JPS60175810A - Flow direction control device - Google Patents

Flow direction control device

Info

Publication number
JPS60175810A
JPS60175810A JP3055684A JP3055684A JPS60175810A JP S60175810 A JPS60175810 A JP S60175810A JP 3055684 A JP3055684 A JP 3055684A JP 3055684 A JP3055684 A JP 3055684A JP S60175810 A JPS60175810 A JP S60175810A
Authority
JP
Japan
Prior art keywords
flow
nozzle
shielding plate
bias
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3055684A
Other languages
Japanese (ja)
Other versions
JPH0535283B2 (en
Inventor
Norio Sugawara
範夫 菅原
Motoyuki Nawa
基之 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3055684A priority Critical patent/JPS60175810A/en
Publication of JPS60175810A publication Critical patent/JPS60175810A/en
Publication of JPH0535283B2 publication Critical patent/JPH0535283B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/08Influencing flow of fluids of jets leaving an orifice

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)

Abstract

PURPOSE:To control the flow as it can be deviated to any direction, three-dimensionally, by making a bias shielding plate which is set to interrupt a part of the flow generated by a narrowed orifice of a nozzle, spirally movable along the axis of the flow route, in a flow direction control device. CONSTITUTION:In the upper stream side of a nozzle with a narrowed orifice 7, a bias shielding plate 9 which is used to interrupt the bias flow generated by the narrowed orifice 7, is supported by a rotating shaft 10 through a supporting member 11, as the plate 9 can spirally move along the axis of the flow route. In this way, the attaching position and the attaching strength of the flow against a guide wall 8 are varied, and the blow-off direction of the flow can be spirally changed to any direction, from the widely deviated direction to the front direction. Consequently, the attachment is satisfactorily performed, and the wide-angle attachment can be got.

Description

【発明の詳細な説明】 産業上の利用分野 不発Jは、空調装置等の吹出し「1に設けられ、送風源
からの流れを任意の方向に偏向して吹出させるための流
れ方向制御装置に関するものである。。
Detailed Description of the Invention The industrial field of application J relates to a flow direction control device installed at the outlet of an air conditioner, etc., for deflecting the flow from the air source in an arbitrary direction and blowing it out. It is..

従来例の構成とその問題点 冷房・暖ル3を行う空調器においては、空調される11
19屋の温度分布を均一化するために暖房時Qよi〜吹
きに、冷房時は水平吹きに吹き出し流れ方向を制御する
ことが望丑しい。甘た、空調器の設置位ii+”t’4
の関係」二、左右方向にも広角に(I:′1ili’i
することが91)甘しい。
The structure of the conventional example and its problems In the air conditioner that performs cooling and heating 3, the air conditioned 11
In order to make the temperature distribution uniform in the 19th room, it is desirable to control the flow direction of the air to Q~i~ during heating and horizontally during cooling. Sweet, air conditioner installation position ii+"t'4
2. Wide angle in left and right directions (I:'1ili'i
91) It's sweet.

この目的を達成する従来例として第1図と第2図に示す
ものがある。図において1aと1bt、i案内壁(これ
は図においてiJ:2つしか示していないが、多数存在
する。)、2は流れを吹き出すノズル、3は、軸4によ
って回転する偏向板である。
Conventional examples for achieving this purpose include those shown in FIGS. 1 and 2. In the figure, 1a and 1bt, i guide wall (iJ in the figure: only two are shown, but there are many), 2 is a nozzle that blows out the flow, and 3 is a deflection plate rotated by a shaft 4.

この偏向板4による流れのガイド作用により、ノズルか
ら出た流れは案内壁1a、1b(第1図ではla)に(
qイイし偏向される。偏向板4を回転すると、Ml、れ
かイ・]眉する案内ratが友化し、吹出し方向がyわ
る。以1.の0ノ作で流れを偏向させるものであるが、
これ(r、i、fjL路中に偏向板4を設けるものであ
るためIN、れの抵抗になるとり(に、流れの流線を乱
す形状でもあるため、壁面への(=J箔効果全悪化させ
ることは免れないという欠点をイ」していた。
Due to the flow guiding action of the deflection plate 4, the flow exiting from the nozzle is directed to the guide walls 1a, 1b (la in FIG. 1) (
q is deflected. When the deflection plate 4 is rotated, the guide rat that moves toward Ml, Rekai, etc. becomes friendly, and the blowing direction changes. Below 1. It is something that deflects the flow with 0 works,
Since the deflection plate 4 is provided in the path (r, i, fjL), it becomes a resistance to the IN, but since it also has a shape that disturbs the streamline of the flow, the (= J foil effect on the wall surface) The problem was that it was inevitable that things would get worse.

発り1の+−1的 不発り]−かかる従来の問題全解消するもので、風11
)抵抗を生ぜず、かつ流線を乱さす(て」−下・左右に
広角に流れを偏向させる流れ方向制御装置を提供するこ
とを[1的とする。
+-1 misfire of origin 1] - This solves all of the conventional problems, and wind 11
[1] It is an object of the present invention to provide a flow direction control device that deflects the flow at a wide angle downward and left and right without causing resistance and disturbing the streamlines.

介ry1の輪1戎 この「1的を達成するために不発1Xlr′1は、びL
路の出1’J☆1′ijに設けられ、流路の軸に対して
全周より絞りケイjするノズルと、[)i+記ノズルの
下流fll’lでn[J記ノスルを囲むように形成され
た漸次拡大形状をした案1)硬1tと、riif記ノズ
ルの−1−ffic側でノズルの外側に設けられ、絞り
によって生ずる前記Ulr、路の中心方向に回かう流ノ
Lの1ir14を遮るバイアスm W+k 4反とより
なり、前記バイアス遮蔽板は前記流路の軸方向に対して
らせん状に移OJ可能としたものである。
The ring of intervention 1
A nozzle is installed at the exit 1'J☆1'ij of the flow path, and the nozzle is narrowed from the entire circumference with respect to the axis of the flow path, and A plan with a gradually expanding shape formed in 1) A hard 1t and a flow nozzle L which is provided on the outside of the nozzle on the -1-ffic side of the riif nozzle, and which is caused by the aperture, and the flow nozzle L which turns toward the center of the path 1ir14, and the bias shielding plate is movable in a spiral manner in the axial direction of the flow path.

このl’f& l戎により、ノズルの紋りによってバ・
rアス流れか遮られたノズル部分に対応する案内1!l
?に、他の部分からのバイアス流れが作+11」L、ノ
ズルから1吹出した流れはn「百己案内壁にHA”4す
る結果となる。寸だ、バイアス遮蔽板からせん状に移動
するに従い、流れかイ\J猫する案内壁の位置が変化す
る。
With this l'f&l function, the nozzle pattern can cause
Guidance 1 corresponding to the nozzle part where the r ass flow is blocked! l
? In addition, the bias flow from other parts is generated +11"L, and the flow blown out from the nozzle results in n"HA"4 on the guide wall. As it moves in a spiral from the bias shielding plate, the position of the guide wall changes.

甘た、前記バイアス遮蔽板と前記ノズルとの間の間隙が
変化することにより、案内壁への流れの付4“′1の強
さが変化する。この結果吹出し流れはバイアス遮蔽板の
らせん状の移0Jに応じてII、、)巻き状に吹出し方
向全変化させることになる。すなわら3次元的に企ての
方向に流れの吹出しが+jJ’能となる。
Furthermore, by changing the gap between the bias shielding plate and the nozzle, the strength of the flow toward the guide wall changes.As a result, the blowout flow is caused by the spiral shape of the bias shielding plate. According to the shift of 0J, the blowing direction is completely changed in a winding manner.In other words, the blowing of the flow becomes +jJ' in the intended direction three-dimensionally.

寸/と、この場合バイアス遮蔽板は、ノズルの1. (
kfJlllでかつノズルの外側に存在するため、流れ
の抵抗にならずかつ流れを乱すことがない。従って風(
54を低下させずに案1〕具Aηへ完全に流れk (’
J’ 4Q■させ、広角に流れを偏向させるという作用
ケイ1−「る。
In this case, the bias shield plate is 1. of the nozzle. (
Since it is present at the outside of the nozzle, it does not create resistance to the flow and does not disturb the flow. Therefore, the wind (
Plan 1] The flow completely flows to the tool Aη without reducing the temperature k ('
The effect of deflecting the flow over a wide angle by causing J' 4Q■.

実施例の説明 以下、不発りJの一実施例を第3図〜第5図金用いて説
り]する。第3図〜第5図において、5は送風機等から
送られた流れを誘耶する流路、6は流路のl1lll1
5aに対して全周より絞り7をイ]″する円形のノズル
、8はノズル6のド流側でノズルを囲むように形成され
た案内壁であり、ノズル6の出口、全出発点として漸次
拡大形状になっている。ノズル6の」−ηし側には、絞
り7によって発生するバイアス流れを遮るためのバイア
ス遮蔽板9が設けられている。(第5図にり゛1視図を
示す)これは回転軸10’(iy中心として回転するも
のであり、ノズル6の出[−1近傍でノズルの外側にあ
り、絞り7と接している。この回転軸10は、流路5の
外壁より突出した文J”j’ i?6桐11によって支
4″、1され、回転軸10の−IX私分10aと支持部
4′OA’11とはねじによって結合されている。この
結果遮蔽板9は、回転1i+1110の回U)に応じて
流路の軸方向に対してらせん状に移動することになる。
DESCRIPTION OF EMBODIMENTS An embodiment of the misfire J will be explained below using FIGS. 3 to 5. In Figures 3 to 5, 5 is a flow path that induces a flow sent from a blower, etc., and 6 is a flow path l1llll1.
5a is a circular nozzle that has an aperture 7 from the entire circumference, 8 is a guide wall formed to surround the nozzle on the flow side of the nozzle 6, and gradually serves as the exit of the nozzle 6 and the starting point. The nozzle 6 has an enlarged shape.A bias shielding plate 9 is provided on the −η side of the nozzle 6 to intercept the bias flow generated by the aperture 7. (Fig. 5 shows a perspective view) This rotates around the rotation axis 10' (iy center), and is located on the outside of the nozzle near the exit [-1 of the nozzle 6, and is in contact with the aperture 7. This rotating shaft 10 is supported by a paulownia 11 protruding from the outer wall of the flow path 5, and the -IX portion 10a of the rotating shaft 10 and the supporting portion 4'OA'11 and are connected by screws.As a result, the shielding plate 9 moves in a spiral manner with respect to the axial direction of the flow path in response to rotations 1i+1110 times U).

−1,記暢成において、第6図〜第8図を用いて動作を
説明する。まず第6図のように遮蔽板9とノズル7とが
密A’TL、ている場合について説明する。
-1. In the memorization process, the operation will be explained using FIGS. 6 to 8. First, the case where the shielding plate 9 and the nozzle 7 are closely spaced A'TL as shown in FIG. 6 will be described.

この場合、流路の方向に入った流れの一部は絞り7によ
りバイアス流れFbとなる。ここて図の左側においては
バイアス流れFbが発生するが、右側においてに、バイ
アス遮蔽板9の効果によりバイアスUILI″Ltri
生じない。このため主流Fa妊、左側からのバイアス流
れFbにより右側の案内ムIYの力量に向けられ、Fa
とFbの合流Fは右側の案内11゛(に((t、iT 
I、、右側に広角に偏向する。この時の偏向角度は案内
壁8の形状によって任意に設定できる。
In this case, a part of the flow that enters the flow path becomes a bias flow Fb due to the throttle 7. Here, a bias flow Fb occurs on the left side of the figure, but on the right side, due to the effect of the bias shielding plate 9, the bias flow Fb is generated.
Does not occur. For this reason, the mainstream Fa is directed to the power of the guide arm IY on the right side by the bias flow Fb from the left side, and Fa
The confluence F of Fb and Fb is the right guide 11゛(ni((t, iT
I, , wide-angle deflection to the right. The deflection angle at this time can be arbitrarily set depending on the shape of the guide wall 8.

つきに回転軸10を回動して遮蔽板9全第7図に示す位
置に移動した場合について1悦11J:]する3、この
場合は、遮蔽板9と絞り7との間に間隙りが生ずる。こ
の間隙りより、バイアス流れFbK対抗する流れFDが
生じ、FbO力を弱めることになる。
In this case, there is a gap between the shield plate 9 and the aperture 7. arise. This gap generates a flow FD opposing the bias flow FbK, which weakens the FbO force.

この結果、音流流れFは案内壁8ヘイマ1着する力を弱
めらり、、吹出し流れの偏向角度は第6図の場合よりも
小さくなる。そして、間隙りの大きさに反比例して偏向
角度は大きくなる。
As a result, the force of the acoustic flow F to land on the guide wall 8 is weakened, and the deflection angle of the blowout flow becomes smaller than in the case of FIG. 6. The deflection angle increases in inverse proportion to the size of the gap.

次に第8図に示す位置に遮蔽板9を移ωノシた場合Vこ
ついて説明する。この場合は、間隙りより生する流れに
バイアス流れFbとほぼ同等の強さとなり、合流流れF
 i#J:偏向せずに正向に吹き出す。
Next, the case where the shielding plate 9 is moved to the position shown in FIG. 8 will be explained. In this case, the flow generated from the gap has almost the same strength as the bias flow Fb, and the combined flow Fb
i#J: Blows out directly without deflection.

以上のように、回転軸10全回動して遮蔽板9をらせん
状に移動することにより、案内壁8への流れの(’J’
 X:’r位IIQ+と強さとが変化し、σLれの吹き
出し方向を広角偏向した位置から正向せで渦巻き状に任
意の位置に設定できる。
As described above, by fully rotating the rotating shaft 10 and moving the shielding plate 9 in a spiral shape, the flow ('J') toward the guide wall 8 is
X: 'r position IIQ+ and strength change, and the blowing direction of σL can be set to any desired position in a spiral shape from a wide-angle deflection position to facing forward.

次に不発Fillの他の実施例全第9図と第10図を用
いて説りjする。第9図において、1〜11までtri
第1の実施例と同様である。121−J:、ノズル6の
入口部分に設けられ、流れの−に流側に向かう突起部で
ある。この突起部の効果により、回転軸io’l約1回
約1乙転は、遮蔽板9と絞り7との間の間隙が変化して
も間隙を通る流れFDは突起12によって遮られ、吹出
し流れは最も良好に案内A−X¥8に伺着する。すなわ
ら突起の作用により、最大偏向角度の流れを全周に渡っ
て吹き出すことが凸丁1氾となる。
Next, other embodiments of unexploded fill will be explained using FIGS. 9 and 10. In Figure 9, tri from 1 to 11
This is similar to the first embodiment. 121-J: A protrusion provided at the inlet of the nozzle 6 and facing toward the flow side. Due to the effect of this protrusion, even if the gap between the shielding plate 9 and the aperture 7 changes, the flow FD passing through the gap is blocked by the protrusion 12, and the blowout The best flow is to arrive at guide A-X ¥8. In other words, due to the action of the protrusions, the flow with the maximum deflection angle is blown out over the entire circumference, resulting in a protrusion 1 flood.

第10図は、回転軸10をモーフ13によって回動する
ように+16成したもので、これによってリモコン等に
よる遠隔操作や白[F]Jスイング等が■f fkとな
る。
In FIG. 10, the rotary shaft 10 is rotated by +16 by the morph 13, so that remote control using a remote control, white [F] J swing, etc. become ■f fk.

発明の効果 以」−のように不発す1のびしれ方向制御装置1″゛°
1′によれば次の効果が得られる。
Effects of the invention
According to 1', the following effects can be obtained.

(1)吹出し流れの中に偏向板等ケ入れることがないの
で、風量が低下せず、かつ流れの中に物体が存在しない
ので流れを乱すことがなく、イ\J’ aか良好にイー
jなわれ広角な偏向が召Jられる。
(1) Since there is no need to insert a deflection plate or the like into the blowout flow, the air volume will not decrease, and since there are no objects in the flow, the flow will not be disturbed. A wide-angle deflection is called.

(2)回転軸の回動に応して遮蔽板がらせん状に移動す
る結果として、流れの吹出し方向が渦巻き状に変化する
ため、1木の軸の回転だけで3次ノシ的に任意の位UC
rに広角に流れの吹き出し方向全設定することかできる
(2) As a result of the shielding plate moving in a spiral pattern in response to the rotation of the rotating shaft, the blowing direction of the flow changes in a spiral pattern. UC
It is possible to set all directions of the flow from a wide angle.

(3)空調装置の吹出し口等に応用した場合は、(1)
と(2)の効果により、吹出し流;/1Jji木の+l
QI+のみの回動によって広角にかつ風扇、低下なく偏
回し、多大な空調効果が得られる。
(3) When applied to the outlet of an air conditioner, (1)
Due to the effect of (2), the blowout flow; /1Jji+l
By rotating only the QI+, a wide angle and deflection of the fan can be achieved without deterioration, and a great air conditioning effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来の流れ方向制御装fi、:iの断
面図、第3図は本発明の一実施例の流れ方向制御装置i
”fの断面図、第4図は第3図の平面図、第5図Cま本
);t、”)Iの流れ方向制御−装置の遮蔽板を示す斜
視図、第6図〜第8図は不発IJJ 、+7)流れ方向
制御装置の遮蔽板の位置が移動した場6Yの断面図、第
9図は不発IJIの第2の実施例の断面図、第10図は
不発IJIIの第3の実施例の断1n1図であ枳、5・
・・・・・流路、5a・・・・・・流路の軸、6・・・
・ノズル、7・・・・・・絞り、8・・・・・・案内壁
、9・・・・・・バイアス遮蔽板、10・・・・・・回
転軸、11・・・・・・支持部拐、12・・・・・突、
1μ)11<。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第3図 第5図 第7図 第9図 第10図
1 and 2 are sectional views of a conventional flow direction control device fi,:i, and FIG. 3 is a flow direction control device i according to an embodiment of the present invention.
Fig. 4 is a plan view of Fig. 3, Fig. 5 C is the same); The figure shows an unexploded IJJ, +7) A sectional view of the field 6Y when the position of the shielding plate of the flow direction control device has been moved, Figure 9 is a sectional view of the second embodiment of an unexploded IJI, and Figure 10 is a sectional view of the third embodiment of an unexploded IJII. This is a section 1n1 diagram of an example of 5.
...Flow path, 5a...Axis of flow path, 6...
・Nozzle, 7... Aperture, 8... Guide wall, 9... Bias shielding plate, 10... Rotation shaft, 11... The support department was kidnapped, 12... suddenly.
1μ) 11<. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 3 Figure 5 Figure 7 Figure 9 Figure 10

Claims (3)

【特許請求の範囲】[Claims] (1)流路の出[1端に設けられ、流路のili+11
に対して全周より絞り全イ]する円形ノズルと、rff
j記ノズルの下流側で前記ノズルを囲むように形成され
た漸次拡大形状をした案内壁と、前記ノズルの」二面側
でノズルの外σ(りに設けられ、絞りによって生ずるh
ff記びL路の中心方向に向かう流れの1i?lSi遮
るバイアス遮蔽板とよりなり、前記/(イアス遮蔽板は
前記流路の軸方向に対してらせん状に移動用゛能とした
流れ方向1111J御装置a 0
(1) Output of the flow path [provided at one end, ili+11 of the flow path
A circular nozzle that apertures from the entire circumference to the rff
A guide wall with a gradually expanding shape is formed to surround the nozzle on the downstream side of the nozzle, and a guide wall is provided on the outside of the nozzle on the second side of the nozzle.
1i of the flow toward the center of the L path indicated by ff? The bias shielding plate is configured to have a bias shielding plate that blocks lSi, and the bias shielding plate is capable of moving in a spiral manner with respect to the axial direction of the flow path.
(2) ノズルの入r+ HXl<分に、流れの上流方
向に向かう突起部を設けた特許請求の範囲第1項記載の
流れ方向制御装置。
(2) The flow direction control device according to claim 1, wherein a protrusion toward the upstream direction of the flow is provided at the entry point of the nozzle.
(3)バイアス遮蔽板の回転軸の1部と、流路の外壁よ
り突出した支1、冒′1<桐とが、ねじで結合すること
く暢1戎した特許請求の範囲第」項記載の流れ方向制御
装置。
(3) A portion of the rotating shaft of the bias shielding plate and the support 1 protruding from the outer wall of the flow channel are connected to each other by screws, as stated in claim 1. flow direction control device.
JP3055684A 1984-02-20 1984-02-20 Flow direction control device Granted JPS60175810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3055684A JPS60175810A (en) 1984-02-20 1984-02-20 Flow direction control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3055684A JPS60175810A (en) 1984-02-20 1984-02-20 Flow direction control device

Publications (2)

Publication Number Publication Date
JPS60175810A true JPS60175810A (en) 1985-09-10
JPH0535283B2 JPH0535283B2 (en) 1993-05-26

Family

ID=12307071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3055684A Granted JPS60175810A (en) 1984-02-20 1984-02-20 Flow direction control device

Country Status (1)

Country Link
JP (1) JPS60175810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157047A (en) * 2006-12-21 2008-07-10 Mahle Filter Systems Japan Corp Oil-mist separator in blowby gas duct in internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157047A (en) * 2006-12-21 2008-07-10 Mahle Filter Systems Japan Corp Oil-mist separator in blowby gas duct in internal combustion engine

Also Published As

Publication number Publication date
JPH0535283B2 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
US2144631A (en) Air distributing device
US4424937A (en) Fluid deflecting assembly
US4190085A (en) Gas flow regulating and measuring apparatus
JPS60175810A (en) Flow direction control device
JPH0354254B2 (en)
JPS6040805A (en) Control device for direction of flow
JPS6040806A (en) Control device for direction of flow
JP3268336B2 (en) Air mixing equipment
JPS62294844A (en) Flow direction control device
JPH10220856A (en) Air blowing device for air conditioner
JPS6030808A (en) Flow direction control device
JPS60215114A (en) Flow direction controlling device
JPS61143648A (en) Structure of ventilator
JPS63201448A (en) Flow deflecting device
JPS60260712A (en) Flow direction control device
JPS61195236A (en) Flow direction control device
JPS62294843A (en) Flow direction control device
JPS60155003A (en) Flow direction control device
JPH0354364Y2 (en)
JPS62266209A (en) Flow deflecting device
JPS63150552A (en) Flow deflecting device
JPH0325080Y2 (en)
JPH0235165B2 (en)
JPS62218761A (en) Flow deflecting device
JPS5934012A (en) Flow direction control unit