JPS60174831A - Production of thick steel plate - Google Patents

Production of thick steel plate

Info

Publication number
JPS60174831A
JPS60174831A JP2838084A JP2838084A JPS60174831A JP S60174831 A JPS60174831 A JP S60174831A JP 2838084 A JP2838084 A JP 2838084A JP 2838084 A JP2838084 A JP 2838084A JP S60174831 A JPS60174831 A JP S60174831A
Authority
JP
Japan
Prior art keywords
steel plate
residual stress
tempering
cooling
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2838084A
Other languages
Japanese (ja)
Inventor
Tsutomu Kajimoto
梶本 務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2838084A priority Critical patent/JPS60174831A/en
Publication of JPS60174831A publication Critical patent/JPS60174831A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To obtain inexpensively a thick steel plate having no work contraction without performing special refining and steel making and without decreasing considerably [P] by subjecting the thick steel plate which is hot rolled, hardened and tempered to weak water cooling at a specific cooling rate to suppress residual stress. CONSTITUTION:A thick steel plate consisting of, for example, 9% Ni steel is subjected to weak water cooling at 15 deg.C/sec cooling rate after tempering in the stage of assuring low-temp. toughness thereof by performing hardening and tempering after hot rolling. The steel plate is otherwise weakly cooled at a cooling rate of 5-15 deg.C/sec after tempering and is then subjected to leveling at ordinary curvature. The residual stress is suppressed by the above-mentioned methods. The residual stress occurring in water cooling after tempering is suppressed without deteriorating the low-temp. toughness simply by controlling the cooling rate after hardening and tempering according to the method of this invention. The thick steel plate having high toughness without having residual stress is thus inexpensively obtd. even with the kind of steel required to assure the low- temp. toughness such as 9% Ni steel, 3% Ni steel or the like.

Description

【発明の詳細な説明】 発明の技術分野 この発明は、低温靭性を確保するために焼入れ焼戻しを
行なう鋼種の厚鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for producing a thick steel plate of a steel type that undergoes quenching and tempering to ensure low-temperature toughness.

発明の技術的背景とその問題点 一般に鋼板には、A4 Rol1品、熱処理品に拘らず
、圧延歪み、鋼板の温度むら等を起源とする残留応力が
発生し、板反り、平坦不良等の原因となっている。この
残留応力の発生を抑制するため6ζ、通常は圧延後、あ
るいは熱熟理後にレベリングを行なっている。第1図は
ローラレベフ一番ζよる残音、応力の低下と分散の説明
図である。ローランペラ−の働きは、ロールを傾斜させ
て強力な繰り返し曲げを与え、残留応力の最大値を下げ
かつ分散させることにあり、通常はレベラーをかけるこ
とにより残留応力が問題となることはまれであった。
Technical background of the invention and its problems In general, residual stress is generated in steel plates, regardless of whether they are A4 Roll 1 products or heat-treated products, due to rolling distortion, uneven temperature of the steel plate, etc., which causes warpage, flatness defects, etc. It becomes. In order to suppress the generation of this residual stress, leveling is usually performed after rolling or heat aging. FIG. 1 is an explanatory diagram of after-sound, stress reduction and dispersion due to Roller Level Ichiban ζ. The function of a roller roller is to tilt the roll and apply strong repeated bending to reduce and disperse the maximum residual stress. Normally, residual stress rarely becomes a problem when a leveler is applied. there were.

しかるに、8.51Ni鋼や996Ni鋼のように低温
靭性を確保するために焼入れ焼戻し後水冷を行なう鋼種
は、急水冷を原因とする大きな残留応力が発生する。こ
の焼戻し後急水冷を施すのは以下に示す理由による。す
なわち、通常の製造方法により得られた9チN目1ζは
o、oosqb以上のCP)を含有しており、この(P
)がオーステナイト粒界に濃厚に偏析し焼戻し感受性を
増大させ低温靭性を劣化させる。このため焼戻し後の冷
却が例えば炉冷(40℃/Hr)あるいは空冷(35℃
/mim)ノように冷却速度の遅い冷却では脆化域内と
なり(P)の含有量と共に低温靭性は低下するが、冷却
速度が30℃/ s e c以上と脆化域外になる水冷
ではこの(P)の影響が比較的小さく低温靭性の確保が
可能となる。
However, in steel types such as 8.51Ni steel and 996Ni steel, which are subjected to water cooling after quenching and tempering in order to ensure low-temperature toughness, large residual stress occurs due to rapid water cooling. The reason for performing rapid water cooling after this tempering is as follows. That is, the 9th Nth 1ζ obtained by the normal manufacturing method contains o, oosqb or more CP), and this (P
) is densely segregated at austenite grain boundaries, increasing tempering susceptibility and deteriorating low-temperature toughness. For this reason, cooling after tempering is, for example, furnace cooling (40°C/Hr) or air cooling (35°C/Hr).
With cooling at a slow cooling rate such as 30°C/sec, the toughness falls within the embrittlement range, and the low-temperature toughness decreases with the content of (P); however, with water cooling, where the cooling rate exceeds 30°C/sec, the toughness falls outside the embrittlement range. The influence of P) is relatively small, making it possible to ensure low-temperature toughness.

このような理由により鋼板内に残留応力が生じ、この−
ような鋼板を例えばタンク側板等のような大きな曲げ加
工を加える所に使用すれば、曲げ加工により残留応力が
圧縮方向に働き、大きな加工縮みが発生する。例えば、
9%Ni鋼で製作したLNGタンクの場合、側板外周1
80mで約40 m/mの溶接ギャップが発生する。こ
の約40m1mの溶接ギャップは、加工縮み率0.02
%に相当する。この溶接ギャップを調整するために、溶
接開先ギャップを調整して溶接するが、タンクの安全上
大きな溶接ギャップをとることができないため、上記加
工縮み率を抑制する以外に溶接ギャップを縮少すること
はできない。
For these reasons, residual stress occurs within the steel plate, and this −
If such a steel plate is used in a place where a large bending process is applied, such as a side plate of a tank, residual stress acts in the compressive direction due to the bending process, and a large process shrinkage occurs. for example,
In the case of an LNG tank made of 9% Ni steel, the outer circumference of the side plate 1
A welding gap of approximately 40 m/m occurs at 80 m. This welding gap of approximately 40m1m has a processing shrinkage rate of 0.02
Corresponds to %. In order to adjust this welding gap, welding is performed by adjusting the welding groove gap, but because it is not possible to have a large welding gap due to the safety of the tank, we have to reduce the welding gap in addition to suppressing the processing shrinkage rate mentioned above. It is not possible.

そこで、この発明者らは、残留応力が加工縮みに与える
影響について検討した。
Therefore, the inventors investigated the influence of residual stress on processing shrinkage.

すなわち、第1表に示す成分の板厚31.3 m1mの
9 % Ni鋼板を焼入れした後575℃で焼戻しを行
ない、焼戻し後水冷した鋼板の残留応力を測定した。残
留応力の測定は、抵抗線歪ゲージを用いた遂次除去法に
よった。この方法は、板の内面2方向xe5方向にδX
、δyなる残留応力を持ち、これらは断面内一様で板の
表面からの深さ2のみの関数であると仮定し、片面に歪
ゲージを貼付し、他面から研削盤により外層を遂次除去
し、除去過程中の歪ε9.C,を測定する方法である。
That is, a 9% Ni steel plate having a thickness of 31.3 ml and having the components shown in Table 1 was quenched and then tempered at 575°C, and the residual stress of the steel plate was measured after being water-cooled after tempering. The residual stress was measured by a sequential removal method using a resistance wire strain gauge. In this method, δX is
, δy, and assuming that these are uniform within the cross section and are a function of only the depth 2 from the surface of the plate, a strain gauge is attached to one side, and the outer layer is sequentially removed from the other side using a grinder. Strain during removal process ε9. This is a method of measuring C.

第1表 9%Ni鋼板の成分(96) 上記の方法により測定した結果を第2図に示すが、水冷
時の熱応力により表面に圧縮、内面に引張りの残留応力
分布を有することがわかる。
Table 1 Composition of 9% Ni steel plate (96) The results measured by the above method are shown in Figure 2, and it can be seen that due to thermal stress during water cooling, there is a compressive residual stress distribution on the surface and a tensile stress distribution on the inner surface.

このような残留応力分布をもった板を曲げ加工すると、
曲げ応力の引張り側と圧縮側で塑性変形開始時点および
降伏領域が異なるため、中立線が移動し、板の長さが縮
少するものと考えられる。
When a plate with such a residual stress distribution is bent,
Since the starting point of plastic deformation and the yield region are different between the tension side and the compression side of bending stress, it is thought that the neutral line moves and the length of the plate decreases.

このことは、8.51 N i鋼板についても同様であ
る。
This also applies to the 8.51 Ni steel plate.

上記の残留応力による鋼板の縮み現象を回避するために
は、焼入れ焼戻し後冷却を施さずに靭性を確保すること
が望ましい。その方法としては、例えばCを0.04係
以下にすればCP)が0.005チ以上でも靭性は確保
できるが、機械的強度を満足することができない。また
、他の方法として(P)含有率を0.003%以下、(
S)含有率を0.001係以下にコントロールする方法
が知られている。この方法ではCP)の濃厚偏析が軽減
され靭性が確保されると共に機械的強度も低下しないが
、極低CP)、’(S)化のためには、例えば溶銑段階
でソーダ灰(Na、 Co、 )による溶銑脱燐処理を
行ない、さらに転炉吹錬時のダブルスラグ処理に加えて
、低温出鋼、RH,LF、AOD等の取鍋精錬処理が必
要なためコスト高となり、また精錬時間が長くかかるた
め生産性を大巾に阻害し、大量生産には不適である。
In order to avoid the shrinkage phenomenon of the steel plate due to the above-mentioned residual stress, it is desirable to ensure toughness without performing cooling after quenching and tempering. For example, if C is set to 0.04 or less, toughness can be ensured even if CP is 0.005 or more, but mechanical strength cannot be satisfied. In addition, another method is to reduce the (P) content to 0.003% or less (
S) A method of controlling the content to 0.001 or less is known. This method reduces the concentrated segregation of CP), ensures toughness, and does not reduce mechanical strength. ), and in addition to double slag treatment during converter blowing, ladle refining processes such as low-temperature tapping, RH, LF, and AOD are required, resulting in high costs and short refining times. The process takes a long time, which greatly impedes productivity, making it unsuitable for mass production.

発明の目的 この発明は、上記のような特別な精錬、製鋼を行なわず
極低(P〕化することなく、加工縮みのない厚鋼板を安
価に製造する方法を提案することを目的とするものであ
る。
Purpose of the Invention The purpose of the present invention is to propose a method for manufacturing thick steel plates without processing shrinkage at low cost, without performing special refining or steelmaking as described above, and without reducing the P value to an extremely low value. It is.

発明の開示 この発明者らは、靭性がi保できかつ特別な処理を施さ
ずに通常の作業で残留応力を軽減する方法について種々
検討した結果、冷却速度を従来より遅くしても靭性はそ
れ程劣化せずかつ残留応力も軽減できることを見い出し
た。
DISCLOSURE OF THE INVENTION As a result of various studies on methods that can maintain toughness and reduce residual stress during normal operations without special treatment, the inventors have found that even if the cooling rate is slower than before, the toughness is not as good as before. It has been found that residual stress can be reduced without causing deterioration.

以下、この発明について詳細に説明する。This invention will be explained in detail below.

この発明に係る厚鋼板の製造方法は、熱間圧延後焼入れ
焼戻しを行なって低温靭性を確保する厚鋼板の製造方法
において、焼戻し後冷却速度5〜15°C/secで弱
水冷することにより残留応力を抑制することを特徴とし
、また、焼戻し後冷却速度5〜15℃/ s e cで
弱水冷し、次いで通常の曲率でVベリングすることによ
り残留応力を抑制することを特徴とするものである。
The method for producing a thick steel plate according to the present invention is a method for producing a thick steel plate in which quenching and tempering is performed after hot rolling to ensure low-temperature toughness. It is characterized by suppressing stress, and is characterized by suppressing residual stress by mild water cooling at a cooling rate of 5 to 15°C/sec after tempering, and then V belling at a normal curvature. be.

ここで、この発明における限定理由を実施例に基づいて
説明する。
Here, the reasons for limitations in this invention will be explained based on examples.

第3図はこの発明の冷却条件と従来行なわれている通常
冷却範囲の冷却条件を板厚別に示したものである。この
ような冷却条件のもとで第2表#よび第3表に示す組成
の9%N1tllを用いて800〜830°Cで焼入れ
、565〜585℃で焼戻しした9%Ni鋼板を第3図
に示す冷却条件で冷却したのちの板厚別における表層部
圧縮残留応力を測定した結果を第4図に示す。
FIG. 3 shows the cooling conditions of the present invention and the conventional cooling conditions of the normal cooling range for each plate thickness. Figure 3 shows a 9% Ni steel plate that was quenched at 800 to 830°C and tempered at 565 to 585°C using 9% N1tll with the composition shown in Tables 2 and 3 under these cooling conditions. Figure 4 shows the results of measuring the compressive residual stress in the surface layer for each plate thickness after cooling under the cooling conditions shown in Figure 4.

第4図より、通常冷却範囲では残留応力が大きいのに対
し、この発明の冷却条件(冷却速度5〜15℃/sec
 )では残留応力が8〜22呻・f/−と大巾に減少す
ることがわかる。
From FIG. 4, it can be seen that the residual stress is large in the normal cooling range, but under the cooling conditions of the present invention (cooling rate of 5 to 15°C/sec).
), it can be seen that the residual stress significantly decreases from 8 to 22 mm·f/-.

第 2 表 第 3 表 一方、各種板厚の9%Ni鋼板をR=28.8mに加工
したときの各板厚2tをパラメーターとして圧縮残留応
力と縮少率との関係を調査した結果を第5図に示す。
Table 2 Table 3 On the other hand, Table 3 shows the results of investigating the relationship between compressive residual stress and reduction rate using each plate thickness of 2t as a parameter when 9% Ni steel plates of various thicknesses were processed to R = 28.8m. It is shown in Figure 5.

通常LNGタンク等に使用される場合、縮少率がlXl
0’までが許容限度であり、これ以上の縮少率では施工
上問題となる。
Normally, when used in LNG tanks, etc., the reduction rate is 1Xl.
0' is the permissible limit, and a reduction rate greater than this will cause problems in construction.

以上、第4図および第5図の結果より、板厚20g屑ま
では冷却速度を5〜b ルするのみで縮少率をlXl0’内に抑制することがで
きる。ただし、板厚が20flを越える場合は、圧縮残
留応力は小さいが縮少率を1×10″に抑制できない。
As described above, from the results shown in FIGS. 4 and 5, it is possible to suppress the shrinkage rate to within 1X10' by simply increasing the cooling rate from 5 to 100 lbs for scraps up to a plate thickness of 20 g. However, when the plate thickness exceeds 20 fl, the compression residual stress is small, but the shrinkage ratio cannot be suppressed to 1 x 10''.

また、第6図は冷却後に残留応力の生じた前記鋼板に対
してレベラーを施したものと、レペラーを施さなかった
ものとにおける表層部圧縮残留応力を調査したものであ
る。
Moreover, FIG. 6 is a result of investigating the compressive residual stress in the surface layer of the steel plate in which residual stress was generated after cooling, in which a leveler was applied and in which a leveler was not applied.

レベリング条件としては、ワークロール直径28081
11、ロール中心間距離300園、上面側ロール3本、
下面側ロール4本、ワークロール傾動量2鱈、初期曲率
10〜15mRで行なった。なお、初期曲率10〜15
mRは通常熱処理後等に$いて平坦度矯正を行なう場合
に用いられる曲率である。
As a leveling condition, the work roll diameter is 28081
11. Roll center distance 300mm, 3 rolls on top side,
The test was carried out using four rolls on the lower surface side, a work roll tilting amount of 2 degrees, and an initial curvature of 10 to 15 mR. In addition, the initial curvature is 10 to 15
mR is a curvature that is normally used when flatness correction is performed after heat treatment.

第6図より、レベリングを施すことにより冷却のみのコ
ントロールより表層部圧縮残留応力は軽減することがわ
かる。特にこの発明の冷却条件のものは残留応力が10
呻・f/−以下となり、板厚20w11越えのものも縮
少率をlX10’B内に抑制することができた。
From FIG. 6, it can be seen that by leveling, the compressive residual stress in the surface layer is reduced compared to controlling only by cooling. In particular, the cooling condition of this invention has a residual stress of 10
It was possible to suppress the reduction rate to within 1X10'B even for a plate with a thickness exceeding 20W11.

従って、この発明では冷却速度を5〜15°C/sec
とした。
Therefore, in this invention, the cooling rate is set at 5 to 15°C/sec.
And so.

ちなみに第7図は−1,96℃における低温靭性を調べ
たものであり、この発明における冷却条件でも従来に比
べ衝撃特性の脆化は見られない。
Incidentally, FIG. 7 shows the examination of low-temperature toughness at -1.96 DEG C. Even under the cooling conditions of the present invention, no embrittlement of impact properties is observed compared to the conventional one.

以上説明したごとく、この発明法によれば、焼入れ焼戻
し後の冷却速度をコントロールするだけで、低温靭性を
悪化させず焼戻し後の水冷に起因する残留応力を抑制す
ることができるので、3%m’Ji鋼や9*Ni鋼のよ
うに低温靭性を確保する必要のある鋼種去あっても、残
留歪みのない高靭性の厚鋼板を安価に製造することがで
きる。
As explained above, according to the method of the present invention, by simply controlling the cooling rate after quenching and tempering, it is possible to suppress residual stress caused by water cooling after tempering without deteriorating low-temperature toughness. Even if there are steel types that require low-temperature toughness, such as Ji steel or 9*Ni steel, high-toughness thick steel plates with no residual strain can be produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はローラレペラーによる残留応力の低下と分散の
説明図、第2図は鋼板の圧風方向残留応力分布を示す図
表、第3図は板厚別の焼戻し後冷却速度を示す図表、第
4図は冷却条件と表層部残留応力の関係を示す図表、第
5図は1=28.8mに曲げ加工した時の各板厚2tを
パラメータとして圧縮残留応力と縮少率の関係を示す図
表、第6図は通常レベラー条件での、冷却条件による圧
縮残留応力の変化を示す図表、第7図はこの発明の冷却
速度範囲での冷却と従来の冷却にあける衝撃特性を示す
図表である。 第1図 第2図 残g庇力ら(k<l・f、41市−) 第3図 粗層(mm) 第4図 枝厚(mm) 3%5図 第6図 悩 太i71(mm) ご さ // 腋厚(m/m)
Fig. 1 is an explanatory diagram of the reduction and dispersion of residual stress by the roller repeller, Fig. 2 is a chart showing the residual stress distribution in the pressure direction of the steel plate, Fig. 3 is a chart showing the cooling rate after tempering by plate thickness, Fig. 4 Figure 5 is a diagram showing the relationship between cooling conditions and residual stress in the surface layer. FIG. 6 is a chart showing changes in compressive residual stress depending on cooling conditions under normal leveler conditions, and FIG. 7 is a chart showing impact characteristics between cooling in the cooling rate range of the present invention and conventional cooling. Fig. 1 Fig. 2 Residual g eaves (k<l・f, 41 cities -) Fig. 3 Coarse layer (mm) Fig. 4 Branch thickness (mm) 3% 5 Fig. 6 Tanita i71 (mm) ) Thickness // Armpit thickness (m/m)

Claims (1)

【特許請求の範囲】 1 熱間圧延後、焼入れ焼戻しを行なって低温靭性を確
保する厚鋼板の製造方法において、焼戻し後冷却速度5
〜15℃/ a a cで弱水冷すること1こより残留
応力を抑制することを特徴とする厚鋼板の製造方法。 2 熱間圧延後、焼入れ焼戻しを行なって低温靭性を確
保する厚鋼板の製造方法において、焼戻し後冷却速度5
〜15℃/ s e cで弱水冷し、次いで通常の曲率
でレベリングすることにより残留応力を抑制することを
特徴とする厚鋼板の製造方法。
[Claims] 1. In a method for manufacturing a thick steel plate in which quenching and tempering is performed after hot rolling to ensure low-temperature toughness, the cooling rate after tempering is 5.
A method for manufacturing a thick steel plate, characterized in that residual stress is suppressed by mild water cooling at ~15° C./ac. 2. In a method for manufacturing a thick steel plate in which quenching and tempering is performed after hot rolling to ensure low-temperature toughness, the cooling rate after tempering is 5.
A method for producing a thick steel plate, characterized in that residual stress is suppressed by mild water cooling at ~15°C/sec and then leveling at a normal curvature.
JP2838084A 1984-02-16 1984-02-16 Production of thick steel plate Pending JPS60174831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2838084A JPS60174831A (en) 1984-02-16 1984-02-16 Production of thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2838084A JPS60174831A (en) 1984-02-16 1984-02-16 Production of thick steel plate

Publications (1)

Publication Number Publication Date
JPS60174831A true JPS60174831A (en) 1985-09-09

Family

ID=12247031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2838084A Pending JPS60174831A (en) 1984-02-16 1984-02-16 Production of thick steel plate

Country Status (1)

Country Link
JP (1) JPS60174831A (en)

Similar Documents

Publication Publication Date Title
EP2586884A2 (en) Ultra-high-strength steel bar and method for manufacturing same
KR20140129365A (en) Low density steel with good stamping capability
KR101714916B1 (en) Wire rod having excellent cold forging characteristics and method for manufacturing same
EP2123780A1 (en) Processes for production of steel sheets for cans
KR20160078926A (en) Steel having superior brittle crack arrestability and method for manufacturing the steel
JP6958752B2 (en) Steel sheets, members and their manufacturing methods
JPS6169928A (en) Manufacture of steel plate for ironing by continuous annealing
US4284439A (en) Process for the production of sheet and strip from ferritic, stabilized, stainless chromium-molybdenum-nickel steels
JPH10251794A (en) Hot rolled steel plate for structural purpose, excellent in press formability and surface characteristic, and its production
JP3383017B2 (en) Method of manufacturing bake hardenable high strength cold rolled steel sheet with excellent workability
JPS60174831A (en) Production of thick steel plate
JP3046146B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability and shape
WO2020111858A1 (en) Steel plate for pressure vessel having excellent hydrogen-induced cracking resistance and method of manufacturing same
TWI711706B (en) Automobile steel material with high yield strength and method of manufacturing the same
TWI808779B (en) Automobile steel material and method of manufacturing the same
JPH02274810A (en) Production of high tensile untempered bolt
KR101968001B1 (en) Giga grade ultra high strength cold rolled steel sheet having excellent elongation and method of manufacturing the same
KR101141015B1 (en) Steel sheet having excellent hydrogen delayed fracture resistance quality, and method for producing the same
JPS60174821A (en) Manufacture of steel plate
KR100479993B1 (en) A method for producing a high carbon steel strip with high elongation and hardenability
KR860001499B1 (en) Method for manufacturing of the rolled steel by cold working
JP4151443B2 (en) Thin steel plate with excellent flatness after punching and method for producing the same
KR950003291B1 (en) Making method of hot rolling steel plate
JPH05202444A (en) Steel plate excellent in toughness at low temperature and its production
KR101049012B1 (en) Manufacturing method of 409L ferritic stainless steel