending on the type of wastewater, but in the case of dyed wastewater, Bait 2 shows good results, and higher or lower bait settings result in higher COD values. In the case of a developer, the addition of hydrogen peroxide decomposes the shoe and lowers the quality of the shoes, but it is still preferable to set the initial setting to 2 to 5. Therefore, in the present invention, the initial axis adjustment is set to 2 to 5 using key acid, but preferably 2 to 3.
shall be.

■ 次に、低密度鋼被膜鉄粉を加えて燈拝し、銅を優先
的に落籍させる。
■ Next, low-density steel coated iron powder is added and polished to preferentially remove copper.

この際、必要あれば液温を30つ0以上に加溢して消泡
剤を加える。‘3} 次に、過酸化水素を連続的に添加
し、酸化分解反応を進行させる。‘4} 一定時間蝿梓
後、アルカリ剤を加えてPH8以上とする。
At this time, if necessary, increase the liquid temperature to 30°C or higher and add an antifoaming agent. '3} Next, hydrogen peroxide is continuously added to allow the oxidative decomposition reaction to proceed. '4} After a certain period of time, add an alkaline agent to adjust the pH to 8 or higher.

アルカリ剤としては苛性ソーダ又は消石灰或いはその混
合後、好ましくは消石灰をミルク状にして加えるのが処
理効率を良くし凝集を速める。‘51 一定時間燈梓後
、高分子凝集剤を添加して凝集させ、濃梓を停止して沈
降後炉過分離を行なつoこれらの一連の操作は連続式あ
るいは回分式装置で自動的に行われる。
As the alkaline agent, caustic soda or slaked lime, or a mixture thereof, preferably slaked lime in the form of milk, is added to improve treatment efficiency and accelerate aggregation. '51 After simmering for a certain period of time, a polymer flocculant is added to cause flocculation, the thickening is stopped, and after sedimentation, over-separation is performed in the furnace. These series of operations can be performed automatically using continuous or batch-type equipment. It will be done.

次に、実施例および比較例をもって本発明をさらに明ら
かにする。
Next, the present invention will be further clarified using Examples and Comparative Examples.

実施例 1 写真現像液実排水を2.3割こ希釈したものを原水とし
て処理した。
Example 1 A 2.3% diluted photographic developer waste water was treated as raw water.

原水200の‘をビーカーにとり、加溢して3ぴ○とし
、これに硫酸を添加して柑5とした後、充分な頚梓をし
ながらコーチロン0.雛を添加した。次に35%週酸化
水素水を3M/分の速度で10分間ポンプで添加後、引
続き2び分間麹拝した。その後消石灰を添加してpHI
Oとし、15分間麓梓後凝集剤を添加して凝集分離した
後、これを炉過した炉液を分析した結果を第1表に示す
。第 1 表 (単位物ソZ) 実施例 2 染色工程の排水(精練や仕上げの工程水を含ま0なし・
)の提供を受け、これについて脱色とCOD除去を目的
として行った。
Take 200 g of raw water in a beaker, add it to 3 ml, add sulfuric acid to make 5 ml of water, and add 0.0 ml of coachron while thoroughly stirring the neck. Added chicks. Next, 35% weekly hydrogen oxide solution was added using a pump at a rate of 3M/min for 10 minutes, followed by kojihai for 2 minutes. Then add slaked lime to increase the pH
Table 1 shows the results of analysis of the furnace liquid obtained by adding a flocculant to flocculate and separate the flocculant and filtering it through the furnace. Table 1 (Unit material Z) Example 2 Drainage from the dyeing process (including process water from scouring and finishing)
) was provided for the purpose of decolorization and COD removal.

原液は濃青色を呈し、CODは約250雌/そである。The stock solution has a dark blue color and a COD of approximately 250 females/sleeve.

この原液1のこ硫酸を添加し、pH2.5に調節して加
温(30〜40℃)した後、銅被膜鉄粉(コ−タチロン
)を0.衣添加し、35%過酸化水素水を1の【加えて
13分間燈梓する。その後消石灰で軸9にして1び分間
燈梓後、液中の鉄を酸化し、凝集剤を加えて沈殿させ炉
遇したところ、涙液は脱色し、COO値も下がった。そ
の結果を第2表に示す。0 第2表 (単位物/Z) 実施例 3 塗装排水(COD値2750如o/Z)を原水として本
発明法により処理した。
After adding 1 volume of sulfuric acid to this stock solution, adjusting the pH to 2.5 and heating (30 to 40°C), 0.0% of copper-coated iron powder (Cortatiron) was added. Add batter, add 35% hydrogen peroxide solution and boil for 13 minutes. After that, the iron in the liquid was oxidized with slaked lime, and the iron in the liquid was precipitated by adding a flocculant.The lachrymal fluid was decolored and the COO value decreased. The results are shown in Table 2. 0 Table 2 (Units/Z) Example 3 Painting waste water (COD value 2750 o/Z) was treated as raw water by the method of the present invention.

原水IZをビーカーにとり、これに硫酸を添加してpH
2とした後、充分な渡洋をしながら銅被膜鉄粉滋を添加
した。次に35%過酸化水素水を連続的に添加し、その
後消石灰を添加してpHIOとし、19分間鷹梓後に凝
集分離してこれを炉過した炉液を分析した結果を第3表
に示す。第3表 (単位物/と)
Take raw water IZ in a beaker and add sulfuric acid to it to adjust the pH.
2, and then copper-coated iron powder was added while sufficiently crossing the ocean. Next, 35% hydrogen peroxide solution was added continuously, then slaked lime was added to make pHIO, and after 19 minutes of stirring, the mixture was flocculated and separated, and this was filtered through the furnace.The results of analysis of the furnace liquid are shown in Table 3. . Table 3 (units/and)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種排水処理における初期pHと残留COD値
との関係グラフである。 第1図
FIG. 1 is a graph showing the relationship between initial pH and residual COD value in various wastewater treatments. Figure 1

Claims (1)

【特許請求の範囲】 1 写真排水を酸化分解処理するに際し、まず該排液の
pHを2〜5に調整した後、銅被膜鉄粉と過酸化水素を
加え、次いでアルカリ剤を添加してpH8以上に調整し
、凝集剤を添加して凝集分離を行なうことを特徴とする
被酸化性物質含有排水の処理方法。 2 染色工程排水を酸化分解処理するに際し、まず該排
液のpHを2〜5に調整した後、銅被膜鉄粉と過酸化水
素を加え、次いでアルカリ剤を添加してpH8以上に調
整し、凝集剤を添加して凝集分離を行なうことを特徴と
する被酸化性物質含有排水の処理方法。 3 塗装排水を酸化分解処理するに際し、まず該排液の
pHを2〜5に調整した後、銅被膜鉄粉と過酸化水素を
加え、次いでアルカリ剤を添加してpH8以上に調整し
、凝集剤を添加して凝集分離を行なうことを特徴とする
被酸化性物質含有排水の処理方法。
[Claims] 1. When subjecting photographic wastewater to oxidative decomposition treatment, the pH of the wastewater is first adjusted to 2 to 5, then copper-coated iron powder and hydrogen peroxide are added, and then an alkaline agent is added to adjust the pH to 8. A method for treating wastewater containing oxidizable substances, which comprises making the above adjustments, adding a coagulant, and performing coagulation separation. 2. When oxidizing and decomposing dyeing process wastewater, first adjust the pH of the wastewater to 2 to 5, then add copper-coated iron powder and hydrogen peroxide, then add an alkaline agent to adjust the pH to 8 or higher, A method for treating wastewater containing oxidizable substances, characterized by adding a coagulant and performing coagulation separation. 3. When oxidizing and decomposing paint wastewater, first adjust the pH of the wastewater to 2 to 5, then add copper-coated iron powder and hydrogen peroxide, then add an alkaline agent to adjust the pH to 8 or higher, and then coagulate. A method for treating wastewater containing oxidizable substances, the method comprising adding an agent to perform coagulation separation.
JP15026681A 1981-09-22 1981-09-22 Treatment method for wastewater containing oxidizable substances Expired JPS6017595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15026681A JPS6017595B2 (en) 1981-09-22 1981-09-22 Treatment method for wastewater containing oxidizable substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15026681A JPS6017595B2 (en) 1981-09-22 1981-09-22 Treatment method for wastewater containing oxidizable substances

Publications (2)

Publication Number Publication Date
JPS5851982A JPS5851982A (en) 1983-03-26
JPS6017595B2 true JPS6017595B2 (en) 1985-05-04

Family

ID=15493177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15026681A Expired JPS6017595B2 (en) 1981-09-22 1981-09-22 Treatment method for wastewater containing oxidizable substances

Country Status (1)

Country Link
JP (1) JPS6017595B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104299A (en) * 1984-10-26 1986-05-22 日揮株式会社 Method of disposing radioactive decontaminated waste liquor
US4743381A (en) * 1987-07-01 1988-05-10 Fmc Corporation Process for oxidizing a cyanide compound
EP1097907B1 (en) * 1999-11-02 2004-04-28 Instituto Superior Técnico A process for the treatment of liquid effluents by means of clean catalytic oxidation, using hydrogen peroxide and heterogeneous catalysis
JP2002119977A (en) * 2000-10-13 2002-04-23 Japan Organo Co Ltd Method and apparatus for cleaning polluted ground water
US9259832B2 (en) 2010-08-25 2016-02-16 Makita Corporation Handheld electrical power tools
CN102049258B (en) * 2010-11-04 2012-07-25 哈尔滨工业大学 Method for preparing composite type solid oxide catalyst

Also Published As

Publication number Publication date
JPS5851982A (en) 1983-03-26

Similar Documents

Publication Publication Date Title
JP2007125521A (en) Apparatus and method for treating waste water
JP2683991B2 (en) Dyeing wastewater treatment method
JPS6017595B2 (en) Treatment method for wastewater containing oxidizable substances
CN110642395A (en) Method for treating fluoride ion-containing sulfate trivalent chromium plating wastewater
DE3832523C1 (en)
JPS5834197B2 (en) High speed inosyoriho
IL262906A (en) Treatment of high peroxide waste streams
JPS5930153B2 (en) Treatment method for wastewater containing sterilization/disinfectant
CN111320302B (en) Process for standard emission and efficient sedimentation of low-concentration copper-containing wastewater in semiconductor industry
JP2002059194A (en) Treatment method of raw water
JP3575504B2 (en) Treatment of colored wastewater
JPS61161191A (en) Treatment of heavy metal ion-containing solution
JPS59199097A (en) Disposal of waste cement slurry
JPS627489A (en) Method for treating waste water of protein foam fire extinguishing solution
JP2001212597A (en) Method and apparatus for treating wastewater containing sulfoxide compounds
JPS5854629B2 (en) Method for treating waste liquid containing heavy metal complex salts
JP7448129B2 (en) How to treat wastewater
JPS591118B2 (en) How to treat organic wastewater
JPH0952092A (en) Treatment of waste water
JPH0487685A (en) Treatment of used galvanizing solution
JPS59162994A (en) Treatment of waste water containing organic substance
JPH03254889A (en) Treatment of chromium-containing waste water
JPS606718B2 (en) Wastewater treatment method
CN117326673A (en) Process method for dephosphorizing flame-retardant finishing wastewater
JPS607993A (en) Treatment of chromium(6)-containing waste water