JPS601746A - Metal vapor discharge lamp - Google Patents

Metal vapor discharge lamp

Info

Publication number
JPS601746A
JPS601746A JP10771283A JP10771283A JPS601746A JP S601746 A JPS601746 A JP S601746A JP 10771283 A JP10771283 A JP 10771283A JP 10771283 A JP10771283 A JP 10771283A JP S601746 A JPS601746 A JP S601746A
Authority
JP
Japan
Prior art keywords
cathode
coil
electrode
arc
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10771283A
Other languages
Japanese (ja)
Inventor
Yasuki Mori
泰樹 森
Shinji Inukai
伸治 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10771283A priority Critical patent/JPS601746A/en
Publication of JPS601746A publication Critical patent/JPS601746A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps

Abstract

PURPOSE:To prevent missing of transparency and occurrence of crack even when firing through power source having no cathode inversion by coating the sealed end of cathode made by winding a coil over the electrode shaft with insulator. CONSTITUTION:Anode 3 and cathode 4 are connected through molybdenum foils 7a, 7b to be sealed air-tightly in sealed sections at the opposite ends of a light emission bulb to the external lead wires 8a, 8b to form a light emission tube 1. Said tube 1 is sealed in an outer tube to form a lamp which is fired through power source having no polarity inversion such as an inverter. In such a metal vapor discharge lamp, cathode 4 is formed by winding a coil 4b over a portion of an electrode shaft 4a while the surface of the electrode shaft 4a is coated with insulator 5 over the range longer than (l-d) from the sealed end, assuming the outer diameter of the coil 4b is dmm. while the length of the electrode shaft 4a from the cathode sealed end to the lower end of coil is lmm..

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はたとえば直流など極性の反転のない電源で点灯
される金属蒸気放電灯に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a metal vapor discharge lamp that is operated using a power source with no polarity reversal, such as direct current.

(発明の技術的背景とその問題点〕 近年、省エネルギーの見地から高効率なメタルハライド
ラング、高圧ナトリウムランプ等の金属蒸気放電灯が多
く用いられてきている。
(Technical background of the invention and its problems) In recent years, highly efficient metal vapor discharge lamps such as metal halide lamps and high-pressure sodium lamps have been widely used from the viewpoint of energy conservation.

これら金属蒸気放電灯は商用周波数50Hzまたは60
Hzの交流100Vまたは200■の一般供給電源で安
定器を介して点灯するのが常であった。あるサイクルで
極性の反転がある交流電源でこれら金属蒸気放電灯を点
灯する場合2発光管の一対の電極は交互に陰極と陽極の
役目を果たし、またこの極性の変り目には一瞬ではある
が電源電圧がゼロとなる電流体止期間が存在する。この
ため、交流用の金属蒸気放電灯の電極としては加速され
てきたイオンのボンバードに耐え得る陽極としての性能
と、電子放射性の優れたことを要求される陰極としての
性能を兼わ備えることが必要である。
These metal vapor discharge lamps operate at a commercial frequency of 50Hz or 60Hz.
It was customary to use a general power supply of 100 V or 200 Hz AC via a ballast to light the lamp. When these metal vapor discharge lamps are lit with an AC power source whose polarity reverses in a certain cycle, the pair of electrodes in the two arc tubes alternately serve as cathode and anode, and at this polarity change momentarily, the power source There is a current stop period when the voltage is zero. Therefore, the electrodes of AC metal vapor discharge lamps must have both the performance as an anode that can withstand the bombardment of accelerated ions, and the performance as a cathode, which requires excellent electron emissivity. is necessary.

陽極はより大きな電極構造に対し、陰極はより小さな電
極構造が適するという相反する性質のものであり9両者
の妥協にたった電極設計が行なわれている。したがって
9本来の放電の安定性からは必ずしも好ましい形ではな
かった。さらに、上記のように極性が反転する際に電圧
がゼロとなる点が存在し放電々流がゼロとなる電流体止
期間が存在し、これは次に電圧値が放電を行なわせるに
充分な値に達するまで続くわけであり、この期間が長け
れば長いほど次の放電を行なわせるに必要な電圧1直は
高い値を必要とする。この各半サイクル毎の極性反法時
の高圧値は再点弧電圧と呼ばれろか、この再点弧電圧は
極性の反転のある交流点灯時には必ず発生し、これは立
消え電圧や寿命特性等のランプ特性に重大な影響がある
ことが知られてbる。
The anode has contradictory properties, such that a larger electrode structure is suitable, while the cathode has a smaller electrode structure.9 Electrode designs are being carried out that strike a compromise between the two. Therefore, this was not necessarily a preferable form from the viewpoint of the original discharge stability of 9. Furthermore, as mentioned above, when the polarity is reversed, there is a point where the voltage becomes zero, and there is a current stop period where the discharge current becomes zero, and this is when the voltage value is sufficient to cause the discharge to occur. The longer this period is, the higher the voltage required for the next discharge will be. This high voltage value at the time of polarity reversal in each half cycle is called the restriking voltage, and this restriking voltage always occurs when AC lighting is performed with polarity reversal, and this is due to factors such as turn-off voltage and life characteristics. It is known to have a significant effect on lamp characteristics.

このような事情から、交流に代え直流点灯など極性の反
転のない電源で点灯する方法が注目されて(るが、従来
のようなランプ電力を有するランプの場合には交流から
直流など極性の反転のない電源に変換するインバータ等
の回路が大型になり過ぎるとか、あるいは大電流用電子
部品の開発が必要となる等の障害があり、特殊な用途以
外は実用化し得なかった。しかしケがら、近時、省資源
For these reasons, methods of lighting using a power source that does not have polarity reversal, such as direct current lighting instead of alternating current, are attracting attention. There were obstacles such as the inverter and other circuits needed to convert the power supply to a non-converting power source to be too large, and the need to develop electronic components for large currents, making it impossible to put it into practical use except for special purposes. Recently, resource saving.

省エネルギーの観点から一般家庭用等で使用されている
効率の悪い白熱電球に代わり高効率な小形の金属蒸気放
電灯の開発が強く要望されるようになり、また電子部品
の性能も日毎に進歩している現状から、極性の反転のな
い電源で点灯する方式の金属蒸気放電灯の見直しが急務
となってきつつある。
From the perspective of energy conservation, there is a strong demand for the development of highly efficient compact metal vapor discharge lamps to replace the inefficient incandescent bulbs used in general households, and the performance of electronic components is also improving day by day. In view of the current situation, it is becoming urgent to review metal vapor discharge lamps that are lit using a power source that does not have polarity reversal.

本発明者等は直流あるいは整流された電源な用いる金属
蒸気放電灯の開発過程において、従来の交流点灯では問
題となら々かった重要な問題を発見した。それは極性の
反転のない電源で点灯した金属蒸気放電灯は陰極近傍の
発光管管壁にクラックを発生し2発光管かリークし不点
となるランプが多発したことである。しかも、この現象
は陰極と発光管管壁とがより接近してくる小形のランプ
はど一層甚だしくなることが判明した。これらの現象に
つき、さらに交流点灯のランプと比較観察したところ、
ランプが定常状態で安定した場合でも、極性反転の々い
電源で点灯した場合には陰極の封止端側に′アークスポ
ットが形成され、このスポットが陰極先端に移行しない
場合があることが判り、このままの状態で数時間点灯を
続けたものが殆んど上記のようなりラックを発生させて
いることが判った。これに対し、交流点灯の場合には始
動直後には電極の封止端側から放電を開始するものの短
時間で全てのランプはアークスポットが電極先端に移行
し、クラックは発生しなかった。
In the process of developing a metal vapor discharge lamp that uses a DC or rectified power source, the inventors discovered an important problem that did not occur with conventional AC lighting. This is because metal vapor discharge lamps operated using a power source that does not have polarity reversal often develop cracks in the wall of the arc tube near the cathode, causing leaks from the two arc tubes and causing many lamps to fail. Moreover, it has been found that this phenomenon becomes even more severe in small lamps in which the cathode and the wall of the arc tube are closer together. We further observed these phenomena by comparing them with AC lamps.
It has been found that even if the lamp is stable in steady state, if the lamp is lit with a power supply that frequently reverses polarity, an arc spot will be formed on the sealed end of the cathode, and this spot may not migrate to the tip of the cathode. It was found that most of the lamps that were left on for several hours in this state caused racking as described above. On the other hand, in the case of AC lighting, although discharge started from the sealed end side of the electrode immediately after starting, the arc spot moved to the electrode tip in all lamps in a short time, and no cracks occurred.

このような現象は次のような理由によるものと推察され
る。すなわち、交流でも極性の反転のない電源の場合で
も、始動直後は1気圧以下の低圧状態であるため放電距
離が長くなる状態で放電は開始する。しかし1時間と共
に発光管内の温度が上昇し5発光管内の圧力は上昇して
定格点灯時には1気圧以上の高圧たとえばメタルハライ
ドランプでは10気圧前後あるいはそれ以上にもなる。
This phenomenon is presumed to be due to the following reasons. That is, even in the case of an alternating current power source with no polarity reversal, the discharge starts with a long discharge distance because the pressure is low at 1 atm or less immediately after startup. However, as the temperature inside the arc tube increases over the course of one hour, the pressure inside the arc tube rises and reaches a high pressure of 1 atm or more during rated lighting, for example, around 10 atm or more in the case of a metal halide lamp.

したがって、放電が安定を維持するため、よく知られて
いる法則Pd= const、 (Pは圧力、dは放電
距離)を満足するようにアークスポットは電極封止端側
から電極先端へ移行し、放電距離dが短かくなる方向へ
動く。この現象は交流の場合には両電極がそれぞれ陰極
と陽極の両方の作用を各半サイクルで繰返すので、陽極
時にはアークがその電極全域ゝに集中して電極先端も加
熱されるため、上記の圧力の増加と共にアークは電極先
端へ容易に移行するが、直流のように極性の反転のない
場合には陰極側はアークがスポット状となり電極のごく
一部にのみ集中する1、シたがつで、その集中した個所
のみは温度が上昇するものの始動直後は電極封止端側で
あるから電極先端は発光管内圧力が充分高まっても電子
放射を行うに充分なまでには昇温せず、しかも極性の反
転がないので一旦できたスポット位置からのアークの移
動は何等かのきっかけが無いと起らない場合があるもの
と推察さその1つは発光管内圧力が高くなる故に放電と
してはより放電距離を短かくしようとする働きで。
Therefore, in order to maintain stable discharge, the arc spot moves from the electrode sealing end to the electrode tip so as to satisfy the well-known law Pd = const, (P is pressure, d is discharge distance). It moves in the direction where the discharge distance d becomes shorter. This phenomenon is caused by the fact that in the case of alternating current, each electrode acts as both a cathode and an anode in each half cycle, so when it is an anode, the arc concentrates over the entire area of the electrode and the tip of the electrode is also heated. As the current increases, the arc easily moves to the tip of the electrode, but when there is no reversal of polarity, such as with direct current, the arc becomes a spot on the cathode side and concentrates only on a small part of the electrode. Although the temperature rises only in the concentrated area, immediately after starting, the temperature at the electrode tip does not rise to a level sufficient for electron emission even if the pressure inside the arc tube increases sufficiently since the electrode is on the sealed end side. Since there is no reversal of polarity, it is inferred that the movement of the arc from the spot position once created may not occur unless there is some trigger. In an effort to shorten the distance.

他の1つは電子放射性の良い個所からエミッションが発
生するという点である。
Another point is that emissions are generated from locations with good electron radiation.

たとえば、陰極側の電極先端とアークスポットが起って
いる個所との温度勾配が小さくて電極先端も充分高い湿
度になっていれば容易にアークは管内圧力の増加と共に
電極先端へ移行するが、電極封止端側に特にエミッショ
ンの良い個所が存在してたまたまその個所から放電が開
始し、かつ。
For example, if the temperature gradient between the electrode tip on the cathode side and the area where the arc spot occurs is small and the electrode tip also has a sufficiently high humidity, the arc will easily move to the electrode tip as the pressure inside the tube increases. It just so happens that there is a spot with particularly good emission on the electrode sealing end side, and the discharge starts from that spot.

電極先端との高度勾配が大きな場合には、最後までアー
クは電極先端に移行せずに封止端側で放電を維持し続け
た。電極軸にコイルを巻装したタイプでは高度勾配が太
き(なり、勾配を小さくする為には、始動特性を犠牲に
せざるを得ない。
When the altitude gradient with the electrode tip was large, the arc did not move to the electrode tip and continued to maintain discharge on the sealed end side until the end. The type with a coil wound around the electrode shaft has a thick altitude gradient, and in order to reduce the gradient, the starting characteristics have to be sacrificed.

ここで特にエミッションの良い個所とは、たとえば発光
管内に封入した金属または金属化合物の内エミッション
の良いものが電極の封止端付近に付着した場合とか、何
度も同一の個所からアークスポットが形成され続けるこ
とにより、その個所が他の個所よりもエミッションし易
くなるため等が考えられる。
In this case, areas with particularly good emission are, for example, cases where a metal or metal compound sealed in the arc tube with good emission adheres to the vicinity of the sealed end of the electrode, or an arc spot is formed from the same place many times. This is thought to be due to the fact that if the air continues to be emitted, it becomes easier for that area to emit emissions than other areas.

〔発明の目的」 本発明はたとえば直流点灯などの極性の反転のない電源
で点灯しても発光管に失透、クラックが発生しない長寿
命の金属蒸気放電灯を提供することを目的とする。
[Object of the Invention] An object of the present invention is to provide a long-life metal vapor discharge lamp that does not cause devitrification or cracks in the arc tube even when lit with a power source that does not have polarity reversal, such as direct current lighting.

〔発明の概要〕[Summary of the invention]

本発明は電極軸にコイルを巻装してなる陰極の上記電極
軸の封止端側を絶縁物で被覆することにより、その部分
でのアークスポットの形成を妨げ。
In the present invention, the sealed end side of the electrode shaft of a cathode formed by winding a coil around the electrode shaft is coated with an insulating material, thereby preventing the formation of an arc spot at that portion.

もって電極近傍における発光管クラックの発生を防止し
たものである。
This prevents the occurrence of cracks in the arc tube near the electrodes.

〔発明の実施例〕[Embodiments of the invention]

以下9本発明の詳細を図示の実施例を参照して説明する
。第1図は40Wの小形メタルハライドランプの発光管
(1)を示し、内径約8 taxのほぼ球形に成形され
た石英ガラスからなる発光管パルプ(2)の内部には始
動用希ガスとしてアルゴンガス100トール、水銀10
 mgおよび金属ハロゲン化物としてたとえば沃化スカ
ンジウムと沃化ナトリウムが重匹 量化で1:5で計2 mgが封入され、かつ9発光管パ
ルプ(2)の両端部には対向して陽極(3)と陰極(4
)とが封止されている。陽極(3)は径約0.22 m
mのタングステン棒を電極軸とし、径約0.06 mm
のタングステン線を径約0.18mmのタングステン芯
線に粗巻きしたものを上記電極軸に密に巻回して長さ約
1.5mmの電極コイル部を形成している。
The details of the present invention will be explained below with reference to the illustrated embodiments. Figure 1 shows the arc tube (1) of a 40W small metal halide lamp.The arc tube pulp (2) is made of quartz glass and is formed into an almost spherical shape with an inner diameter of approximately 8 tax. 100 torr, mercury 10
mg and a metal halide such as scandium iodide and sodium iodide are sealed in a heavy weight ratio of 1:5, and an anode (3) is placed at both ends of the 9 arc tube pulp (2) facing each other. and cathode (4
) are sealed. The anode (3) has a diameter of approximately 0.22 m.
The electrode axis is a tungsten rod with a diameter of approximately 0.06 mm.
A tungsten wire having a diameter of approximately 0.18 mm is roughly wound around a tungsten core wire, and then tightly wound around the electrode shaft to form an electrode coil portion having a length of approximately 1.5 mm.

一方、陰極(4)は径約0.121111のタングステ
ン棒ヲ電極軸(4a)とし、径約0.031mのタング
ステン線を径約0.06 !Inのタングステン芯線に
粗巻きしたものを上記電極軸(4a)に密に巻回して長
さ約1朋のコイル(4b)を形成している。両電極(3
)、 (4)は共に発光管内突出長は約2關である。ま
た、上記陰極(4)の電極軸(4a)の封止端部からコ
イル(4b)下端までの長さくl)の部分の大部分はそ
の表面をたとえば石英細管のような絶縁物(5)で被覆
されている。
On the other hand, the cathode (4) uses a tungsten rod (4a) with a diameter of about 0.121111 as the electrode shaft (4a), and a tungsten wire with a diameter of about 0.031 m with a diameter of about 0.06! A coil (4b) having a length of about 1 mm is formed by coarsely winding an In tungsten core wire and tightly winding it around the electrode shaft (4a). Both electrodes (3
) and (4) both have a protrusion length in the arc tube of about 2 degrees. Further, most of the length l) from the sealed end of the electrode shaft (4a) of the cathode (4) to the lower end of the coil (4b) is covered with an insulator (5) such as a quartz tube. covered with.

さらに、上記陽極(3)と陰極(4)は発光管パルプの
両端封止部(6a)、 (6b)内に気密に封着される
モリブデン箔(7a)、 (7b)を介して外部リード
線(8a)。
Furthermore, the anode (3) and cathode (4) are connected to external leads through molybdenum foils (7a) and (7b) that are hermetically sealed within the sealing parts (6a) and (6b) at both ends of the arc tube pulp. Line (8a).

(8b)にそれぞれ接続されて発光管(1)が形成され
ている。この発光管(1)は図示しないが一端に口金を
取着した外管内に封装され、上記外部リード線(8a)
、 (sb)は口金及び端子に接続されてランプが形成
される。このようなランプ(点線で示すっ)はたとえば
第2図に示すような点灯装置、すなわち、一般の商用周
波数の交流電源(9)を直流など極性の反転のない電源
に変換するインバータを経て。
(8b) are connected to each other to form an arc tube (1). This arc tube (1) is sealed in an outer tube with a cap attached to one end (not shown), and the external lead wire (8a)
, (sb) are connected to the base and the terminal to form a lamp. Such a lamp (indicated by a dotted line) is powered by a lighting device as shown in Figure 2, for example, through an inverter that converts a general commercial frequency AC power source (9) into a DC power source with no polarity reversal.

かつ、ランプと直列に接続され電流を制御するバラスト
を介して発光管(1)の両端に電圧が印加され。
A voltage is applied to both ends of the arc tube (1) via a ballast connected in series with the lamp to control the current.

点灯される。It will be lit.

次に上記実施例ランプと、陰極(4)の電極軸(4a)
を絶縁物で全く被覆しない発光管を有する同じ定格のラ
ンプ(比較品)とをそれぞれ30本づつ製作し、さらに
各半数の15本づつに別け、上記点灯装置により垂直点
灯(発光管位置を垂直とする。)および水平点灯(発光
管位置を水平とする。)でON、 OFFの点滅試験を
行ない、上記アークスポットの位置や陰極付近の発光管
の失透、クラックの発生状況等につき観察した。その結
果、実施例のものは垂直、水平点灯ともに1000回の
点滅でも失透、クラックの発生はゼロであり、アークス
ポットも陰極の電極軸の根元側(封止端側)で発生して
いなかった。これに対し、比較品つまり上記電極軸を絶
縁物で被覆しないランプにおける発光管の失透、クラッ
クの発生率は1000回の点滅で垂直点灯のものは2本
/15本、水平点灯のものは15本/15本つまり10
0%もの高率であった。また。
Next, the above example lamp and the electrode shaft (4a) of the cathode (4)
We manufactured 30 lamps each with the same rating (comparison product) that have arc tubes that are not covered with any insulating material, and then divided them into half of each, 15 lamps, and lit them vertically using the above lighting device (with the arc tubes positioned vertically). ) and horizontal lighting (the arc tube position is horizontal), ON and OFF flashing tests were conducted, and the position of the arc spot, devitrification of the arc tube near the cathode, crack occurrence, etc. were observed. . As a result, in the example, no devitrification or cracking occurred even after 1000 flashes in both vertical and horizontal lighting, and no arc spots were generated on the root side (sealed end side) of the cathode electrode axis. Ta. On the other hand, the rate of occurrence of devitrification and cracks in the luminous tube of comparative products, that is, lamps whose electrode shafts are not covered with an insulating material, is 2/15 for the vertically lit lamp and 2/15 for the horizontally lit lamp after 1000 blinks. 15 pieces/15 pieces or 10
The rate was as high as 0%. Also.

上記垂直点灯で不良となった2本につき、さらに詳細に
検討したところ9両電極の電極軸の先端を結ぶ電極軸線
が鉛直となす角度が5度以上あることが判った。
Further detailed examination of the two defective electrodes due to vertical lighting revealed that the angle between the electrode axes connecting the ends of the electrode axes of nine electrodes and the vertical was 5 degrees or more.

次に上記比較品ランプの点灯方向つまり電極軸重 線が鉛迅とガす角度とアーク形状の変化状態との関係を
第3図を参照して説明する。A図は垂直点灯の場合で高
温のアークa〔は陰極(4)のコイルの一部に接触する
ためコイルの温度は上昇し、アークスポット(10a)
は発光管(1)内の圧力上昇にともない次第に陰極(4
)先端部へ移行するので発光管(1)の失透、クラック
が生じないものと考えられる。B図は垂直点灯ではある
が、電極軸線が鉛直となす角度が5度以上の場合で、ア
ーク00は重力の関係で陰極(4)から離れて発光管管
壁に近づき、したがってコイル部のアークからの熱影響
はA図のi合より少なくなるため温度上昇は充分でなく
、アークスボツ) (10a)の陰極(4)先端部への
移行は生じないかあるいは移行に長時間を要し、アーク
α0)に近い発光管管壁は長時間にわたって非常な高温
に曝らされるため失透、クラックを生じやすくなる。
Next, the relationship between the lighting direction of the comparative lamp, that is, the angle at which the electrode axial gravity line crosses the lead line, and the state of change in the arc shape will be explained with reference to FIG. Figure A shows the case of vertical lighting, where the high-temperature arc a comes into contact with a part of the coil of the cathode (4), so the temperature of the coil rises and the arc spot (10a)
As the pressure inside the arc tube (1) increases, the cathode (4) gradually increases.
) It is considered that devitrification and cracks do not occur in the arc tube (1) because the light is transferred to the tip. Figure B shows vertical lighting, but when the angle between the electrode axis and the vertical is 5 degrees or more, the arc 00 moves away from the cathode (4) due to gravity and approaches the arc tube wall, so the arc in the coil section Since the thermal influence from The wall of the arc tube close to α0) is exposed to extremely high temperatures for a long period of time, making it susceptible to devitrification and cracking.

さらに、C図の水平点灯つまり電極軸線が鉛直となす角
度が90度にもなると、アーク(IGは一1慎重力の影
響を受けやすくなり、アークa〔は上方に大きく押し上
げられて発光管管壁に接触したり近づき過ぎて管壁を過
熱し、しかもアークスポット(10a)の陰極先端への
移行はB図の場合よりも起りにくいので9発光管管壁は
より一層失透、クランクを生じるものと考えられる。
Furthermore, when the horizontal lighting in Figure C, that is, the angle the electrode axis makes with the vertical reaches 90 degrees, the arc (IG) becomes susceptible to the influence of the cautious force, and the arc (a) is pushed up significantly and the arc tube Contacting or getting too close to the wall overheats the tube wall, and since the transfer of the arc spot (10a) to the cathode tip is less likely to occur than in the case of Figure B, the tube wall of the arc tube becomes more devitrified and cranks. considered to be a thing.

以上の結果をまとめると、電極軸線が鉛直となす角度が
水平点灯方向に向って大きくなるに従がって陰極封止端
近傍の発光管の失透、クラックの発生率は次第に高くな
ること、また陰極の電極軸の根元側つまり封止端部から
コイル下端までの長さくl)の部分の大部分の表面を絶
縁物で被覆したものは垂直点灯、水平点灯の如何にかか
わらず失透。
To summarize the above results, as the angle between the electrode axis and the vertical increases toward the horizontal lighting direction, the incidence of devitrification and cracking in the arc tube near the cathode sealing end gradually increases. In addition, if the cathode is coated with an insulating material over most of the surface of the root side of the electrode shaft, that is, the length l) from the sealed end to the bottom end of the coil, devitrification occurs regardless of whether the cathode is lit vertically or horizontally.

クラックが発生しないということになる。This means that no cracks will occur.

次に上記絶縁物(5)による被覆範囲について検討した
Next, the range covered by the insulator (5) was examined.

上記実施例では陰極電極軸の封止端部からコイル下端ま
での長さく/)の大部分の表面を絶縁物(5)で被覆し
たが、上記絶縁物(5)の封止端部からの被覆部分の長
さく1)を種々変化させた場合のアークスポットおよび
発光管の失透、クラックの発生状況を観察した。なお9
点灯方向は上記のように失透。
In the above example, most of the surface of the length from the sealed end of the cathode electrode shaft to the bottom end of the coil was covered with the insulator (5). The occurrence of arc spots, devitrification, and cracks in the arc tube was observed when the length 1) of the coated portion was varied. Note 9
The lighting direction is devitrified as shown above.

クラックが最も発生しやすい水平点灯で行なった。The test was carried out with horizontal lighting where cracks are most likely to occur.

この結果、陰極(4)の電極コイル(4b)の外径d@
m)と、陰極電極軸(4a)の封止端部からコイル下端
までの長さl (mm)と、絶縁物(5)の上記封止端
部からの被覆部分の長さt (111711)との関係
をt≧l−dとすれば、アークスポットは必ず陰極の先
端に移動し9発光管の失透、クラックは発生しなかった
As a result, the outer diameter d@ of the electrode coil (4b) of the cathode (4)
m), the length l (mm) from the sealed end of the cathode electrode shaft (4a) to the lower end of the coil, and the length t (111711) of the covered portion of the insulator (5) from the sealed end If the relationship is t≧ld, the arc spot always moves to the tip of the cathode, and no devitrification or cracking occurred in the arc tube 9.

すなわち、絶縁物(5)が上記範囲内に被覆されていれ
ば、放電直後に電極軸(4a)の絶縁物(5)が被覆さ
れていない個所つまり(2−1)の部分にアークスポッ
トが発生しても、アークがコイル(4b)の一部に接触
するためコイル(4b)の温度は上昇し、アークスポッ
トは発光管内の圧力上昇に伴ないコイル方向へ次第に移
動し、最終的に陰極(4)の先端部に移動した。この結
果、陰極(4)近傍の発光管がアークスポットにより長
時間非常な高温に加熱されることがなくなり、失透、ク
ラックの発生が防止されるものである。
In other words, if the insulator (5) is covered within the above range, an arc spot will be formed at the part (2-1) where the insulator (5) of the electrode shaft (4a) is not covered immediately after discharge. Even if the arc occurs, the temperature of the coil (4b) increases as the arc comes into contact with a part of the coil (4b), and the arc spot gradually moves toward the coil as the pressure inside the arc tube increases, eventually reaching the cathode. It moved to the tip of (4). As a result, the arc tube near the cathode (4) is not heated to a very high temperature by the arc spot for a long period of time, and devitrification and cracks are prevented from occurring.

これに反し、上記電極軸の絶縁物が被覆されない範囲(
l−1)が大きくなると、つまりアークスポットがより
封止端側に発生すればするほどアーク1がコイル(4b
)に接触しにく翫々す、コイル(4b)部の温度上昇が
緩漫となるためアークスポットの陰極先端への移動が行
なわれず9発光管の失透。
On the other hand, the area where the insulator of the electrode shaft is not covered (
l-1) becomes larger, that is, the closer the arc spot is generated to the sealing end, the arc 1 becomes closer to the coil (4b
), the temperature rise in the coil (4b) section becomes slow, and the arc spot does not move to the cathode tip, resulting in devitrification of the arc tube.

クラックが発生しやすくなるわけである。This makes it easier for cracks to occur.

また、上記結果は電極形状が異々るもの、たとえば電極
軸の先端がコイル上端より突出していないものにおいて
も同様であった。
Further, the above results were similar even when the electrode shape was different, for example, when the tip of the electrode shaft did not protrude from the upper end of the coil.

なお9本発明は上記実施例の小形メタルハライドランプ
に限られるものではなく、中形、大形のメタルハライド
ランプにおいても同様の効果が得られることは勿論のこ
と、直流々と極性の反転のない電源で点灯される他の金
属蒸気放電灯たとえば高圧水銀灯や高圧ナトリウムラン
プにおいても同様の効果が得られるものである。すなわ
ち上記高圧ナトリウムランプの発光管は透光性セラミッ
ク管の両端開口部を電極を支持する閉塞体たとえばセラ
ミック閉塞体で封止して形成され、上記電極はセラミッ
ク閉塞体をガラスンルダを介して気密に貫通するニオブ
等からなる導入線に電極軸の下端を接合して支持される
。したがって、放電時にアークスポットが上記接合部近
傍の電標軸または導入線部に形成され、この状態が長時
間持続されるとセラミック管には石英ガラス管はどでは
ないが失透を生じたり、特には上記導入線を気密に保持
するガラスンルダ部が過熱によってクラックを発生する
等の不都合を生じるが9本発明を適用すればこのよう々
不都合は防止できる。なお、このランプの場合には電極
軸のlの範囲は、導入線のガラスンルダ封止端部からの
突出長に電極軸のコイル下端までの部分の長さを加えた
ものとなる。
It should be noted that the present invention is not limited to the small metal halide lamp of the above embodiment, and the same effects can be obtained with medium and large metal halide lamps. A similar effect can be obtained with other metal vapor discharge lamps that are lit in the same manner, such as high-pressure mercury lamps and high-pressure sodium lamps. That is, the arc tube of the high-pressure sodium lamp is formed by sealing the openings at both ends of a translucent ceramic tube with a closure body, such as a ceramic closure body, that supports an electrode. The lower end of the electrode shaft is joined to and supported by a lead-in wire made of niobium or the like that passes through the electrode shaft. Therefore, during discharge, an arc spot is formed on the electric gauge axis or lead-in wire near the joint, and if this state continues for a long time, devitrification may occur in ceramic tubes, but not in quartz glass tubes. In particular, problems such as the occurrence of cracks in the glass lead-in portion that airtightly holds the lead-in wire due to overheating occur, but by applying the present invention, such problems can be prevented. In the case of this lamp, the range l of the electrode axis is the sum of the length of the lead-in wire protruding from the glass-and-ruder sealed end and the length of the electrode axis up to the lower end of the coil.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、直流点灯などの極
性の反転の々い電源で点灯しても発光管に失透やクラッ
クの発生がない長寿命の金属蒸気放電灯が得られる。
As described in detail above, according to the present invention, a long-life metal vapor discharge lamp can be obtained in which no devitrification or cracks occur in the arc tube even when the lamp is lit with a power source such as DC lighting whose polarity is often reversed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるメタルハライ形状の変
化の関係を示す)11’n 1−tF> S。 (1)・・・発光管、(2)・・・発光管バルブ、(3
)・・・陽極。 (4)・・・陰極、 (4a)・・・陰極の電極軸。 (4b)・・・陰極のコイル、(5)・・・絶縁物。 (6a)、 (6b)・・・発光管バルブの封止部代理
人 弁理士 則 近 憲 佑 (ほか 1名)
FIG. 1 shows the relationship between changes in the metal halide shape according to an embodiment of the present invention) 11'n 1-tF>S. (1)... Arc tube, (2)... Arc tube bulb, (3
)···anode. (4)...Cathode, (4a)...Cathode electrode axis. (4b)...Cathode coil, (5)...Insulator. (6a), (6b)...Representative for the sealing department of arc tube bulbs: Kensuke Chika, patent attorney (and one other person)

Claims (1)

【特許請求の範囲】[Claims] 発光管パルプの両端部に対向して陽極と陰極を封止し、
内部に始動用希ガスと少なくとも水銀を含む封入物とを
封入してなる発光管を有し、極性の反転のない電源で点
灯される金属蒸気放電灯において、上記陰極は電極軸の
一部にコイルを巻装してなり、かつ、コイルの外径をd
(gm)、 陰極封止端部からコイル下端までの電極軸
の長さをl(關)としたとき、上記電極軸の表面を上記
封止端部より(l−d )以上の範囲にわたって絶縁物
で被覆したことを特徴とする金属蒸気放電灯。
The anode and cathode are sealed facing each other at both ends of the arc tube pulp.
In a metal vapor discharge lamp, which has an arc tube filled with a starting rare gas and a filler containing at least mercury, and is lit by a power source with no polarity reversal, the cathode is a part of the electrode shaft. It is made by winding a coil, and the outer diameter of the coil is d.
(gm), where the length of the electrode shaft from the cathode sealed end to the lower end of the coil is l (gm), the surface of the electrode shaft is insulated over a range of (ld) or more from the sealed end. A metal vapor discharge lamp characterized by being covered with a material.
JP10771283A 1983-06-17 1983-06-17 Metal vapor discharge lamp Pending JPS601746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10771283A JPS601746A (en) 1983-06-17 1983-06-17 Metal vapor discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10771283A JPS601746A (en) 1983-06-17 1983-06-17 Metal vapor discharge lamp

Publications (1)

Publication Number Publication Date
JPS601746A true JPS601746A (en) 1985-01-07

Family

ID=14466029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10771283A Pending JPS601746A (en) 1983-06-17 1983-06-17 Metal vapor discharge lamp

Country Status (1)

Country Link
JP (1) JPS601746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276741A (en) * 1986-05-26 1987-12-01 Iwasaki Electric Co Ltd Metallic vapor discharge lamp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835581U (en) * 1971-08-30 1973-04-27
JPS5494776A (en) * 1978-01-11 1979-07-26 Toshiba Corp Metallic vapor discharge lamp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835581U (en) * 1971-08-30 1973-04-27
JPS5494776A (en) * 1978-01-11 1979-07-26 Toshiba Corp Metallic vapor discharge lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276741A (en) * 1986-05-26 1987-12-01 Iwasaki Electric Co Ltd Metallic vapor discharge lamp
JPH0732002B2 (en) * 1986-05-26 1995-04-10 岩崎電気株式会社 Metal vapor discharge lamp

Similar Documents

Publication Publication Date Title
JPS6337721Y2 (en)
JP2002245971A (en) High pressure electric discharge lamp, high pressure electric discharge lamp lighting device and lighting system
JPH0133900B2 (en)
US2765420A (en) Lamp electrode
US4625149A (en) Metal vapor discharge lamp including an inner burner having tapered ends
US2094694A (en) Vapor electric discharge device and method of operation
US20030001502A1 (en) High-pressure gas discharge lamp
JPH0475625B2 (en)
US2901648A (en) Reflector mercury lamp
JPS62283543A (en) Metallic vapor discharge lamp
JPS601746A (en) Metal vapor discharge lamp
JPH0157462B2 (en)
JP2007273373A (en) Metal halide lamp and lighting system
JPH0447948B2 (en)
US2087743A (en) Electric gaseous discharge device
JP2001345071A (en) High-pressure discharge lamp and illumination device
JPH0613027A (en) High voltage discharge lamp
JP2932505B2 (en) Lighting method of hot cathode low pressure rare gas discharge lamp
JPS603846A (en) Small-sized metal vapor discharge lamp
JPS62177853A (en) Small-sized metal vapor discharge lamp
JPH0330994Y2 (en)
JPH0439182B2 (en)
JPS6235255Y2 (en)
JPS60220544A (en) Metal halide lamp for dc lighting
US2966606A (en) Fluorescent lamp