JPS60174930A - Densitometer - Google Patents

Densitometer

Info

Publication number
JPS60174930A
JPS60174930A JP3088584A JP3088584A JPS60174930A JP S60174930 A JPS60174930 A JP S60174930A JP 3088584 A JP3088584 A JP 3088584A JP 3088584 A JP3088584 A JP 3088584A JP S60174930 A JPS60174930 A JP S60174930A
Authority
JP
Japan
Prior art keywords
light
interface
concentration
suspended substance
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3088584A
Other languages
Japanese (ja)
Inventor
Yasushi Zaitsu
財津 靖史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP3088584A priority Critical patent/JPS60174930A/en
Publication of JPS60174930A publication Critical patent/JPS60174930A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to detect the concn. of a high concn. suspended substance, in the optical measurement of the concn. of the suspended substance contained in waste water, by allowing laser beam to be incident to the interface of a measuring liquid and detecting the size of the beam image generated to an interface by reflected and scattered beam of said laser beam. CONSTITUTION:Laser beam 4 of He or Ne is incident to the interface 8 of a liquid 1 containing a suspended substance and a glass plate 7 from a beam source 5, and reflected and scattered by the suspended substance to generate a circular beam image 6 at the interface 8. As the concn. of the suspended substance becomes high, the radius of the beam image 6 becomes small. Hereupon, an optical fiber 9 is arranged in the radius direction of the beam image to detect the size of the radius of the beam image and the concn. of the suspended substance is operated by an operation apparatus 13. Because measuring beam is projected to the interface to detect the beam image, this measuring mechanism is different from a method for measuring the attenuation of beam transmission by the suspended substance and even the high concn. suspended substance can be measured with high accuracy.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は発酵、食品、パルプ等の産業分野における廃水
に含まれる懸濁物の濃度を光学的に測定する濃度計、特
に廃水に接触する部分忙懸濁物による閉塞を生じること
なく高濃度までの測定が行え、かつ測定結果が廃水接−
触部の汚れの影響を受けることがないようにすることも
できる濃度計に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a densitometer that optically measures the concentration of suspended matter contained in wastewater in industrial fields such as fermentation, food, pulp, etc. Measurements up to high concentrations can be carried out without clogging due to partially suspended particles, and the measurement results can be transmitted directly to waste water.
The present invention relates to a densitometer which can be prevented from being affected by dirt on the contact part.

〔従来技術とその問題〕[Prior art and its problems]

液体中の懸濁物濃度を測定するために従来光学的手法が
多く採用されているが、この手法は大別して透過光式と
散乱光式とに分類され、それぞれ従来の手法には次に説
明するような問題がある。
Conventionally, many optical methods have been adopted to measure the concentration of suspended matter in liquids, but these methods can be broadly classified into transmitted light methods and scattered light methods, and each conventional method is explained below. There is a problem like that.

すなわち、透過光式は液体中を透過した光の減衰な測定
する方式であるが、この方式は懸濁物7の@度が高くな
ると透過光の減衰量が大きくなるため、発光強度の大き
い光源や高感度な受光素子を用いるとか、検出部におけ
る液体試料め流路を狭くしてここを横断、透過する光の
光路長を短くするなどの対策を講じる盛装があり、流路
な狭くすると懸濁物によってこの流路がつまる恐れがあ
るので、この測定方式による上限濃度は通常乾燥濃度で
1チ程度とされている。すなわち透過光式には測定可能
乾燥濃度の上限が1%程度で、これ以上の濃度では試料
の流路がつまる恐れがあるという問題がある。
In other words, the transmitted light method measures the attenuation of light transmitted through a liquid, but this method uses a light source with a high emission intensity because the amount of attenuation of transmitted light increases as the degree of suspension 7 increases. There are measures to be taken, such as using a high-sensitivity light-receiving element, or narrowing the flow path for the liquid sample in the detection part to shorten the optical path length of the light that traverses and passes through it. Since this flow path may be clogged with turbid matter, the upper limit concentration in this measurement method is usually set to be about 1 inch in terms of dry concentration. That is, the transmitted light method has a problem in that the upper limit of the measurable dry concentration is about 1%, and if the concentration is higher than this, the sample flow path may be clogged.

一方、散乱光式は液体中に投射された光の懸濁物による
散乱光を測定する方式で、この方式でも透過光弐の場合
と同様に懸濁物の濃度が高くなると散乱光強度か弱(な
るので、光源の発光強度を大きくしなければならないと
か受光素子の感度を高(しなげればならないなどの問題
かあり、散乱光強度か弱(なると受光素子に入射する散
乱光以外の迷光も無視できな(なるので、−個の光源に
もとづく散乱光を二個所で検出して両検出結果を比較す
る散乱光比較方式と呼ばれる方式が採用されることもあ
るが、この場合でも測定可能上限濃度は乾燥濃度でたか
だか1%程度で、これ以上の懸濁物濃度は測定できない
という問題がある。
On the other hand, the scattered light method measures the light scattered by suspended objects in the light projected into the liquid. In this method, as in the case of transmitted light 2, as the concentration of suspended objects increases, the intensity of the scattered light decreases. (Therefore, there are problems such as having to increase the emission intensity of the light source or increasing the sensitivity of the light receiving element.If the scattered light intensity is weak (if the stray light other than the scattered light that enters the light receiving element cannot be ignored (because of this, a method called the scattered light comparison method is sometimes adopted in which scattered light from - number of light sources is detected at two locations and the results of both detections are compared, but measurement is possible even in this case. The upper limit concentration is approximately 1% at most in terms of dry concentration, and there is a problem in that suspended matter concentrations higher than this cannot be measured.

また、以上は上述した各測定方式に個有の問題であるが
、これら両方式に共通な問題として、両方式がいずれも
光学的な測定方式であるが故に、検出部を構成する測定
セル壁に懸濁物が付着していわゆる汚れが発生するとこ
こt透過する光の強度が変化する結果大きい測定誤差を
生じるという問題もある。
Although the above are problems specific to each of the measurement methods mentioned above, a problem common to both of these methods is that since both methods are optical measurement methods, the wall of the measurement cell that constitutes the detection section There is also the problem that when so-called contamination occurs due to the adhesion of suspended matter to the surface, the intensity of the transmitted light changes, resulting in a large measurement error.

〔発明の目的〕[Purpose of the invention]

本発明は、液体中の懸濁物濃度を測定する、上述した従
来の光学的測定方式を採用した濃度計における問題点を
解決して、高#に度測定が可能でかつ懸濁物によって閉
塞が発生する恐れがなく、そのうえ測定結果が懸濁物に
よる接液部の汚れの影響を受けることのないようにする
こともできる懸濁物濃度測定用の濃度計を提供すること
を目的とするものである。
The present invention solves the problems with the densitometer that uses the conventional optical measurement method described above to measure the concentration of suspended matter in a liquid. It is an object of the present invention to provide a densitometer for measuring the concentration of suspended solids, which is free from the risk of occurrence of turbidity, and which also prevents measurement results from being affected by contamination of parts in contact with the liquid due to suspended solids. It is something.

〔発明の要点〕[Key points of the invention]

本発明は、上述の目的を達成するために、光源装置によ
ってレーザビームのようなビーム状の測定光音懸濁物を
含む液体と気体または透光性を有する固体との界面に気
体または固体側から投射し、この時液体に入射したビー
ム状測定光の反射、散乱によって前記界面に生成される
円形または楕円形状の光像の少なくとも一部を前記界面
とは異なる場所に光伝送手段によって伝送し、検出部f
tKよって、光伝送手段を介して伝送された光を受光し
て前記光像の大きさを検出するよ5にしたもので、この
場合光像の大きさが液体中の懸濁物濃度と一定の関係を
有するところから、さらに、光像の大きさに応じた検出
装置の出方信号について演算を行って懸濁物濃度に応じ
た信号を出方する演算装置を設け、このような光源装置
と光伝送手段と検出装置と演算装置とで懸濁物濃度を測
定する櫃度計を構成するようにしたものであって、この
ように濃度計を構成することによって、高濃度の懸濁物
の場合にも、濃度計の前記液体が接触する部分に懸濁物
による閉塞が生じることがな(、かつ光伝送手段をもた
ないで、検出装置を構成する受光部を前記界面に直接対
向させるようにした濃度計におけるよりも高濃度の測定
が行えるようにしたものであり、そのうえ、懸濁物にょ
る接液部の汚れの影舎を受けることのない測定結果を得
ることもできるようにしたものである。
In order to achieve the above-mentioned object, the present invention uses a light source device to generate a beam-like measurement light sound, such as a laser beam. At least a part of a circular or elliptical optical image generated at the interface by reflection and scattering of the beam-shaped measurement light incident on the liquid is transmitted to a location different from the interface by an optical transmission means. , detection section f
tK, the size of the light image is detected by receiving the light transmitted through the light transmission means, and in this case, the size of the light image is constant with the concentration of suspended matter in the liquid. In addition, since the light source device has the following relationship, a calculation device is provided which performs calculations on the output signal of the detection device according to the size of the light image and outputs a signal according to the suspended matter concentration, and such a light source device , a light transmission means, a detection device, and an arithmetic device constitute a concentration meter for measuring the concentration of suspended matter. By configuring the concentration meter in this way, it is possible to In this case, the part of the densitometer that comes into contact with the liquid is not blocked by suspended matter (and the light-receiving part constituting the detection device is directly opposed to the interface without having an optical transmission means). It is designed to be able to measure higher concentrations than a densitometer designed to do so, and it also allows measurement results to be obtained without being affected by contamination of the wetted parts due to suspended matter. This is what I did.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を図面を参照して説明するが、まず
始めに本発明による濃度計の動作原理を説明する。第1
図は動作原理基本図で、図において1は測定対象である
懸濁物を含む液体、2は液体1の上方にあってかっこの
液体に接する、たとえば空気のような気体、3は液体l
と気体2との界面である。気体2はガラスのような透光
性を有する固体であってもよい。5はレーザビームのよ
うな細いビーム状の測定光4fI!:出射する光源装置
で、光源装置5は測定光4を気体2の側から界面3にほ
ぼ垂直に投射するように配設されている。
Next, embodiments of the present invention will be described with reference to the drawings, but first, the operating principle of the densitometer according to the present invention will be explained. 1st
The figure is a basic diagram of the operating principle. In the figure, 1 is a liquid containing suspended matter to be measured, 2 is a gas such as air that is above liquid 1 and in contact with the liquid in parentheses, and 3 is a liquid l
and gas 2. The gas 2 may be a translucent solid such as glass. 5 is a narrow beam-like measurement light 4fI like a laser beam! : A light source device that emits light, and the light source device 5 is arranged so as to project the measurement light 4 from the gas 2 side almost perpendicularly to the interface 3.

図では測定光4は空間伝送されているが光ファイバによ
って伝送されるようにしてもよい。光源装置5は、気体
2Kかわってこの部分に透光性の固体が設けられている
時は、この固体を透過して光4を界面3に投射するよう
に配置されて差し支えない゛し、また光4は界面3に必
ずしも垂直に投射される必要はない。Pは光4と界面3
との交点である。
In the figure, the measurement light 4 is spatially transmitted, but it may also be transmitted through an optical fiber. When a translucent solid is provided in this part instead of the gas 2K, the light source device 5 may be arranged so as to transmit the light 4 to the interface 3 after passing through this solid. The light 4 does not necessarily need to be projected perpendicularly to the interface 3. P is light 4 and interface 3
It is the intersection with

第1図のよ5にして測定光4が液体lに投射されると、
この光の一部は液体lによって吸収され残部は液体1内
で反射、散乱さオる結果、界面3に点Pを中心とする円
形の光像6が生成され、この光像6の大きさは液体1に
おける懸濁物の濃度に応じて変化する。本発明者の実験
によれは、液体1を懸濁物としての汚泥を含む下水とし
、光源装置5に出力1mWの)ie−Neレーザな用い
た場合、汚泥の乾燥衾度が5俤の時光1#!6の直径は
ほぼ101K、汚泥乾燥濃度0.5チの時光像の直径は
約40顛であった。第2図はこの光源6における光の強
度分布観測結果の砥略図で、図ににいてRは点Pからの
距、離、■は点Pからbの距離に?げる点の光像の強度
で、H、M 、 Lはそれぞれ液体1中の懸濁物濃度が
高い場合、中程夏である場合、低い場合の各特性線であ
る。図から1い濁物濃度が高(なる程光像が小さくなり
かつその中心の光強度が強くなることが明らかである。
When the measuring light 4 is projected onto the liquid l as shown in Figure 1,
A part of this light is absorbed by the liquid 1, and the rest is reflected and scattered within the liquid 1. As a result, a circular light image 6 centered at the point P is generated at the interface 3, and the size of this light image 6 is varies depending on the concentration of the suspended matter in liquid 1. According to experiments conducted by the present inventor, when the liquid 1 is sewage containing sludge as a suspended matter and an ie-Ne laser (with an output of 1 mW) is used as the light source device 5, it was found that when the drying degree of the sludge was 5 degrees, the light 1#! 6 had a diameter of approximately 101 K, and when the sludge dry concentration was 0.5 cm, the diameter of the optical image was approximately 40 cm. Figure 2 is a schematic diagram of the observation results of the light intensity distribution in this light source 6. In the figure, R is the distance from point P, and ■ is the distance from point P to b. H, M, and L are the characteristic lines when the concentration of suspended matter in the liquid 1 is high, midsummer, and low, respectively. It is clear from the figure that the light image becomes smaller and the light intensity at the center becomes stronger when the turbidity concentration is high.

Sは特性線H9M、Lのいずれにも交わるように1 =
 I sに設定した特性線、A、B、Cは特性線Sと)
i、M、Lの各特性線との交点で、特性線SにおけるI
sは点A、kl。
S is 1 = so that it intersects both the characteristic lines H9M and L.
The characteristic line set for I s, A, B, and C are the characteristic line S)
I in the characteristic line S at the intersection with each characteristic line i, M, L
s is point A, kl.

Cに対応する距離比が懸濁物濃度が高くなると短(なる
ように設定されている。第3図は第2図の点A、B、C
等の特性線S上の点に対応する距離比の値Rsと懸濁物
の濃度りとの関係を第2図から作図したもので、本図か
ら懸濁物濃度が高くなるとRsが小さくなることが一層
明らかである。
The distance ratio corresponding to C becomes shorter as the suspended solids concentration increases. Figure 3 shows points A, B, and C in Figure 2.
The relationship between the distance ratio value Rs corresponding to the point on the characteristic line S of This is even more obvious.

Rsは第2図から明らかなように、第1図における光像
6の大きさを表j量であるから、第3図は光像6の大き
さと懸濁物濃度との関係を示すもので、両者間にはこの
ような一定の関係があるから、Rsを測定することによ
って濃度りを知ることが出来る。
As is clear from Fig. 2, Rs represents the size of the light image 6 in Fig. 1, so Fig. 3 shows the relationship between the size of the light image 6 and the concentration of suspended matter. Since there is such a certain relationship between the two, it is possible to know the concentration by measuring Rs.

上述した説明はビーム光4が界面3に垂直に投射される
場合であった。ビーム光4が界thr3に斜めに投射さ
れると光像6は楕円になる。°しかしながらこの場合も
楕円の大きさが懸濁物のms−に応じて変化する。した
がって、この場合、たとえば楕円状光像の長軸の長さを
測定1−ることによって懸濁物裏皮を知ることかできる
。本発明の濃度計は、上記したように、ビーム光4を界
面3に投射した時にこの界面に生成される円形または楕
円形の光像の大きさを測定することによって、懸濁物濃
度を測定することを測定原理とするものである。
In the above explanation, the light beam 4 was projected perpendicularly to the interface 3. When the light beam 4 is obliquely projected onto the field thr3, the optical image 6 becomes an ellipse. ° However, in this case too the size of the ellipse changes depending on the ms- of the suspension. Therefore, in this case, the suspension skin can be determined, for example, by measuring the length of the long axis of the ellipsoidal light image. As described above, the densitometer of the present invention measures the concentration of suspended matter by measuring the size of the circular or elliptical light image generated at the interface when the beam light 4 is projected onto the interface 3. The measurement principle is to

第4図は上述の動作原理を通用した本発明による#度計
の舘−実施例の構成図で、図において7は液体1をとり
囲む壁の一部を構成しているガラス板、8はガラス板7
と液体1との界面である。
FIG. 4 is a block diagram of an embodiment of a #meter according to the present invention which applies the above-mentioned operating principle. In the figure, 7 is a glass plate forming a part of the wall surrounding the liquid 1, and 8 is a glass plate 7
This is the interface between the liquid 1 and the liquid 1.

この場合光源装置5はガラス板7を介して測定光4を界
面8にほぼ垂直に投射するように配置され、この場合に
も界面8に円形の光像6を生じる。Qはガラス板7の光
源装置5側の面と光4との交点である。9は多数の光フ
ァイバの隣り合うものが接触するようにして、この多数
の光ファイバが柔軟性を有する同一基板上に並置、固定
された光ファイバ束で、この元ファイバ束9の両端面は
それぞれ一平面上にあるように形成され、光ファイバ束
9の一端面はガラス板70点Qのある面上にあってかつ
点Qから放射状に出る一本の半直線上にあるようにして
当接、固定され、光ファイバ束9の他端面は複数個のフ
ォトダイオードを一列に並べて形成された光電変換部1
0に尚接、固定されている。光ファイバ束9はガラス板
70点Qのある面上においては、jt、4が界面8に投
射され条のを妨げないようにして、できるだけ点Qの近
(Kまで配置されている。光ファイバ束9は上述のよう
に構成されているので光像6の少なくとも一部を光電変
換部10に伝送し、光電変換部10は光ファイバ束9を
構成する個々の光ファイノ(から出射された光の強度に
応じた複数個の電気信号を並列または直列な出カイ百号
10aとして信号処理部11に出力し、信号処理部11
は信号10aの中の、第2図で説明した光強夏Is以上
の光強度に応じた信号の個数を検出して光像6の大きさ
に和尚した信号11aを出力する。すなわち、光ファイ
バ束9は、測定ft、4によって界面81C生成した光
像6の少なくとも一部を界面8とは異なる場所、たとえ
ば光電変換部10に伝送する光伝送手段を構成しており
、光電変換部10と信号処理部11とは、光伝送手段と
しての光ファイバ束9によって伝送された光を受光して
光像6の大きさに応じた信号11aを出力する検出装置
12を構成している。13は検出装置12の出力信号1
1aが入力されると第3図の特性線に応じた演算を行い
、液体1中の懸濁物濃度に応じた信号13aを出力する
演算装置で、14は上述の光源装置5と光ファイバ束9
と検出装置12と演算装置13とからなるrIk度計で
ある。
In this case, the light source device 5 is arranged so as to project the measurement light 4 substantially perpendicularly onto the interface 8 via the glass plate 7, and in this case also produces a circular light image 6 on the interface 8. Q is the intersection of the light 4 and the surface of the glass plate 7 on the light source device 5 side. Reference numeral 9 denotes an optical fiber bundle in which a large number of optical fibers are arranged and fixed on the same flexible substrate so that adjacent ones of the optical fibers are in contact with each other, and both end surfaces of this original fiber bundle 9 are Each of the optical fiber bundles 9 is formed so as to be on one plane, and one end face of the optical fiber bundle 9 is on a plane with a point Q on the glass plate 70 and on a half straight line radiating from the point Q. The other end surface of the optical fiber bundle 9 has a photoelectric conversion section 1 formed by arranging a plurality of photodiodes in a row.
It is still connected to 0 and is fixed. The optical fiber bundle 9 is placed as close as possible to the point Q (as far as K) so that jt,4 is projected onto the interface 8 on the surface of the glass plate 70 where the point Q is located, and the fibers are not obstructed. Since the bundle 9 is configured as described above, it transmits at least a part of the optical image 6 to the photoelectric conversion section 10, and the photoelectric conversion section 10 converts the light emitted from each optical fiber (from each optical fiber) constituting the optical fiber bundle 9. A plurality of electric signals corresponding to the intensity of
detects the number of signals in the signal 10a corresponding to a light intensity equal to or higher than the light intensity Is explained in FIG. 2, and outputs a signal 11a adjusted to the size of the optical image 6. That is, the optical fiber bundle 9 constitutes an optical transmission means that transmits at least a part of the optical image 6 generated by the interface 81C by the measurement ft, 4 to a place different from the interface 8, for example, the photoelectric conversion unit 10, and The conversion unit 10 and the signal processing unit 11 constitute a detection device 12 that receives light transmitted by an optical fiber bundle 9 as a light transmission means and outputs a signal 11a according to the size of the optical image 6. There is. 13 is the output signal 1 of the detection device 12
1a is input, it performs calculation according to the characteristic line in FIG. 3, and outputs a signal 13a according to the concentration of suspended matter in the liquid 1. 14 is the above-mentioned light source device 5 and optical fiber bundle. 9
This is an rIk meter consisting of a detection device 12 and an arithmetic device 13.

濃度計14は上述のように構成され℃いるので出力信号
13aによって液体l中の懸濁物濃度を測定することが
でき、この場合の測定は従来の光学的な濃度測定の場合
のように投射光の減衰の程度を測定するものではな(て
光像6の大きさを測定するものであるから高濃度までの
測定を容易に行うことができ、また懸濁物濃度の連続測
定を行うために液体1を点Qめ近傍において流動させる
場合、懸濁物濃度が高くなっても液体1の流路を前述し
た従来の光学的測定方法におけるように狭(する必要は
ないからこの流路が懸濁物によって閉塞されることはな
い。第4図においては界面8が懸濁物によって汚される
と測定結果が影響を受けるが、第1図のようにしてビー
ム光4を界面3に投射するようにし、点P近傍の気体2
中に光像6に対向するようにして光ファイバ束9の端面
な配置すれば、界面3が懸濁物によって汚されて測定結
果に誤差を生じるというようなことは起らない。
Since the densitometer 14 is constructed as described above and has a temperature of 0.degree. C., it is possible to measure the concentration of suspended matter in the liquid 1 by means of the output signal 13a. It does not measure the degree of attenuation of light (but rather measures the size of the light image 6), so it can easily measure up to high concentrations, and it can also be used to continuously measure suspended solids concentration. When liquid 1 is made to flow near point Q, even if the concentration of suspended matter becomes high, the flow path of liquid 1 does not need to be as narrow as in the conventional optical measurement method described above. It will not be blocked by suspended matter.In Figure 4, if the interface 8 is contaminated by suspended matter, the measurement results will be affected, but the beam light 4 is projected onto the interface 3 as shown in Figure 1. Then, the gas 2 near the point P
If the end face of the optical fiber bundle 9 is placed in such a way that it faces the optical image 6, the interface 3 will not be contaminated by suspended matter, which will cause an error in the measurement results.

第4図において、光ファイバ束9を用いないで、ガラス
板7に直接光電変換部10の受光面を当接させても、信
号処理部11から光像6の大きさに応じた信号11aを
出力させることができるが、この場合光電変換部10に
よって検出されうる、点Qに最も近い点の点Qからの距
離Xが、通常光電変換部10が相当な大きさを有するた
め数n程度以上のかなりな長さとなるのに反し、濃度計
14では光ファイバ束9を設け、この光ファイバ束によ
って光像6の一部な光電変換部1oに伝送するようにし
たので、この場合光ファイバ束9を点Qに相当程度近づ
けることができて前記距離Xftft数丁以下ることが
可能になる結果、このような濃度計14は光電変換部1
0”k直接ガラス板7に当接させた濃度針よりも高い懸
濁物濃度の測定な行うことができる。
In FIG. 4, even if the light-receiving surface of the photoelectric converter 10 is brought into direct contact with the glass plate 7 without using the optical fiber bundle 9, the signal 11a corresponding to the size of the optical image 6 is not transmitted from the signal processor 11. However, in this case, the distance X from point Q of the point closest to point Q that can be detected by photoelectric conversion section 10 is usually about several n or more because photoelectric conversion section 10 has a considerable size. However, in the densitometer 14, an optical fiber bundle 9 is provided, and this optical fiber bundle transmits a part of the optical image 6 to the photoelectric converter 1o. 9 can be brought considerably close to point Q, and the distance Xftft or less can be made smaller than the distance Xftft. As a result, such a densitometer 14
0''k It is possible to measure a higher concentration of suspended matter than with a concentration needle brought into direct contact with the glass plate 7.

第4図の実施例においては検出装置12を構成−する光
電変換部10を複数個のフォトダイオードで構成するよ
うにしたが、この光電変換部はフォトトランジスタまた
はCd8等の各複数個で構成してもよいし、またテレビ
カメラで構成してもよいものであり、また第4図の実施
例においては光ファイバ束9の一端をガラス板7に当接
、固定するようにしたが、このファイバ束9はガラス板
7に当接させないでこのガラス板から離して固定するよ
うにしてもよいものである。なお上述の実施例では界面
3または8がいずれも平面状に形成されるものとしたが
、測定光4の投射される界面は、液体lが管状のガラス
壁でとり囲まれて液体1とガラス壁との間に形成された
界面のように曲面状に形成されていてもよく、この場合
光ファイバ束9の液体1側の端面は、たとえばガラス壁
の曲面に沿うようにして該ガラス壁に当接、固定される
In the embodiment shown in FIG. 4, the photoelectric conversion section 10 constituting the detection device 12 is composed of a plurality of photodiodes, but this photoelectric conversion section is composed of a plurality of phototransistors, Cd8, etc. In the embodiment shown in FIG. 4, one end of the optical fiber bundle 9 is brought into contact with the glass plate 7 and fixed. The bundle 9 may not be brought into contact with the glass plate 7, but may be fixed apart from the glass plate. In the above-mentioned embodiment, both the interfaces 3 and 8 were formed in a planar shape, but the interface onto which the measurement light 4 is projected is such that the liquid 1 is surrounded by a tubular glass wall and the liquid 1 and the glass are separated. It may be formed into a curved surface like the interface formed between the optical fiber bundle 9 and the glass wall. Contacted and fixed.

第5図は本発明による濃度計の第二実施例の構−成因で
、図において15は直角プリズム、15aおよび15b
はプリズム15の斜面15Cを挾むプリズム15の第1
および第2底面である。プリズム15は第1底面15a
が光像6に対向するようにして、図示していない手段に
よって気体2中に固定され1、第2底面15bには測定
光4の方向と平行な方向に一列に複数個のフォトダイオ
ードを配列した光電変換部10が受光面を斜面14c側
に向けて当接、固定され℃いる。この場合プリズム15
は、第1底面15aと斜面15cとのな1稜15dが測
定光4側になり、かっこの測定光にできるだけ近づいた
位置に配設されているので、 ゛光像6の一部が斜面1
5cで反射されて第2底面15bに伝送され、この伝送
は液体1中の懸濁物濃度が高くなって光像6の大きさが
小さくなっても確実に行われる。第2底面15bにおい
ては斜面15cで反射された光が光電変換部1oで電気
信号10aに変換される結果、第4図の場合と同様忙し
て演算装置13から液体1中の懸濁物濃度忙応じた信号
13aが出力される。すなわちこの場合、プリズム15
は上述のようにして光像6の一部を第2底面15bに伝
送する光伝送手段を構成しており、16は光源装置5と
光伝送手段としてのプリズム15と検出装置12と演算
装置13しておき、プリズム15にかわって斜面15c
の位置に反射鏡が配置されるようにしてもよい。
FIG. 5 shows the components of a second embodiment of the densitometer according to the present invention, in which 15 is a right angle prism, 15a and 15b
is the first part of the prism 15 that sandwiches the slope 15C of the prism 15.
and a second bottom surface. The prism 15 has a first bottom surface 15a.
is fixed in the gas 2 by means not shown so as to face the optical image 6 1, and a plurality of photodiodes are arranged in a line in a direction parallel to the direction of the measurement light 4 on the second bottom surface 15b. The photoelectric conversion unit 10 is abutted and fixed with its light receiving surface facing the slope 14c. In this case prism 15
The first edge 15d between the first bottom surface 15a and the slope 15c is on the side of the measurement light 4, and is placed as close as possible to the measurement light in the parentheses, so that a part of the light image 6 is on the slope 1
5c and is transmitted to the second bottom surface 15b, and this transmission is reliably performed even if the concentration of suspended matter in the liquid 1 increases and the size of the optical image 6 becomes small. On the second bottom surface 15b, the light reflected on the slope 15c is converted into an electric signal 10a by the photoelectric converter 1o, and as a result, the arithmetic unit 13 transmits the information about the concentration of suspended matter in the liquid 1 as in the case of FIG. A corresponding signal 13a is output. That is, in this case, the prism 15
constitutes a light transmission means that transmits a part of the optical image 6 to the second bottom surface 15b as described above, and 16 includes the light source device 5, the prism 15 as the light transmission means, the detection device 12, and the calculation device 13. Then, replace the prism 15 with the slope 15c.
A reflecting mirror may be placed at the position.

第5図の濃度計16の構成は上述したようになっている
ので出力信号13aによって懸濁物の濃度を測定するこ
とができ、この場合第4図の濃度計14と同様に従来の
光学的な手法を用いた濃度計よりも高い懸濁物濃度の測
定を行うことができ、高濃度測定を連続的に行おうとす
る際液体流路を狭くする必要はないからこの流路が懸濁
物によってつまることはない。また第1底面15aは界
面3から離れていて懸濁物によって汚されることはない
ので、このような汚れが原因でこの濃度計に測定誤差が
発生することはな(、さらにまたこの濃度計では前述し
たようにしてプリズムの稜i5dを測定光4に近づける
ことができるので、第1底面15aの位置に光電変換部
10を配置する場合よりも高い濃度に対する測定が行え
る。
Since the configuration of the densitometer 16 in FIG. 5 is as described above, it is possible to measure the concentration of suspended matter using the output signal 13a. In this case, like the densitometer 14 in FIG. It is possible to measure a higher concentration of suspended matter than a concentration meter using a conventional method, and there is no need to narrow the liquid flow path when trying to continuously measure high concentrations. Don't get stuck because of it. Furthermore, since the first bottom surface 15a is far from the interface 3 and is not contaminated by suspended matter, such contamination will not cause measurement errors in this densitometer (furthermore, in this densitometer, Since the edge i5d of the prism can be brought closer to the measurement light 4 as described above, it is possible to measure a higher density than when the photoelectric conversion section 10 is disposed at the position of the first bottom surface 15a.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明においては、懸濁物を含む液体
と気体または透光性を有するガラスのような固体との界
面に気体側または固体側からビーム状の測定光を投射す
る光源装置と、この測定光によって前記界面に生成した
光像の少な(とも一部をこの界面とは異なる場所に伝送
する、元ファイバやプリズム等で構成した光伝送手段と
、この光伝送手段によって伝送された光を受光して前記
光像の大きさヶ検出する検出装置と、この検出装置の出
力信号が入力され演算を行って前記懸濁物の濃度に応じ
た信号を出力する演算装置とで前記懸濁物の濃度計を構
成するようにしたので、このような濃度計は、従来の光
学的測定方法を用いた濃度計のように投射光の減衰の程
度を測定するものではないから、高濃度の懸濁物濃度を
測定できる効果があり、また懸濁物濃度が^(なっても
、従来の光学的測定方法を用いた濃度計におけるように
液体の流路な狭くする必要はないから、この流路が懸濁
物によって閉塞されることはないという効果もある。さ
らにまた本発明の濃度計では、懸濁物を含む液体の液面
にビーム状の測定光による光像を生成させた場合、光像
に対向する光伝送手段の受光面を懸濁物によって汚され
ないように構成することができるので、このような場合
濃度測定結果が懸濁物による汚損にもとづく誤差を含む
ことはないという効果があり、さらにその上本発明の濃
度計では、光伝送手段を設けないで、検出装置9受光部
を直接光像に対向するように設けて該光像の大きさを検
出し、これKよって濃度測定を行うようにした#f!計
に比べて、光伝送手段を設けたために測定光と界面との
交点直近の光像の太きさまで検出できる結果、前記の光
伝送手段をもたない濃度計よりも高、濃度の測定が行え
る効果がある。
As described above, the present invention includes a light source device that projects a beam-shaped measurement light onto the interface between a liquid containing a suspended substance and a gas or a solid such as a transparent glass from the gas side or the solid side. , an optical transmission means composed of an original fiber, a prism, etc., which transmits a small part of the optical image generated at the interface by this measurement light to a place different from this interface, and A detection device that receives light and detects the size of the light image, and an arithmetic device that receives the output signal of this detection device, performs calculations, and outputs a signal corresponding to the concentration of the suspended matter. Since the densitometer is configured as a densitometer for turbid substances, such a densitometer does not measure the degree of attenuation of the projected light like a densitometer using a conventional optical measurement method. It has the effect of being able to measure the concentration of suspended matter, and even if the concentration of suspended matter becomes low, there is no need to narrow the liquid flow path as in a concentration meter using a conventional optical measurement method. Another advantage is that this flow path is not blocked by suspended matter.Furthermore, in the densitometer of the present invention, a beam-shaped measurement light is used to generate an optical image on the surface of the liquid containing suspended matter. In this case, the light-receiving surface of the light transmission means facing the optical image can be constructed so as not to be contaminated by suspended matter, so that in such cases the concentration measurement results will not include errors due to contamination by suspended matter. Furthermore, in the densitometer of the present invention, without providing a light transmission means, the light receiving part of the detection device 9 is provided to directly face the light image to detect the size of the light image. Compared to the #f!meter, which measures the concentration using K, it is possible to detect the thickness of the light image immediately near the intersection of the measurement light and the interface because it is equipped with a light transmission means, and as a result, it is possible to detect the thickness of the light image immediately near the intersection of the measurement light and the interface. It has the effect of being able to measure higher concentrations than a densitometer that does not have a ton of water.

【図面の簡単な説明】 第1図は本発明による濃度計の動作原理基本図、第2図
は第1図の光像におげ2る光の強度分布図、第3図は第
2図からめた、光像の大きさと懸濁物濃度との関係特性
図、第4図は本発明による濃度計の第一実施例の構成図
、第5図は本発明による濃度計の第二実施例の構成図で
ある。 1・・・・・・液体、2・・・・・・気体としてのを気
、3.8・・・・・・界面、4・・・・・・測定光、5
・・・・・・光源装置、6・・・・・・光像、7・・・
・・・固体としてのガラス板、9・・・・・・光伝送手
段としての光ファイバ束、12・・・・・・検出装置、
13・・・・・・演算装置、14.16・・・・・・濃
度計、15・・・・・・光伝送手段としての直角プリズ
ム。 第 1 図 籐 2tiA 13 図
[Brief Description of the Drawings] Fig. 1 is a basic diagram of the operating principle of the densitometer according to the present invention, Fig. 2 is a diagram of the intensity distribution of light in the optical image of Fig. 1, and Fig. 3 is a diagram of the intensity distribution of light in the optical image of Fig. 2. Figure 4 is a block diagram of the first embodiment of the densitometer according to the present invention, and Figure 5 is a diagram showing the second embodiment of the densitometer according to the present invention. FIG. 1...Liquid, 2...Gas, 3.8...Interface, 4...Measurement light, 5
...Light source device, 6...Light image, 7...
... glass plate as a solid, 9 ... optical fiber bundle as a light transmission means, 12 ... detection device,
13...Arithmetic device, 14.16...Densitometer, 15...Right angle prism as a light transmission means. Figure 1 Rattan 2tiA Figure 13

Claims (1)

【特許請求の範囲】[Claims] 懸濁物を含む液体と、気体または透光性を有する固体と
の界面に前記気体側または前記固体側からビーム状の測
定光を投射する光源装置と、前記測定光によって前記界
面に生成した光像の少なくとも一部を前記界面とは異な
る場所に伝送する光伝送手段と、前記光伝送手段によっ
て伝送された光を受光して前記光像の大きさを検出する
検出装置と、前記検出装置の出力信号について所定の演
算を行い前記懸濁物の濃に&C応じた信号を出力する演
算装置とからなり、前記演算装置の出力信号により前記
懸濁物の濃度を測定子ることを特徴とする濃度計。
a light source device that projects a beam-shaped measurement light from the gas side or the solid side onto an interface between a liquid containing a suspended substance and a gas or a translucent solid; and light generated at the interface by the measurement light. a light transmission means for transmitting at least a part of the image to a location different from the interface; a detection device for detecting the size of the optical image by receiving the light transmitted by the light transmission means; It is characterized by comprising a calculation device that performs a predetermined calculation on an output signal and outputs a signal corresponding to the concentration of the suspended matter, and that the concentration of the suspended matter is measured by the output signal of the calculation device. Densitometer.
JP3088584A 1984-02-21 1984-02-21 Densitometer Pending JPS60174930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3088584A JPS60174930A (en) 1984-02-21 1984-02-21 Densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3088584A JPS60174930A (en) 1984-02-21 1984-02-21 Densitometer

Publications (1)

Publication Number Publication Date
JPS60174930A true JPS60174930A (en) 1985-09-09

Family

ID=12316182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3088584A Pending JPS60174930A (en) 1984-02-21 1984-02-21 Densitometer

Country Status (1)

Country Link
JP (1) JPS60174930A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266429A (en) * 1988-09-01 1990-03-06 Hamamatsu Photonics Kk Measuring instrument for horizontal light transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266429A (en) * 1988-09-01 1990-03-06 Hamamatsu Photonics Kk Measuring instrument for horizontal light transmission

Similar Documents

Publication Publication Date Title
US6124937A (en) Method and device for combined absorption and reflectance spectroscopy
JP2763770B2 (en) Light scattering characteristics measurement method
US4152070A (en) Turbidimeter
US6894778B2 (en) Low detection limit turbidimeter
US6844934B2 (en) Optical turbidimeter with a lens tube
EP0074976A1 (en) Application of optical fibre probes
AU2002310007A1 (en) Optical turbidimeter with a lens tube
US20060055927A1 (en) Turbidity sensor
JPS60174930A (en) Densitometer
US5175596A (en) Liquid nephelometer
EP0447991B1 (en) Apparatus for measuring the distribution of the size of diffraction-scattering type particles
JPS60174929A (en) Densitometer
RU2235991C1 (en) Noncontact turbidimeter
RU2321843C2 (en) Paper fiber humidity and mass ir detector
RU2460988C1 (en) Method of measuring particle size distribution in wide range of concentrations and apparatus for realising said method (versions)
US20240133808A1 (en) Accurate turbidity measurement system and method, using speckle pattern
JPS6385336A (en) Turbidity meter
JP2002250692A (en) Instrument and method for measuring oil concentration in oily water containing contaminant
RU2071056C1 (en) Device for assaying milk and dairy products for content of fat and protein
KR20020094110A (en) Optical Lens Device and Apparatus for Determining Concentration and Type of Solutions by Refractive Index Measurement
JPH08136445A (en) Absorbance measuring device for liquid
JPS6111635A (en) Liquid sensor
RU1784880C (en) Device for suspended particles content determining in fluids
KR20240057200A (en) Apparatus and method for measuring turbidity
JPH02176543A (en) Method and apparatus for detecting interface between liquid and gas and bubble within liquid