JPS60174804A - Production of pipe - Google Patents
Production of pipeInfo
- Publication number
- JPS60174804A JPS60174804A JP2920084A JP2920084A JPS60174804A JP S60174804 A JPS60174804 A JP S60174804A JP 2920084 A JP2920084 A JP 2920084A JP 2920084 A JP2920084 A JP 2920084A JP S60174804 A JPS60174804 A JP S60174804A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- shape memory
- sintered body
- obtd
- memory alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- Extrusion Of Metal (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は形状記憶合金からなるパイプの製造方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a pipe made of a shape memory alloy.
この種の形状記憶合金からなるパイプは例えば変態点以
上の温度で管径を増大する性質を利用して管継手にした
り、あるいはパイプ形状であれば変態点以下もしくは変
態点以上に加熱冷却するための熱媒や冷媒はパイプ自身
の内部を通すことが出来、応答が速くなるしまた周囲に
加熱冷却手段を設けなくてもよいと言った利点を有する
。Pipes made of this type of shape memory alloy can be used, for example, to make pipe fittings by taking advantage of its property of increasing the pipe diameter at temperatures above the transformation point, or if it is shaped like a pipe, it can be heated and cooled to below or above the transformation point. The heating medium and refrigerant can be passed through the inside of the pipe itself, which has the advantage of faster response and no need to provide surrounding heating and cooling means.
形状記憶合金は加工硬化が大きく、また塑性加工後の焼
なましの際、形状記憶効果によって若干形状が戻るため
に塑性加工によってはパイプの製造が困難であシ、従来
は手間のかかる切削加工によってパイプを製造せざるを
得なかった。しかし切削加工によるも大きな加工硬化に
よって切削加工性は必ずしも良いものではなく、上記の
ような利点を有する形状記憶合金からなるパイプの実用
化にとってこのような加工性の悪さは大きな障害となっ
ていたのである。Shape memory alloys are highly work hardened, and during annealing after plastic working, the shape returns slightly due to the shape memory effect, making it difficult to manufacture pipes through plastic working. had no choice but to manufacture pipes. However, machinability is not necessarily good due to large work hardening caused by cutting, and such poor machinability has been a major hindrance to the practical application of pipes made of shape memory alloys, which have the advantages mentioned above. It is.
本発明は上記従来の問題点を解決して形状記憶合金から
なるパイプを容易に量産することを目的とするものであ
る。The object of the present invention is to solve the above-mentioned conventional problems and easily mass-produce pipes made of shape memory alloys.
しかして本発明は下記の3つの工程もしくは4つの工程
からなる。Therefore, the present invention consists of the following three or four steps.
形状記憶合金粉末混線物をパイプ状に押出し成形する工
程1゜
工程1で得られた成形物を焼結する工程2゜工程2で得
られた焼結体に対して加工率10〜50%の塑性加〒を
加える工程3゜
そして所望なれば工程3.の結果物に対して200°C
以上再結晶しない範囲で加熱処理を行う工程4゜本発明
を以下に工程順に詳細に説明する。Step 1 of extruding the shape memory alloy powder mixture into a pipe shape Step 2 of sintering the molded product obtained in Step 1 Processing rate of 10 to 50% for the sintered body obtained in Step 2 Step 3 of adding plasticity and if desired Step 3. 200°C for the resultant
Step 4: Heat treatment is performed within a range that does not cause recrystallization. The present invention will be described in detail below in the order of the steps.
工程1においては先ず形状記憶合金粉末の混練物を調製
する。形状記憶合金とは周知のごとく変態点の上下で弾
性が大巾に変化する合金を言い、例えばチタン−ニッケ
ル合金、あるいは該合金に更Ljlj、アルミニウム、
ジルコニウム、コバルト。In step 1, first, a kneaded product of shape memory alloy powder is prepared. As is well known, a shape memory alloy is an alloy whose elasticity changes greatly above and below the transformation point, such as titanium-nickel alloy, or alloys such as aluminum, aluminum, etc.
Zirconium, cobalt.
クロム、タンタル、バナジウム、モリブデン、ニオブ、
パラジウム、白金、マンガン、鉄等の第三成分の一種も
しくは二種以上を含有せしめた合金、金−カドミウム合
金、銀−カドミウム合金、金−銀一カドミウム合金、銅
−アルミニウム−ニッケル合金、銅−亜鉛合金等すべて
の種類の合金を含むものである。上記例示は本発明を限
定するものではない。上記合金は粉末状で用いられ、ま
た二種以上の合金粉末を混合して用いてもよい。その組
成は所定の変態点によって決定される。上記合金粉末も
しくは合金混合物粉には更に所望なればロジン、変性ロ
ジン、ポリビニルアルコール、アルギン酸ソーダ、力μ
ポキシメチルセローメ、メチルセルロース、エチルセル
ロース、エトキシセルロース、エトキシセルロース、酢
酸セルロース。Chromium, tantalum, vanadium, molybdenum, niobium,
Alloys containing one or more third components such as palladium, platinum, manganese, iron, etc., gold-cadmium alloys, silver-cadmium alloys, gold-silver-cadmium alloys, copper-aluminum-nickel alloys, copper- It includes all types of alloys such as zinc alloys. The above examples are not intended to limit the invention. The above alloys are used in powder form, and two or more types of alloy powders may be mixed together. Its composition is determined by a predetermined transformation point. If desired, the alloy powder or alloy mixture powder may further contain rosin, modified rosin, polyvinyl alcohol, sodium alginate,
Poxymethylcellome, methylcellulose, ethylcellulose, ethoxycellulose, ethoxycellulose, cellulose acetate.
カゼイン、グルテン、アラビアゴム、 m粉、 変性澱
粉°1、アクリル樹脂、スチレン樹脂、酢酸ビニμ樹脂
、スチレンーブタジェン共重合体、ポリビニμブチラー
ル、フェノ−μ樹脂、尿素樹脂、メラミン樹脂、ウレタ
ン樹脂の結着剤の一種もしくは二種以上、ポリエチVン
グリコーμ、ポリプロピソングリコール、ジエチル修酸
、ザクローズアセテート等の可塑剤の一種もし2くは二
種以上、グリセリンエチレングリコール、プロピレング
リコール、トリステアリン酸グリセリン、オレイン酸。Casein, gluten, gum arabic, m powder, modified starch °1, acrylic resin, styrene resin, vinyl acetate resin, styrene-butadiene copolymer, polyvinyl butyral, pheno-μ resin, urea resin, melamine resin, urethane One or more types of binders for resins, one or more types of plasticizers such as polyethylene glycol μ, polypropisone glycol, diethyl oxalic acid, pomegranate acetate, glycerin ethylene glycol, propylene glycol, triglyceride, etc. Glyceryl stearate, oleic acid.
ステアリン酸等の分散剤の一種もしくは二種以上、トル
エン、キシレン、酢酸エチル、tiDe−y”チyv。One or more dispersants such as stearic acid, toluene, xylene, ethyl acetate, TiDe-y''.
アセトン、メチルエチμケトン、メチルイソブチルケト
ン、メタノ−μ、エタノール)ブタノ−)v。Acetone, methyl ethyl ketone, methyl isobutyl ketone, methano-μ, ethanol)butano-)v.
ジクロルエチレン、トリクロ、ルエチレン等の溶剤の一
種もしくは二種以上、ラウリル酸ナトリウム。One or more solvents such as dichloroethylene, tricloethylene, and dichloroethylene, and sodium laurate.
ステアリン酸亜鉛、ステアリン酸カルシウム、シリコン
オイル等の潤滑剤の一種もしくは二種以上を混合し所定
量の水を添加して混線物を調製する。A mixed material is prepared by mixing one or more lubricants such as zinc stearate, calcium stearate, and silicone oil, and adding a predetermined amount of water.
上記混線物の組成は合金粉末特性、押出し条件。The composition of the above mixer depends on the alloy powder characteristics and extrusion conditions.
押出し寸法等を考慮して適宜決定する。上記混練物の押
出し成形を用いる装置はプランジャ式やスクリュ一式の
押出し手段を備え、押出しは所定寸法および所定形状の
オリフィスを有するダイを通して行われる。Determine as appropriate, taking into consideration extrusion dimensions, etc. The apparatus for extruding the kneaded product is equipped with extrusion means of a plunger type or a set of screws, and the extrusion is carried out through a die having an orifice of a predetermined size and shape.
工程2においては工程11で得られた成形物を焼結する
のであるが1.焼結に先立ち所望なれば切断。In step 2, the molded product obtained in step 11 is sintered.1. Cut if desired prior to sintering.
切削、研磨等の機械加工、おるいは脱脂等の処理を行っ
てもよい。焼結温度、焼結時間、焼結雰囲気等の焼結条
件は最終製品に望まれる密度を考慮して決定される。ま
た焼結の途中の半焼結状態で一度上記のような機械的加
工を加えさらに最終的な焼結を行ってもよい。Machining such as cutting and polishing, or processing such as degreasing may be performed. Sintering conditions such as sintering temperature, sintering time, and sintering atmosphere are determined in consideration of the desired density of the final product. Further, the above-mentioned mechanical processing may be performed once in the semi-sintered state during sintering, and then final sintering may be performed.
工程3においては工程2で得られた焼結体に対して加工
率10〜50%の塑性加工を加える。該塑性加工Fi第
1図の矢印に示すように焼結体(1)の周面に対して法
線方向の力、例えばヌウェージング加工、第2図の矢印
に示すように焼結体(1)の軸方向の力等を加えて行う
のが一般的である。そして加工率10〜50%とは例え
ば第1図の場合は焼結体(1)の端面の面積を100と
すれば加工後は90〜50となることを意味し、第2図
の場合には焼結体(1)の長さを100とすれば加工後
は110〜150となるか、あるいは90〜50となる
ことを意味する。合金の種類により加工硬化が著しく塑
性加工の困雌な途のは、塑性加工をいったん中断し軟化
焼鈍を行い、引き続き塑性加工を行う。In step 3, the sintered body obtained in step 2 is subjected to plastic working at a processing rate of 10 to 50%. The plastic working Fi is a force normal to the circumferential surface of the sintered body (1) as shown by the arrow in FIG. This is generally done by applying a force in the axial direction. A processing rate of 10 to 50% means, for example, in the case of Figure 1, if the area of the end face of the sintered body (1) is 100, the area after processing will be 90 to 50. means that if the length of the sintered body (1) is 100, it will be 110-150 or 90-50 after processing. Depending on the type of alloy, work hardening is significant and plastic working is difficult, so plastic working is temporarily interrupted, softening annealing is performed, and then plastic working is continued.
軟化焼鈍を行った場合、そのまま塑性加工率は10%以
上を確保すべきである。上記塑性加工によって焼結体の
密度は向上して最終製品の形状記憶効果が向上する。こ
のような形状記憶効果の原因は焼結体中の相の転位が導
入されることによる。そのためには上記塑性加工は潜間
もしくは温間で行われるべきである。When softening annealing is performed, the plastic working rate should be maintained at 10% or more. The plastic working increases the density of the sintered body and improves the shape memory effect of the final product. This shape memory effect is caused by the introduction of phase dislocations in the sintered body. For this purpose, the above plastic working should be performed in a latent or warm state.
上記工程1,2.3によって本発明のパイプが得られる
が、史に本発明のパイプにおいて形状記憶効果以外に超
弾性効果を利用する場合には工程4を行う。The pipe of the present invention is obtained by the above-mentioned steps 1 and 2.3, but if the pipe of the present invention utilizes a superelastic effect other than the shape memory effect, step 4 is performed.
工程4においては工程3の結果物に対して200°C以
上の加熱処理を施す。しかし上記加熱処理により該結果
物に再結晶が起らないようにする。それには再結晶しな
い温度(および/または再結晶しない時間)、例えばチ
タン−ニッケル合金では600°C以下の温度で加熱処
理を行う必要がある。In step 4, the resultant product of step 3 is subjected to heat treatment at 200°C or higher. However, the heat treatment described above prevents recrystallization from occurring in the resulting product. For this purpose, it is necessary to perform the heat treatment at a temperature (and/or a time during which no recrystallization occurs) at which recrystallization does not occur, for example, in the case of titanium-nickel alloys, at a temperature of 600° C. or lower.
再結晶が起ると擬弾性域が狭くなシ超弾性効果が低下す
る。When recrystallization occurs, the pseudoelastic region becomes narrower and the superelastic effect decreases.
以下に本発明を更に具体的に説明するための実施例を述
べる。Examples for explaining the present invention more specifically will be described below.
実施例
ニッケ/l’51原子%、チタン49原子%からなる合
金の一100メツシュの粉末にメチル七pロース5重量
%、ステアリン酸亜鉛1重量%添加した混合物に更に水
をメチルセルロース添加量の4倍量を加えニーダ−にて
充分混練する。かくシ、て得られた混線物をプランジや
式押出機によシ押出し外径12朋、内径9朋、長さ30
關のパイプを成形した(工程1)。Example: An alloy consisting of 51 atomic percent of nickel/l' and 49 at. Add twice the amount and knead thoroughly using a kneader. Then, extrude the mixed wire obtained by using a plunge or type extruder to obtain a product with an outer diameter of 12 mm, an inner diameter of 9 mm, and a length of 30 mm.
The main pipe was molded (Step 1).
上記工程1で得られた成形物を500°C,1時間の加
熱処理によって脱脂した後アルゴンガヌ雰囲気で110
0°C,2時間の焼結を行う(工程2)。The molded product obtained in step 1 above was degreased by heat treatment at 500°C for 1 hour, and then heated to 110°C in an argon gas atmosphere.
Sintering is performed at 0°C for 2 hours (Step 2).
上記工程2で得られた焼結体(1)を第1図および第2
図に示すような矢印方向の力を加えてスェージング加工
を施し外径10厘、内径8羽のパイプにした(工程3)
。かくして変態点−40°Cの形状記憶合金からなるパ
イプを得る。The sintered body (1) obtained in step 2 above is shown in Figures 1 and 2.
A swaging process was performed by applying force in the direction of the arrow as shown in the figure to create a pipe with an outer diameter of 10 rin and an inner diameter of 8 rin (Step 3).
. In this way, a pipe made of a shape memory alloy with a transformation point of -40°C is obtained.
比較として直径11闘の熱間圧延棒材から切削加工によ
り上記実施例と同一寸法のパイプを製造した。切削加工
では加工に大きな手間を要しかつ切削層を発生して材料
効率も悪くなる。For comparison, a pipe having the same dimensions as the above example was manufactured by cutting from a hot-rolled bar with a diameter of 11mm. Cutting requires a lot of effort and creates a cutting layer, resulting in poor material efficiency.
上記実施例と比較例とによって製造されたパイプを一5
0°C(変態点−40℃以下)に冷却して外径10n、
内径8!!ffのステフレススチー1v製パイプを内部
に挿入接合し常温に戻し接合強度を測定した結果、実施
例と比較例とは全く同一の接合強度であった。15 pipes manufactured according to the above examples and comparative examples.
Cooled to 0°C (transformation point -40°C or less), outer diameter 10n,
Inner diameter 8! ! A pipe made of Stepless Steel 1V of FF was inserted and bonded inside, returned to room temperature, and the bonding strength was measured. As a result, the bonding strength of the example and the comparative example was exactly the same.
第1図および第2図は工程3の説明図である。 図中、(1)・・・・焼結体 特許出願人 大同特殊鋼株式会社 才 1 図 ″22図 FIG. 1 and FIG. 2 are explanatory diagrams of step 3. In the figure, (1)... Sintered body Patent applicant: Daido Steel Co., Ltd. Talent 1 diagram ″Figure 22
Claims (2)
する工程1゜ 工程1で得られた成形物を焼結する工程2゜工程2で得
られた焼結体に対して加工率10〜50%の塑性加工を
加える工程3゜ 以上の工程1,2.3からなるパイプの製造方法(1) Step 1 of extruding the shape memory alloy powder kneaded material into a pipe shape. Step 2 of sintering the molded product obtained in step 1. Processing rate of 10 to 10 for the sintered body obtained in step 2. A method for manufacturing a pipe consisting of steps 1 and 2.3 of 50% plastic working of 3 degrees or more
する工程1゜ 工程1で得られた成形物を焼結する工程2゜工程2で得
られた焼結体に対して加工率10〜5096の塑性加工
を加える工程3゜工程3の結果物に対して200℃以上
再結晶しない範囲で加熱処理を行う工程4゜ 以上の工程1,2,3.4からなるパイプの製造方法(2) Step 1 of extruding the shape memory alloy powder mixture into a pipe shape; Step 2 of sintering the molded product obtained in Step 1; Processing rate of 10 to 10 for the sintered body obtained in Step 2. A method for manufacturing a pipe consisting of steps 1, 2, and 3.4: step 3 of applying plastic working of 5096; step of heat-treating the resultant of step 3 at a temperature of 200° C. or more in a range that does not recrystallize; 4° or more;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2920084A JPS60174804A (en) | 1984-02-17 | 1984-02-17 | Production of pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2920084A JPS60174804A (en) | 1984-02-17 | 1984-02-17 | Production of pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60174804A true JPS60174804A (en) | 1985-09-09 |
Family
ID=12269551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2920084A Pending JPS60174804A (en) | 1984-02-17 | 1984-02-17 | Production of pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60174804A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63105904A (en) * | 1986-10-23 | 1988-05-11 | Daido Steel Co Ltd | Production of hollow body made of shape memory alloy |
WO2002058866A3 (en) * | 2001-01-24 | 2003-02-27 | Scimed Life Systems Inc | Processing particulate ni-ti shape memory alloys |
WO2002085561A3 (en) * | 2001-04-24 | 2003-03-13 | Forschungszentrum Juelich Gmbh | Production of component parts by metal injection moulding (mim) |
CN100337764C (en) * | 2005-04-27 | 2007-09-19 | 中国科学院金属研究所 | High speed-ratio hot pressing method for NiTi alloy piping billet and its special mould |
CN103831434A (en) * | 2012-11-27 | 2014-06-04 | 通用汽车环球科技运作有限责任公司 | Hollow superelastic shape memory alloy particle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54100908A (en) * | 1977-12-28 | 1979-08-09 | Leuven Res & Dev Vzw | Production of solid article comprising copperrzincc alminium alloy |
JPS5646035A (en) * | 1979-09-22 | 1981-04-27 | Mitsubishi Heavy Ind Ltd | Indicating method for shape of arm of suction dredger and draft thereof |
JPS57161003A (en) * | 1981-03-28 | 1982-10-04 | Micro Filter Kk | Manufacture of porous seamless pipe |
JPS5834103A (en) * | 1981-08-24 | 1983-02-28 | Sumitomo Electric Ind Ltd | Production of niti alloy |
-
1984
- 1984-02-17 JP JP2920084A patent/JPS60174804A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54100908A (en) * | 1977-12-28 | 1979-08-09 | Leuven Res & Dev Vzw | Production of solid article comprising copperrzincc alminium alloy |
JPS5646035A (en) * | 1979-09-22 | 1981-04-27 | Mitsubishi Heavy Ind Ltd | Indicating method for shape of arm of suction dredger and draft thereof |
JPS57161003A (en) * | 1981-03-28 | 1982-10-04 | Micro Filter Kk | Manufacture of porous seamless pipe |
JPS5834103A (en) * | 1981-08-24 | 1983-02-28 | Sumitomo Electric Ind Ltd | Production of niti alloy |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63105904A (en) * | 1986-10-23 | 1988-05-11 | Daido Steel Co Ltd | Production of hollow body made of shape memory alloy |
WO2002058866A3 (en) * | 2001-01-24 | 2003-02-27 | Scimed Life Systems Inc | Processing particulate ni-ti shape memory alloys |
US6548013B2 (en) * | 2001-01-24 | 2003-04-15 | Scimed Life Systems, Inc. | Processing of particulate Ni-Ti alloy to achieve desired shape and properties |
WO2002085561A3 (en) * | 2001-04-24 | 2003-03-13 | Forschungszentrum Juelich Gmbh | Production of component parts by metal injection moulding (mim) |
CN100337764C (en) * | 2005-04-27 | 2007-09-19 | 中国科学院金属研究所 | High speed-ratio hot pressing method for NiTi alloy piping billet and its special mould |
CN103831434A (en) * | 2012-11-27 | 2014-06-04 | 通用汽车环球科技运作有限责任公司 | Hollow superelastic shape memory alloy particle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105382262A (en) | Manufacturing method of heat conduction copper pipe with inner groove | |
JPS60174804A (en) | Production of pipe | |
DE2742008C2 (en) | Process for the production of a brass material with a microduplex structure | |
CN114986018A (en) | Plastic high-temperature brazing filler metal composition and preparation method thereof | |
US5445790A (en) | Process for densifying powder metallurgical product | |
US5277867A (en) | Method for making high strength injection molded ferrous material | |
DE2756644C2 (en) | Process for the production of a molded body from porous polytetrafluoroethylene | |
JPH0456095B2 (en) | ||
JPS5834103A (en) | Production of niti alloy | |
JP2004131816A (en) | Method for producing oxide dispersion-strengthened ferritic steel tube | |
DE3431620A1 (en) | Material for adapting bodies for ultrasonic transducers | |
JPH0244056A (en) | Production of sintered article | |
KR102094412B1 (en) | Thermochemical heat storage material of honeycomb structure and method for manufacturing thereof | |
US2467544A (en) | Nickel-manganese-silver alloy | |
JPS62107002A (en) | Activating sintering of metal powder | |
JPS60230957A (en) | Manufacture of permanent magnet | |
JP2794473B2 (en) | Method for producing sintered member made of amorphous alloy | |
JPH0126847B2 (en) | ||
JPS5895658A (en) | Manufacture of silicon nitride sintered body | |
DE10324271B4 (en) | Method for producing a clamping element | |
JP2511078B2 (en) | Injection molding | |
JPS59185743A (en) | Production of functional alloy wire | |
JP2753752B2 (en) | Method for producing sintered member made of amorphous alloy | |
KR20180111165A (en) | Method for Manufacturing Copper Alloy and Ultra Thin Foil Using the Same | |
JPS5983733A (en) | Preparation of shape memory alloy |