JPS60175015A - Optical axis adjusting method - Google Patents

Optical axis adjusting method

Info

Publication number
JPS60175015A
JPS60175015A JP3076484A JP3076484A JPS60175015A JP S60175015 A JPS60175015 A JP S60175015A JP 3076484 A JP3076484 A JP 3076484A JP 3076484 A JP3076484 A JP 3076484A JP S60175015 A JPS60175015 A JP S60175015A
Authority
JP
Japan
Prior art keywords
optical axis
light
light receiving
adjusting
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3076484A
Other languages
Japanese (ja)
Inventor
Akira Nagaoka
長岡 曉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3076484A priority Critical patent/JPS60175015A/en
Publication of JPS60175015A publication Critical patent/JPS60175015A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means

Abstract

PURPOSE:To adjust an optical axis easily and accurately by adjusting inclination of a main photodetector in accordance with outputs from optical axis adjusting photodetectors attached around the main photodetector. CONSTITUTION:Inclination in the vertical direction of a light receiving means 1 is detected by optical signals which are converged by optical axis adjusting light receiving lenses 13 and 13a, and this inclination is corrected by a vertical- direction adjusting circuit. Inclination in the horizontal direction of the means 1 is detected by outputs of optical axis adjusting light receiving lenses 27 and 28 and is adjusted by a horizontal-direction adjusting circuit. Signals of lenses 13, 13a, 27, and 28 are added by an adding circuit, and the result is outputted to a display circuit.

Description

【発明の詳細な説明】 技術分野 本発明は、投光手段と受光手段の光軸を調整する方法に
関する。
TECHNICAL FIELD The present invention relates to a method for adjusting the optical axes of a light projecting means and a light receiving means.

背景技術 たとえば投光手段から故10mもしくは数100m@し
て受光手段を配(aするとき、受光手段の光軸の角度が
わずかでもずれたとき投光器からの光の経路の移動距離
は大きなものと々つていた。
BACKGROUND ART For example, when a light receiving means is arranged at a distance of 10 m or several hundred meters from a light projecting means, if the angle of the optical axis of the light receiving means deviates even slightly, the travel distance of the light path from the projector becomes large. It was very hot.

このため受光手段の光軸をs、1.+ 整することがで
きる受光手段が所望されていた。
Therefore, the optical axis of the light receiving means is set to s, 1. + A light receiving means that can be adjusted is desired.

目 的 本発明の目的は、投光手段および受光手段の光軸のm整
を容易にかつ正41ft’ VC行なうことができる光
軸調整方法を提供することである。
Purpose It is an object of the present invention to provide an optical axis adjustment method that can easily adjust the optical axes of a light projecting means and a light receiving means to a positive 41 ft' VC.

実施例 第1図は、本発明に従って構成される受光手段lの一実
施例を示す図である。投光手段2は、受光手段1に向け
て光lpHl13および光束4を有する赤外線を照射す
る。投光手段2け、コード化された光信号を送出し、受
光手段1によってその光信号をデコードする。このよう
にして投光手段2からの光信号が受光手段lに伝達され
る。
Embodiment FIG. 1 is a diagram showing an embodiment of the light receiving means l constructed according to the present invention. The light projecting means 2 irradiates the light receiving means 1 with infrared rays having a light lpHl13 and a luminous flux 4. The light projecting means 2 sends out a coded optical signal, and the light receiving means 1 decodes the optical signal. In this way, the optical signal from the light projecting means 2 is transmitted to the light receiving means l.

投光手段2は、コード化された光信号を送出する代わり
に普通の光信号を送出し、移動体(図示せず)が通過す
るときの受光状台によって移動体の検出を行なうように
してもよい。
The light projecting means 2 sends out a normal optical signal instead of a coded optical signal, and when a moving object (not shown) passes by, the light receiving means 2 detects the moving object. Good too.

第2図は、受光手段lの正面図、第3図Fi+42図の
切断面線at−tuから見た簡略化された断面図である
。支持板5は集束レンズ6を有している。
FIG. 2 is a front view of the light receiving means l, and a simplified sectional view taken from the section line at-tu in FIG. 3 Fi+42. The support plate 5 has a focusing lens 6.

集束レンズ6に入射された光は、主受光素子7に照射さ
れる。主受光素子7#i受光量に対応したレベルを有す
る電気信号を導出する。集束レンズ6および主受光素子
7から成る光学系の光軸は参照符8で示されている。本
発明では、投光手段2の光軸3と集束レンズ6、主受光
素子7から成る光学系の光軸8とを一直線上にもたらす
ことを達成する。
The light incident on the focusing lens 6 is irradiated onto the main light receiving element 7. An electrical signal having a level corresponding to the amount of light received by main light receiving element 7#i is derived. The optical axis of the optical system consisting of the focusing lens 6 and the main light receiving element 7 is indicated by reference numeral 8. The present invention achieves that the optical axis 3 of the light projecting means 2 and the optical axis 8 of the optical system comprising the focusing lens 6 and the main light receiving element 7 are aligned on a straight line.

支持板5には、4つの同一の構成を有する光学系9,1
0,11.12が配置されている。光学系、9は、光軸
調整用受光レンズ13と光軸調整用受光素子14とを含
んでいる。光軸調整用受光素子14は、受光量に対応し
たレベルを有する電気信号を4出する。光軸調整用受光
レンズ13の光軸は参照符15で示されている。光軸m
整用受光レンズ13に光軸15と平行な光線が入射した
ときの結像位置に光軸調整用受光素子14の受光端面1
6かある。受光端面16の図心17は、第4図に示され
るように光軸15からずれて配置されている。光軸8と
光軸15は平行である。光軸8を中心として光軸8,1
5を半径とする光軸8に垂直でかつ受光端dJJ16を
含む平面内のgc想円によりも半径方向内方側の受光端
面16の一部分18は、その仮想円にの外方における受
光端面16の残余の部分19よりも大きい。図心17は
光軸8.15を含む平面内にある。光軸調整用受光レン
ズ13の前方には、光軸15を中心とする比較的小さい
絞りロ230ロ径を自在に変化することができるマスク
24が配置されている。
The support plate 5 has four optical systems 9, 1 having the same configuration.
0, 11.12 are arranged. The optical system 9 includes a light receiving lens 13 for adjusting the optical axis and a light receiving element 14 for adjusting the optical axis. The optical axis adjustment light receiving element 14 outputs four electrical signals having levels corresponding to the amount of received light. The optical axis of the light receiving lens 13 for adjusting the optical axis is indicated by reference numeral 15. optical axis m
The light-receiving end face 1 of the light-receiving element 14 for adjusting the optical axis is located at the imaging position when a ray parallel to the optical axis 15 enters the light-receiving lens 13 for adjusting the optical axis.
There are six. The centroid 17 of the light-receiving end surface 16 is arranged offset from the optical axis 15, as shown in FIG. Optical axis 8 and optical axis 15 are parallel. Optical axes 8, 1 centering on optical axis 8
A portion 18 of the light-receiving end face 16 that is perpendicular to the optical axis 8 with a radius of 5 and that is radially inward of the gc imaginary circle in the plane that includes the light-receiving end dJJ16 is the light-receiving end face 16 outside the imaginary circle. is larger than the remaining portion 19 of . The centroid 17 lies in the plane containing the optical axis 8.15. In front of the light-receiving lens 13 for adjusting the optical axis, a mask 24 is arranged which can freely change the diameter of a relatively small aperture 230 centered on the optical axis 15.

光学系lOもまた同様に光軸調整用受光レンズ13a、
光軸調整用受光素子14aとを含み、光学系9の対応す
る部分には添字aを付して示す。
Similarly, the optical system IO also includes a light receiving lens 13a for adjusting the optical axis,
Corresponding parts of the optical system 9 are indicated with a subscript a.

残余の光学系11.12も光学系9,10と同様な構成
を有しており、第2図示のように、マスク24と同様な
マスク25.26とを有しており、光軸調整用受光レン
ズ13と同様な光軸調整用受光レンズ27.28を有し
ている。
The remaining optical systems 11 and 12 have the same configuration as the optical systems 9 and 10, and as shown in the second figure, have masks 25 and 26 similar to the mask 24, and are used for adjusting the optical axis. It has light-receiving lenses 27 and 28 for optical axis adjustment similar to the light-receiving lens 13.

光軸調整用受光レンズ13の光軸15と光軸調整用受光
レンズ13a、27.28の光軸は、光軸8に平行であ
り、光軸8のまわりに90度の開隔をあけて配置される
The optical axis 15 of the light-receiving lens 13 for optical axis adjustment and the optical axes of the light-receiving lenses 13a, 27.28 for optical axis adjustment are parallel to the optical axis 8, and spaced apart by 90 degrees around the optical axis 8. Placed.

第5図を参照して光軸調整の手順を以下に説明する。投
光手段2の光軸3が理想光軸30となるように投光手段
2を仮想線31で示す位置に変位して固定位置に固定す
る。次に受光手段lの光軸8が理想光軸30と一致する
ように、受光手段lを仮想線32に示される位置に固定
する。これによって光軸8,30が一致される。光軸3
を有する光強度分布は光軸3に垂直な基準線33上で参
照符34で示されるように、光軸3に垂1αな平面内で
対称となっている。
The procedure for adjusting the optical axis will be explained below with reference to FIG. The light projecting means 2 is displaced to a position indicated by an imaginary line 31 and fixed at a fixed position so that the optical axis 3 of the light projecting means 2 becomes an ideal optical axis 30. Next, the light receiving means 1 is fixed at the position shown by the imaginary line 32 so that the optical axis 8 of the light receiving means 1 coincides with the ideal optical axis 30. This causes the optical axes 8 and 30 to coincide. Optical axis 3
The light intensity distribution having , is symmetrical within a plane 1α perpendicular to the optical axis 3, as indicated by reference numeral 34 on the reference line 33 perpendicular to the optical axis 3.

第6図を参照して、投光手段2を仮想線31に示される
位置にもたらすためにマスク24,248の絞り口23
,23aを小さく絞る。絞り口23.23aを賄りた光
を光軸m祭用受光素子14゜14aとによって受光する
。第6図の状鎧における光軸調整用受光素子14の受光
状層は第7図に示されている。絞り口23が小さいとき
、入射光束がすべて受光素子14に入射される。光軸調
整用受光素子14と光軸調整用受光素子14.aの出力
レベルが同一となるように投光手段2をy位して仮想線
31に示される位置にもたらす。
Referring to FIG. 6, the aperture 23 of the mask 24,248 is
, 23a are narrowed down. The light that covers the aperture 23.23a is received by the light receiving element 14.degree. 14a for optical axis m. The light-receiving layer of the light-receiving element 14 for optical axis adjustment in the armor shown in FIG. 6 is shown in FIG. When the aperture 23 is small, all of the incident light beam is incident on the light receiving element 14. Optical axis adjustment light receiving element 14 and optical axis adjustment light receiving element 14. The light projecting means 2 is moved to the y position and brought to the position shown by the imaginary line 31 so that the output level of a is the same.

第8図を参照して受光手段2を仮想!32で示される位
置にもたらして光軸8を理想光軸30に一致させるため
にマスク24.24aの絞り口23.23aを全開にす
る。マスク24.24aの絞り口23.23aを大きく
シ、光軸調整用受光レンズ13.13aiC入射される
光束を総て光軸調整用受光素子14.14aに入射させ
る。受光手段lか参照符40で示される方向に傾いてい
るとき、収差の影斡によって光軸調整用受光素子14に
入射される光束は、第9図に示されるようにはずれるこ
とになる。このとき光軸調整用受光素子14aは、光軸
調整用受光素子14とは逆に上方が長いため光軸調整用
受光レンズ14aに入射される光束を総て入射される。
Hypothetical light receiving means 2 with reference to FIG. 8! The aperture 23.23a of the mask 24.24a is fully opened in order to bring the mask 24.24a to the position indicated by 32 and align the optical axis 8 with the ideal optical axis 30. The aperture 23.23a of the mask 24.24a is enlarged to allow all the light beams incident on the optical axis adjustment light receiving lens 13.13aiC to be incident on the optical axis adjustment light receiving element 14.14a. When the light receiving means 1 is tilted in the direction indicated by reference numeral 40, the light beam incident on the optical axis adjustment light receiving element 14 is deviated as shown in FIG. 9 due to the influence of aberration. At this time, the light receiving element 14a for adjusting the optical axis receives all the light flux that is incident on the light receiving lens 14a for adjusting the optical axis because the upper part thereof is longer than the light receiving element 14 for adjusting the optical axis.

このため光軸調整用受光素子14,14aに入射される
光信号の受光量が異なる。光軸調整用受光素子14.1
4aによって受光される受光量が1−一になるように受
光手段lの角反を変位させることによって受光手段1の
光軸8を理想光軸30に一致させることができる。
Therefore, the amounts of received optical signals incident on the optical axis adjustment light receiving elements 14 and 14a are different. Light receiving element for optical axis adjustment 14.1
The optical axis 8 of the light receiving means 1 can be made to coincide with the ideal optical axis 30 by displacing the angle of the light receiving means 1 so that the amount of light received by the light receiving means 4a becomes 1-1.

受光手段1が参照符41で示される方向に傾いていると
き、光軸調整用受光素子L4aKよって受光される受光
量↓は、光軸調整用受光素子14によって受光される受
光量より少なくなる。両者の受光量を一致させることに
よって受光手段1の光軸8を理想光軸30に一致させる
ことができる。
When the light receiving means 1 is tilted in the direction indicated by reference numeral 41, the amount of light received by the light receiving element L4aK for optical axis adjustment is smaller than the amount of light received by the light receiving element 14 for adjusting the optical axis. By matching the amount of light received by both, the optical axis 8 of the light receiving means 1 can be made to match the ideal optical axis 30.

以上のように光学系9,100出力によって受光手段1
の垂直方向の傾きを調整したが、光学系11.12の出
力によって受光手段lの水平方向の傾きを調整する動作
は、光学系9,10のときと同様である。
As described above, the light receiving means 1 is
However, the operation of adjusting the horizontal tilt of the light receiving means l using the outputs of the optical systems 11 and 12 is the same as that for the optical systems 9 and 10.

第1O図は、受光手段1の構成を示すブロック図である
。光学系1aは、支持板5、集束レンズ6、光軸調整用
受光レンズ13.13a、27゜28を有している。葦
た光学系1aは、光軸Ill#祭用受光用受光レンズ1
3a、27.28によってそれぞれ集束される光信号を
電気信号に変換し、それぞれライン11−1!4を介し
て出力する。差動回路lbは、ライン11.12を介し
て入力される光軸調整用受光レンズ13,13aからの
信号の差をめる。差動回路1bKより請求められた結果
は、垂直方向調整回路1c[入力される。
FIG. 1O is a block diagram showing the configuration of the light receiving means 1. As shown in FIG. The optical system 1a has a support plate 5, a focusing lens 6, and a light receiving lens 13.13a for optical axis adjustment, 27°28. The reed optical system 1a has an optical axis Ill# light receiving lens 1 for festival light receiving.
The optical signals focused by 3a, 27, 28, respectively, are converted into electrical signals and output via lines 11-1!4, respectively. The differential circuit lb calculates the difference between the signals from the optical axis adjusting light receiving lenses 13 and 13a inputted via lines 11 and 12. The result requested by the differential circuit 1bK is input to the vertical adjustment circuit 1c.

垂直方向判定回路1cは、差動回路1bからの出力によ
って受光手段1の垂直方向の傾きを判定する。垂直方向
調整回路1dは、垂直方向判定回路1cからの出力に応
答し、受光手段1の垂直方向の調整を行なう。垂直方向
判定回路1cはまた、表示回路1eに判定結果を出力す
る。
The vertical direction determination circuit 1c determines the vertical direction inclination of the light receiving means 1 based on the output from the differential circuit 1b. The vertical direction adjustment circuit 1d adjusts the light receiving means 1 in the vertical direction in response to the output from the vertical direction determination circuit 1c. The vertical direction determination circuit 1c also outputs the determination result to the display circuit 1e.

差動回路1fは、ラインI!3 、 /4を介して入力
される光軸調整用受光レンズ27.28の信号の差をめ
る。水平方向判定回路1gは、差動回路1fからの信号
によって受光手段1の水平方向の傾きを判定する。水平
方向調整回路lhI″i、水平方向判定回路1gからの
出力によって受光手段lの水平方向を調整する。水平方
向’flJ定回IM1gけまた、判定結果を表示回路1
eに出方する。
The differential circuit 1f is connected to the line I! 3. Calculate the difference between the signals of the optical axis adjustment light receiving lenses 27 and 28 inputted through /4. The horizontal direction determination circuit 1g determines the horizontal direction inclination of the light receiving means 1 based on the signal from the differential circuit 1f. The horizontal direction of the light receiving means l is adjusted by the output from the horizontal direction adjustment circuit lhI''i and the horizontal direction determination circuit 1g.
I will appear on e.

加算回路1iij、光軸調整用受光レンズ13゜13a
、27.28からの信号を加算する。加算回路1iはま
た、加算結果を表示回路1eに出方する。
Addition circuit 1iij, light receiving lens for optical axis adjustment 13° 13a
, 27. Add the signals from 28. The addition circuit 1i also outputs the addition result to the display circuit 1e.

以下第1θ図を用いて受光手段1の動作を説明する。光
軸調繁用受光レンズ13.13aによって集束された光
信号によって受光手段1の垂直方向の傾きを検知し、垂
直方向調整回路1dによって受光手段lの垂直方向の傾
きを補正する。また光+11111調整用受光レンズ2
7.28の出方によって受光手段lの水平方向の傾きを
判定する。受光手段lの水平方向の傾きを検知した後、
水平方向調整回路1hによって受光手段lの水平方向の
傾きを調整する。また垂直方向および水平方向の傾きは
表示回路1eによって表示され、手動で受光手段lの傾
きを補正してもよい。加算回路1iは光軸調整用受光レ
ンズ13.13a、27.28の信号を加算することに
よって受光手段1に入力される受光量をめるこ七かでき
る。加算回路11によって加算された後に表示回路1e
によって計算結果を出力する。
The operation of the light receiving means 1 will be explained below using FIG. 1θ. The vertical tilt of the light receiving means 1 is detected by the optical signal focused by the optical axis adjustment light receiving lens 13.13a, and the vertical direction adjustment circuit 1d corrects the vertical tilt of the light receiving means 1. Also, light receiving lens 2 for adjusting light +11111
The horizontal inclination of the light receiving means l is determined based on the appearance of 7.28. After detecting the horizontal tilt of the light receiving means l,
The horizontal direction adjustment circuit 1h adjusts the horizontal direction inclination of the light receiving means l. Further, the vertical and horizontal inclinations are displayed by the display circuit 1e, and the inclination of the light receiving means 1 may be corrected manually. The adding circuit 1i can increase the amount of light received by the light receiving means 1 by adding the signals from the light receiving lenses 13.13a and 27.28 for adjusting the optical axis. After being added by the adding circuit 11, the display circuit 1e
Output the calculation result by.

以上のように絞り口を小さく調整し、投光手段の光軸を
設定した後に、絞り口を大きくし、受光手段の光軸を設
定するので、正確に光軸を設定することができる。
As described above, after adjusting the aperture to a smaller size and setting the optical axis of the light projecting means, the aperture is made larger and the optical axis of the light receiving means is set, so that the optical axis can be set accurately.

上述の実施例では光軸15,15aと距fM8との距1
46 P Q (第3図参照)が同一値であったけれど
も他の実施例として異ったf直であってもよい。
In the above embodiment, the distance 1 between the optical axes 15, 15a and the distance fM8 is
Although 46 P Q (see FIG. 3) were the same value, different f values may be used in other embodiments.

距離PQを異った値とするとき光軸調整用受光素子14
.14aはあらがじめ定めた値となるように受光手段1
、投光手段2を調整する。
When the distance PQ is set to a different value, the light receiving element 14 for adjusting the optical axis
.. 14a is the light receiving means 1 so as to have a predetermined value.
, adjust the light projecting means 2.

tjfJ述の実施例では、投光手段2がら赤外線を照射
すると述べたが、自然光と異なる波長であるならば他の
光線でもよい。
In the embodiment described above, infrared light is emitted from the light projection means 2, but other light may be used as long as it has a wavelength different from that of natural light.

効果 以上のように本発明によれば、光1lIlII調整用受
光素子を主受光素子の周囲に収り付け、光軸調整用受光
素子からの出力によって主受光素子の傾きをtliJ整
するので、′8易かつ正(11〔に光軸の調整を行なう
ことができる。
Effects As described above, according to the present invention, the light-receiving element for adjusting the light 1lIlII is arranged around the main light-receiving element, and the inclination of the main light-receiving element is adjusted by the output from the light-receiving element for adjusting the optical axis. The optical axis can be adjusted to 8 easy and positive (11).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にしたがって構成される受光手段1の一
実施例を示す図、第2図は受光手段lの正面図、第3図
は第2図の切断曲線111− IIからみた簡略化され
た断面図、第4図は光軸調整用受光素子14の正面図、
第5図は受光手段1および投光手段2の動作を示す図、
第6図は投光手段2を調整するときの動作を示す図、第
7図は光軸調整用受光レンズ13と光軸調整用受光素子
14の簡略化した側面図、第8図は受光手段1を調整す
るときの動作を示す図、第9図は光軸調整用受光レンズ
13と光軸調整用受光素子14との(資)略化した側面
図、第1θ図は受光手段1の構成を示すブロック図であ
る。 l・・・受光手段、2・・・投光手段、13,13a。 27.28 ・光袖調祭用受光レンズ、14,14a・
・・光軸調整用受光素子 第2図 第3図 第4図 第6図 第7図 第8図 、/4 第10図 手続補正書 昭和59年 9月25日 特願昭59−30764 2、発明の名称 光軸調整方法 3、補正をする者 事件との関係 出願人 住所 名称(583)松下電工株式会社 代表渚 4、代理人 住 所 大阪市西区西本町1丁目13@38号 新入産
ビル国装置EX 0525−5985 INi’APT
 J国際FAX GIIl&GII (06)538−
02476、補正の対象 明細書の発明の詳細な説明の欄 7、補正の内容 明細書第io*fjS2打目〜3行目におり1てt計算
結果」とあるを 「計昇結果」に訂正する。 以上
1 is a diagram showing an embodiment of the light receiving means 1 constructed according to the present invention, FIG. 2 is a front view of the light receiving means 1, and FIG. 3 is a simplified view of the cutting curve 111-II in FIG. 2. FIG. 4 is a front view of the light receiving element 14 for adjusting the optical axis.
FIG. 5 is a diagram showing the operation of the light receiving means 1 and the light projecting means 2;
FIG. 6 is a diagram showing the operation when adjusting the light projecting means 2, FIG. 7 is a simplified side view of the light-receiving lens 13 for adjusting the optical axis and the light-receiving element 14 for adjusting the optical axis, and FIG. 8 is a diagram showing the light-receiving means. FIG. 9 is a simplified side view of the optical axis adjustment light receiving lens 13 and the optical axis adjustment light receiving element 14, and FIG. 1θ is the configuration of the light receiving means 1. FIG. l... Light receiving means, 2... Light projecting means, 13, 13a. 27.28 ・Light receiving lens for light sleeve adjustment festival, 14, 14a・
...Photo-receiving element for optical axis adjustment Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8, /4 Figure 10 Procedural amendment document September 25, 1980 Patent application 1982-30764 2, Name of the invention: Optical axis adjustment method 3, relationship with the case of the person making the amendment Applicant address name (583) Matsushita Electric Works Co., Ltd. Representative Nagisa 4, agent address 38 Nishihonmachi 1-chome, Nishi-ku, Osaka Shin-Nisan Building Country equipment EX 0525-5985 INi'APT
J International FAX GIIl&GII (06)538-
02476, Detailed explanation of the invention column 7 of the specification to be amended, contents of the amendment No. io*fjS, lines 2 to 3, 1 t calculation result'' is corrected to ``result of accrual'' do. that's all

Claims (1)

【特許請求の範囲】 光軸からの光を受光する光軸が調整されるべき主受光素
子の外周に、光源からの光を受光することができる複数
の光軸調整用受光素子を、主受光素子と一体的に取り付
け、 前記光軸調整用受光素子は、受光量に対応した出力レベ
ルを有する電気信号を導出し、光軸調整用受光素子から
の出力レベルの相互の関係が予め定めた状態になるよう
に、主受光素子および光軸調整用受光素子を変位させる
ことを特徴とする光軸調整方法。
[Scope of Claims] A plurality of optical axis adjustment light receiving elements capable of receiving light from a light source are arranged around the outer periphery of the main light receiving element whose optical axis is to be adjusted. The light-receiving element for optical axis adjustment derives an electrical signal having an output level corresponding to the amount of received light, and the relationship between the output levels from the light-receiving element for optical axis adjustment is in a predetermined state. An optical axis adjustment method characterized by displacing a main light receiving element and an optical axis adjustment light receiving element so that
JP3076484A 1984-02-20 1984-02-20 Optical axis adjusting method Pending JPS60175015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3076484A JPS60175015A (en) 1984-02-20 1984-02-20 Optical axis adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3076484A JPS60175015A (en) 1984-02-20 1984-02-20 Optical axis adjusting method

Publications (1)

Publication Number Publication Date
JPS60175015A true JPS60175015A (en) 1985-09-09

Family

ID=12312745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3076484A Pending JPS60175015A (en) 1984-02-20 1984-02-20 Optical axis adjusting method

Country Status (1)

Country Link
JP (1) JPS60175015A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260147A (en) * 2006-03-28 2007-10-11 Tadayuki Tange Multipurpose hot-water bottle
US8561821B2 (en) 2010-01-14 2013-10-22 Amcor Limited Heat set container
CN104501745A (en) * 2015-01-19 2015-04-08 中国人民解放军国防科学技术大学 Photoelectronic imaging system optical axis difference rapid detection method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260147A (en) * 2006-03-28 2007-10-11 Tadayuki Tange Multipurpose hot-water bottle
US8561821B2 (en) 2010-01-14 2013-10-22 Amcor Limited Heat set container
US9079709B2 (en) 2010-01-14 2015-07-14 Amcor Limited Heat set container
CN104501745A (en) * 2015-01-19 2015-04-08 中国人民解放军国防科学技术大学 Photoelectronic imaging system optical axis difference rapid detection method and device

Similar Documents

Publication Publication Date Title
US4735498A (en) Eye movement measuring apparatus
DK151437B (en) SYSTEM TO BRING AN IMAGE IN REGISTER
JP4976474B2 (en) Optical transceiver for transmission direction control
US4695139A (en) Plural-zone mirror focusing system
JPS5799604A (en) Focus detector
Skrutskie et al. Faint photometry of edge-on spiral galaxies-a search for massive halos
JPS60175015A (en) Optical axis adjusting method
US3578978A (en) Optical projector including photo-sensitive device
WO1993018562A1 (en) Laser focus compensating sensing and imaging device
JPH0143620Y2 (en)
JPH03277990A (en) Photoelectric switch for detecting minute matter
JPS59119545A (en) Out-of-focus detecting method
JPS56133704A (en) Focus error detector
US20040190908A1 (en) Optical transmission device
JPS56108809A (en) Measuring apparatus of deposit profile in blast furnace
JPS6233426Y2 (en)
JPS5270851A (en) Focal point adjusting system for rays
JPS551612A (en) Light beam position correcting method
SU855411A1 (en) Device for spectral measurements of solar radiation transmission by earth atmosphere
SU838343A1 (en) Device for automatic stabilizing of light beam spatial position
US3510668A (en) Goniometer with reference light source for compensating for inaccuracies in reticle
RU1658708C (en) Device for keeping standard direction
JPS5660311A (en) Alignment method and device for vertical type machine
JPS62138714A (en) Earth sensor
JPS57148710A (en) Focus detector