JPS60174070A - Carrier control system in ac converter circuit - Google Patents

Carrier control system in ac converter circuit

Info

Publication number
JPS60174070A
JPS60174070A JP59027925A JP2792584A JPS60174070A JP S60174070 A JPS60174070 A JP S60174070A JP 59027925 A JP59027925 A JP 59027925A JP 2792584 A JP2792584 A JP 2792584A JP S60174070 A JPS60174070 A JP S60174070A
Authority
JP
Japan
Prior art keywords
carrier wave
circuit
speed
asynchronous
synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59027925A
Other languages
Japanese (ja)
Inventor
Yoshimoto Fujioka
藤岡 良基
Mitsuhiko Hirota
広田 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP59027925A priority Critical patent/JPS60174070A/en
Publication of JPS60174070A publication Critical patent/JPS60174070A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To smoothly perform a PWM control by switching in an asynchronous type at a low speed and in a synchronous type at a high speed. CONSTITUTION:When a speed command VCMD increases from the operating state using an asynchronous carrier and arrives at the predetermined rotating speed, the output of a speed discriminator 22 becomes from low speed 0 to high speed 1, and 1 is applied to an AND circuit 25. On the other hand, a coincidence detector 21 detects the coincidence of the synchronous carrier with the asynchronous carrier, and when the coincidence of the frequency and the coincidence of the phase are satisfied, 1 signal is applied to the circuit 25. When an output is obtained at the AND circuit 25, a reset input is applied to a flip- flop 26, a switching element 28 is OFF, and a switching element 27 becomes ON. As a result, the synchronous carrier is used as the carrier.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、交流°インバータ回路におけるパルスN変調
(PWM)制御を行なうための搬送波の制御方式に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a carrier wave control method for performing pulse-N modulation (PWM) control in an AC inverter circuit.

(従来技術) 交流インバータ回路において正弦波電圧を作るために指
令波の波形を三角波等の搬送波と比較してパルス幅に変
換するPWM制御方式が採用されている。このPWM制
御方式においては、指令波の波形に対して搬送波の数が
常に一定となる同期方式と指令波の波形には関係なく搬
送波を一定とする非同期方式とがある。これらの方式の
概略を示す、第1図は同期方式の波形図を示すものであ
り、この図に基づいて同期方式について説明する、ff
11図に示されるように指令波FCMDの周期TCMD
と搬送波FCの周期TCは TCMD=TCXP (C17)例ではP= 10)と
なり出力のパルス数Pは指令波の周波数に関係なく一定
、即ち、P=TCMD/TCのパルス数になるように構
成される。つまり、搬送波FCを指令波FCMDに同期
して変えることになる。
(Prior Art) In order to generate a sine wave voltage in an AC inverter circuit, a PWM control method is adopted in which the waveform of a command wave is compared with a carrier wave such as a triangular wave and converted into a pulse width. This PWM control method includes a synchronous method in which the number of carrier waves is always constant with respect to the waveform of the command wave, and an asynchronous method in which the number of carrier waves is constant regardless of the waveform of the command wave. Figure 1 shows an outline of these methods, and shows a waveform diagram of the synchronization method.
As shown in Figure 11, the period TCMD of the command wave FCMD
The period TC of the carrier wave FC is TCMD = TCXP (P = 10 in the C17 example), and the number of output pulses P is constant regardless of the frequency of the command wave, that is, the number of pulses is P = TCMD/TC. be done. In other words, the carrier wave FC is changed in synchronization with the command wave FCMD.

第2図は非同期方式の波形図を示すものでありこの図に
基づいて非同期方式について説明する。この方式によれ
ば、搬送波FCは指令波FCMDの周波数に関係なく常
に一定でありインバータ等大容量の場合はスイッチング
素子の発熱等により一般的に数KH2である。
FIG. 2 shows a waveform diagram of the asynchronous method, and the asynchronous method will be explained based on this diagram. According to this method, the carrier wave FC is always constant regardless of the frequency of the command wave FCMD, and in the case of a large capacity such as an inverter, it is generally several KH2 due to the heat generation of the switching elements.

(従来技術の問題点) 上記した同期方式によれば、指令波周波数とともに搬送
波周波数が比例して上昇し、スイッチング周波数の制限
があるので第3図に示されるように指令波と搬送波を切
替えてスイッチング周波数がある範囲内にあるようにす
る。必要があり回路構成が複雑になら、ざるを得なかっ
た。また、低速切替時のショー7り等が問題であった。
(Problems with the prior art) According to the above-mentioned synchronization method, the carrier wave frequency increases in proportion to the command wave frequency, and since there is a limitation on the switching frequency, the command wave and the carrier wave cannot be switched as shown in Fig. 3. Make sure the switching frequency is within a certain range. It was inevitable that the circuit configuration would become complicated due to necessity. Also, there was a problem of crashing when switching to low speeds.

一方、非同期式によれば、搬送波FCは一定である。従
って出力パルス数Pは指令波FCMDの変化により数が
変化するため、出力パルス1jQPが奇数個の場合と偶
数個の場合で指令波FCMDの−+の波形が最大で01
.5パルス分ずれ、Tq<<TCMDでは問題ないがT
CとTCMDとの比が小さくなってくるとO15パルス
分のずれの影響による振動分が出るようになり、インバ
ータの負荷となる機器の運転が不安定になると゛いう問
題があった。
On the other hand, according to the asynchronous method, the carrier wave FC is constant. Therefore, the number of output pulses P changes depending on the change in the command wave FCMD, so the -+ waveform of the command wave FCMD is at most 01 when the output pulse 1jQP is an odd number and an even number.
.. 5 pulses deviation, no problem with Tq<<TCMD, but T
When the ratio between C and TCMD becomes smaller, vibrations due to the influence of the O15 pulse shift begin to appear, causing the problem that the operation of equipment that serves as a load on the inverter becomes unstable.

(発明の目的) 本発明の目的は、上記したように同期式、非同期式とも
に一長一短があり、これを解消するために、これらの方
式を組み合せて、低速では非同期PWM制御が可能な搬
送波の制御方式を提供することにある。
(Objective of the Invention) As mentioned above, both the synchronous method and the asynchronous method have advantages and disadvantages, and in order to solve these problems, the object of the present invention is to combine these methods to control carrier waves that can perform asynchronous PWM control at low speeds. The goal is to provide a method.

(発明の概要) 本発明は、イン八−タ回路の出力周波数を定める指令波
を、スイッチング素子のスイッチング周、波数を定める
搬送波と比較して、スイッチングパルス幅に変換するパ
ルス幅制御方式(PWM方式)において搬送波として同
期搬送波と非同期搬送波とを発生させておき、所定の速
度を境界としてそれ以下の速度範囲では非同期方式、そ
れ以」二の速度範囲では同期方式で運転するように、速
度指令値に応じて同期搬送波と非同期搬送波とを切り替
えるように構成される。
(Summary of the Invention) The present invention utilizes a pulse width control method (PWM) that converts a command wave that determines the output frequency of an inverter circuit into a switching pulse width by comparing it with a carrier wave that determines the switching frequency and wave number of a switching element. In this system, a synchronous carrier wave and an asynchronous carrier wave are generated as carrier waves, and a speed command is set so that the speed range below a predetermined speed is a boundary, the asynchronous method is used, and the other speed range is a synchronous method. It is configured to switch between a synchronous carrier wave and an asynchronous carrier wave depending on the value.

(実施例) 以下、図面を参照しつつ、本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第4図は、本発明の一実施例ブロック図であり、11は
電圧/周波数変換器であり、入力される速度指令VCM
Dに比例する周波数に変換するもの、12はカウンタで
あり、電圧/周波数変換器11の出力周波数を判別して
、その周波数に応じた信号を後述する読み出し専用メモ
リ(以下RO・Mと称す)13に供給するもの、13は
ROMであり、PWM制御方式における指令波FCMD
となるサイン波と同期搬送波FCとなる三角波とが関連
づけてメモリされており、カウンタ12からの信号に応
じたサイン波(U相、■相、W相)と同期搬送波とを出
力するもの、14は搬送波切替回路であり、ROM13
からの同期搬送波と別に発生される非同期搬送波と速度
指令VCMDとが入力され、速度指令VCMDの値に応
じて同期搬送波と非同期搬送波とを切替えて、いずれか
一方の搬送波を出力するもの、15はパルス幅変調回路
であり、指令波F CM−・Dとなるサイン波と搬送波
とが入力され、イン/曳−夕のスイッチング素子(図示
せず)にスイッチング信号を供給するための周知のPW
M回路である。
FIG. 4 is a block diagram of an embodiment of the present invention, 11 is a voltage/frequency converter, and the input speed command VCM
12 is a counter that converts to a frequency proportional to D, and a read-only memory (hereinafter referred to as RO-M) that determines the output frequency of the voltage/frequency converter 11 and outputs a signal corresponding to that frequency, which will be described later. 13 is a ROM, which supplies command waves FCMD in the PWM control system.
A sine wave serving as a sine wave and a triangular wave serving as a synchronous carrier wave FC are stored in memory in association with each other, and output a sine wave (U phase, ■ phase, W phase) and a synchronous carrier wave according to the signal from the counter 12, 14 is a carrier wave switching circuit, and ROM13
The synchronous carrier wave from the synchronous carrier wave, the asynchronous carrier wave generated separately from the speed command VCMD, and the speed command VCMD are input, the synchronous carrier wave and the asynchronous carrier wave are switched according to the value of the speed command VCMD, and one of the carrier waves is output. This is a pulse width modulation circuit, into which a sine wave and a carrier wave serving as the command wave FCM-D are input, and is a well-known PW circuit for supplying a switching signal to an in/outside switching element (not shown).
It is an M circuit.

第5図は第4図の搬送波切替回路14の内部回路を示す
ブロック図であり、同期搬送波と扉同期搬送波とが一致
したことを検出して信号を出す・一致検出回路21、速
度指令VCMDの値を判別し、高速/低速信号を出力し
かつヒステリシス特性をもつ速度判別回路22、ノット
回路23、アンド回路24.25、フリップフロップ回
路26、スイッチング素子27.28から構成される。
FIG. 5 is a block diagram showing the internal circuit of the carrier wave switching circuit 14 in FIG. It is comprised of a speed discrimination circuit 22 that discriminates a value, outputs a high speed/low speed signal, and has hysteresis characteristics, a NOT circuit 23, AND circuits 24 and 25, a flip-flop circuit 26, and switching elements 27 and 28.

ここで、速度判別回路22は、速度指令VCMDの値を
弁別し、かつヒステリシス特性を有するものであるから
、例えば簡単にはシュミット回路等で構成される。また
、一致検出回路21は、同期搬送波と非同期搬送波との
周波数及び位相の一致を検出した時に一致信号を出力す
るものであり、その内部回路はその検出条件を満足する
ように種々の回路構成が考えられる。この回路構成の例
を第6図に示す。
Here, since the speed discrimination circuit 22 discriminates the value of the speed command VCMD and has a hysteresis characteristic, it is simply constituted by, for example, a Schmitt circuit. The coincidence detection circuit 21 outputs a coincidence signal when it detects coincidence in frequency and phase between the synchronous carrier wave and the asynchronous carrier wave, and its internal circuit has various circuit configurations to satisfy the detection conditions. Conceivable. An example of this circuit configuration is shown in FIG.

第6図において、同2期搬送波と非同期搬送波の周波数
の一致を周波数−数構出回路31で検出する。同期搬送
波の増加中及び減少中の零点をそれぞれ増加中零点検出
回路32、減少中零点検出回路33で検出する。同様に
、非同期搬送波についても、増加中零点検出回路34、
減少中零点検出回路35でそれぞれ零点を検出する。両
搬送波についての増加中零点検出回路の出力をアンド回
路36に与え、減少中零点検出回路の出力をアンド回路
37に与える。これらのアンド回路36.37の出力を
オア回路38を介してアンド回路39に与えて、周波数
−数構出回路31の出力とのアンド条件が成立したとき
、−数構出回路21としての出力が生じる。なお、各零
点検出回路32.33.34.35及び周波数−数構出
回路31の検出精度は、インバー・夕装置として支障の
ない範囲で、粗くすることが許容される。
In FIG. 6, a frequency-number configuration circuit 31 detects whether the frequencies of the synchronous carrier wave and the asynchronous carrier wave match. Increasing and decreasing zero points of the synchronous carrier wave are detected by an increasing zero point detection circuit 32 and a decreasing zero point detection circuit 33, respectively. Similarly, for the asynchronous carrier wave, the increasing zero point detection circuit 34,
A decreasing zero point detection circuit 35 detects each zero point. The outputs of the increasing zero point detection circuits for both carriers are fed to an AND circuit 36, and the outputs of the decreasing zero point detecting circuits are fed to an AND circuit 37. The outputs of these AND circuits 36 and 37 are given to the AND circuit 39 via the OR circuit 38, and when the AND condition with the output of the frequency-number calculation circuit 31 is satisfied, the output as the -number calculation circuit 21 is occurs. Note that the detection accuracy of each zero point detection circuit 32, 33, 34, 35 and frequency-number configuration circuit 31 may be made rough within a range that does not cause any problem as an inverter/event device.

つぎに、第4図、第5図の実施例構成の動作を第7図の
特性曲線図を参照しつつ説明する。以下の説明では、P
WM制御されるインバータの出力にて誘導電動機を駆動
する場合を想定して行なう。第7図において、誘導電動
機の回転数が150Orpmを境として、その回転数よ
り低い範囲では一定の搬送波周波数(2KH2)であり
、その回転数より高い範囲では回転数に比例して増加す
る搬送波周波数となる。すなわち、1500rpmの所
定の回転数より低い範囲ではPWM制御の搬送波として
非同期搬送波が使用され、高い範囲では搬送波として同
期搬送波が使用される。この同期搬送波と非同期搬送波
とのいずれを使用するかの切替えは、ヒステリシス特性
を有する速度判別の出力と、両搬送波の一致検出の出力
とにより行なわれる。
Next, the operation of the embodiment shown in FIGS. 4 and 5 will be explained with reference to the characteristic curve diagram shown in FIG. In the following explanation, P
This is performed on the assumption that an induction motor is driven by the output of an inverter that is WM controlled. In Fig. 7, when the rotational speed of the induction motor reaches 150 rpm, in the range lower than the rotational speed, the carrier wave frequency is constant (2KH2), and in the range higher than the rotational speed, the carrier wave frequency increases in proportion to the rotational speed. becomes. That is, an asynchronous carrier wave is used as a carrier wave for PWM control in a range lower than a predetermined rotation speed of 1500 rpm, and a synchronous carrier wave is used as a carrier wave in a higher range. Switching between the synchronous carrier wave and the asynchronous carrier wave is performed based on the output of speed discrimination having hysteresis characteristics and the output of coincidence detection of both carrier waves.

さて、インバータ回路の起動に際して、まず速度指令V
CMDが電圧/周波数変換器11に与えられ、この出力
周波数をカウンタにより判別して、その周波数に応じた
信号をROM13に供給する。ROM13ではサイン波
と同期搬送波とが関連づけてメモリされており、カウン
タ12からの信号すなわち速度指令VCMDに応じたサ
イン波と同期搬送波とを出力する。インバータ回路の起
動時の速度指令VCMDは小さい値から始まるから、起
動時には速度判別口−路22の出力は低速゛0°′であ
り、ノット回路23を介して一致検出回路21の出力と
のアンドをとってフリップフロップ回路26をセット状
態として、同期搬送波用スイッチング素子27をオフと
し、非同期搬送波を搬送波として送出する。なお、フリ
ップフロップ回路26はインバータ回路の起動時に自動
的にセット状態とする回路構成とすることが好ましい。
Now, when starting up the inverter circuit, first the speed command V
CMD is applied to the voltage/frequency converter 11, the output frequency of which is determined by a counter, and a signal corresponding to the frequency is supplied to the ROM 13. The ROM 13 stores a sine wave and a synchronous carrier wave in association with each other, and outputs the sine wave and synchronous carrier wave according to the signal from the counter 12, that is, the speed command VCMD. Since the speed command VCMD at the time of startup of the inverter circuit starts from a small value, the output of the speed discrimination port 22 is a low speed "0°" at the time of startup, and the output of the coincidence detection circuit 21 is is set, the flip-flop circuit 26 is set, the synchronous carrier switching element 27 is turned off, and the asynchronous carrier wave is sent out as a carrier wave. Note that it is preferable that the flip-flop circuit 26 has a circuit configuration that automatically sets the flip-flop circuit 26 to a set state when the inverter circuit is started.

これで、指令波FCMDとしてのサイン波と非同期搬送
波とがPWM回路15に供給されて、インバータとして
は搬送波の周波数で定まるスイッチング周波数、指令波
(サイン波)の周波数で定まる出力周波数で運転される
。なお、インバータの出力電圧は指令波(サイン波)と
搬送波の振幅比で定まるが、所定の振It]のサイン波
がROM13から出力される。
Now, the sine wave as the command wave FCMD and the asynchronous carrier wave are supplied to the PWM circuit 15, and the inverter is operated at a switching frequency determined by the frequency of the carrier wave and an output frequency determined by the frequency of the command wave (sine wave). . Note that the output voltage of the inverter is determined by the amplitude ratio of the command wave (sine wave) and the carrier wave, and a sine wave with a predetermined amplitude It] is output from the ROM 13.

この非同期搬送波を使用した運転状態から、速度指令V
CMDが大きくなり、予め定められた所定の回転数に至
ると、速度判別回路22の出力が低速°“0゛′から高
速゛l′′となりアンド回路25へll’l“が印加さ
れる。一方、−数構出回路21は同期搬送波と非同期搬
送波との一致検出を行なっており、第6図に示すブロッ
ク図のように、周波数の一致と位相の一致とが満足され
たとき、アンド回路25へ“°l”信号を印加する。ア
ンド回路25に出力が得られると、フリップフロップ回
路26にリセット入力が与えられ、QQ子は“0″″、
互端子は“1″となって、スイッチング素子28がオフ
、スイッチング素子27が、オンとなる。この結果、搬
送波として同期搬送波が使用されることになる。
From the operating state using this asynchronous carrier wave, the speed command V
When the CMD increases and reaches a predetermined rotational speed, the output of the speed determination circuit 22 changes from the low speed 0'' to the high speed 1'', and 11' is applied to the AND circuit 25. On the other hand, the minus number configuration circuit 21 detects coincidence between the synchronous carrier wave and the asynchronous carrier wave, and as shown in the block diagram shown in FIG. 6, when frequency coincidence and phase coincidence are satisfied, the AND circuit Apply the “°l” signal to 25. When an output is obtained to the AND circuit 25, a reset input is given to the flip-flop circuit 26, and the QQ terminal is "0"".
The mutual terminal becomes "1", the switching element 28 is turned off, and the switching element 27 is turned on. As a result, a synchronous carrier wave is used as a carrier wave.

以上の動作は、低速領域から高速領域へ移る場合のもの
1゛あるが、逆に高速領域から低速領域へ移る場合にも
、同期方式と非同期方式との切替えはスムーズに行なわ
れる。
The above-mentioned operation is performed when moving from a low-speed area to a high-speed area (1), but even when moving from a high-speed area to a low-speed area, switching between the synchronous method and the asynchronous method is performed smoothly.

なお、サイン波及び同期搬送波はROMから導゛出され
るようになっているが、これに限定されず一般に使用さ
れているアナログ方式のものも適用可能である。
Note that although the sine wave and the synchronous carrier wave are derived from the ROM, the present invention is not limited to this, and commonly used analog type ones can also be applied.

(発明の効果) 以上説明したように1本発明によれば、速度術〉を判別
する高速判別回路及び、同期搬送波と非同期搬送波との
一致を検出する一致検出回路の出力により所定の周波数
より低い範囲では非同期方式のPWM制御を行ない、所
定の周波数より高い範囲では同期方式のPWM制御方式
とすることにより、同期方式及び非同期方式がそれぞれ
有している欠点を補い円滑なPWM制御を行なうことが
できるとともに、同期方式も非同期方式との切替をスム
ーズに行なうことができる。
(Effects of the Invention) As explained above, according to the present invention, the output of the high-speed discrimination circuit for discriminating the frequency difference and the coincidence detection circuit for detecting coincidence between the synchronous carrier wave and the asynchronous carrier wave is lower than a predetermined frequency. By performing asynchronous PWM control in the frequency range and using synchronous PWM control in the range higher than a predetermined frequency, it is possible to compensate for the drawbacks of the synchronous method and the asynchronous method and perform smooth PWM control. In addition, it is possible to smoothly switch between the synchronous method and the asynchronous method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は同期方式の波形図、第2図は非同期方式の波形
図、第3図は同期方式における変調比を示す図、第4図
は未発、明の一実施例ブロック図、第5図は第4図構成
における搬送波切替回路構成図、第6図は第5図構成に
おける一致検出回路構成図、第7図は特性曲線図である
。 図中、11・・・電圧/周波数変換器、12・・・カウ
ンタ、13・・・読み出゛し専用メモリ、14・・・搬
送波切替回路、15・・・パルス幅変調回路、21・・
・−数構出回路、22・・・速度判別回路、23・・・
ノット回路、24.25・・・アンド回路、26・・・
フリップフ0−、プ回路、27.28・・・スイッチン
グ素子。 特許出願人 ファナック株式会社 代 理 人 弁理士 辻 實 (外1名) 算 l 図 埠 2 図 掲今浪Ill衷枚 第4 聞 第 5 図 7 第 6 図 第7 図
Fig. 1 is a waveform diagram of the synchronous method, Fig. 2 is a waveform diagram of the asynchronous method, Fig. 3 is a diagram showing the modulation ratio in the synchronous method, Fig. 4 is a block diagram of an embodiment of an undeveloped method, and Fig. 5 is a diagram showing the modulation ratio in the synchronous method. 6 is a diagram showing the configuration of the carrier switching circuit in the configuration shown in FIG. 4, FIG. 6 is a diagram showing the configuration of the coincidence detection circuit in the configuration shown in FIG. 5, and FIG. 7 is a characteristic curve diagram. In the figure, 11... Voltage/frequency converter, 12... Counter, 13... Read-only memory, 14... Carrier wave switching circuit, 15... Pulse width modulation circuit, 21...
・-Number output circuit, 22...Speed discrimination circuit, 23...
Not circuit, 24.25...AND circuit, 26...
Flip flop 0-, flip circuit, 27.28... switching element. Patent applicant Fanuc Co., Ltd. Agent Patent attorney Minoru Tsuji (1 other person) Calculator I Zubo 2 Illustrated Imanami Illustrator No. 4 No. 5 Fig. 7 Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] インバータ回路の出力周波数を定める指令波を、東イツ
チング素子のスイッチング周波数を定める搬送波と比較
して、スイッチングパルス幅に変換するパルス幅変調制
御方式において、同期搬送波と非同期搬送波との周波数
及び位相の一致を検出するととも、に、速度指令値が所
定値より以上か以下かを判別し、これら検出結果と判別
結果に応じて所定速度以下の速度範囲では非同期搬送波
を搬送波とし、所定速度以上の速度範囲では同期搬送波
として、切り替えて使用することを特徴とする交流イン
バータ回路における搬送波の制御方式
In a pulse width modulation control method that compares a command wave that determines the output frequency of the inverter circuit with a carrier wave that determines the switching frequency of the switching element and converts it into a switching pulse width, the frequency and phase of the synchronous carrier wave and the asynchronous carrier wave match. At the same time, it is determined whether the speed command value is above or below a predetermined value, and based on these detection and discrimination results, the asynchronous carrier wave is used as a carrier wave in a speed range below a predetermined speed, and the asynchronous carrier wave is used as a carrier wave in a speed range above a predetermined speed. Here, we will discuss a carrier wave control method in an AC inverter circuit, which is characterized in that it is switched and used as a synchronous carrier wave.
JP59027925A 1984-02-16 1984-02-16 Carrier control system in ac converter circuit Pending JPS60174070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59027925A JPS60174070A (en) 1984-02-16 1984-02-16 Carrier control system in ac converter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59027925A JPS60174070A (en) 1984-02-16 1984-02-16 Carrier control system in ac converter circuit

Publications (1)

Publication Number Publication Date
JPS60174070A true JPS60174070A (en) 1985-09-07

Family

ID=12234456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59027925A Pending JPS60174070A (en) 1984-02-16 1984-02-16 Carrier control system in ac converter circuit

Country Status (1)

Country Link
JP (1) JPS60174070A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331476A (en) * 1986-07-25 1988-02-10 Hitachi Ltd Method and apparatus for controlling pwm inverter
EP0283952A2 (en) * 1987-03-20 1988-09-28 Hitachi, Ltd. PWM inverter controller
JP2006310230A (en) * 2005-05-02 2006-11-09 Maspro Denkoh Corp Waterproofing cap for electronic apparatus housing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331476A (en) * 1986-07-25 1988-02-10 Hitachi Ltd Method and apparatus for controlling pwm inverter
EP0283952A2 (en) * 1987-03-20 1988-09-28 Hitachi, Ltd. PWM inverter controller
JP2006310230A (en) * 2005-05-02 2006-11-09 Maspro Denkoh Corp Waterproofing cap for electronic apparatus housing

Similar Documents

Publication Publication Date Title
US4364109A (en) Control device of inverters
US5255175A (en) Power generation system having induction generator and controlled bridge rectifier
US4720777A (en) Pulse width modulation system for AC motor drive inverters
JPH0614786B2 (en) PWM signal generation circuit
JPS60174070A (en) Carrier control system in ac converter circuit
JPH09308264A (en) Self-excited power inverter
JPS60174088A (en) Digital control system of ac motor
US4002962A (en) Phase locked servo loop circuit
JPH095376A (en) Abnormal phase rotation detector
US6594162B2 (en) Inverter device
JP3404230B2 (en) Three-phase PWM waveform generator
JP3944354B2 (en) Motor control device
JPH0274189A (en) Speed control device
JPS6248476B2 (en)
JPH04168991A (en) Motor controller
JPS6035913B2 (en) Control device for inverter equipment
JPH1094262A (en) Voltage-type self-excited converter
JPH04304186A (en) Motor speed controller
JPH05130791A (en) Controlling method for motor
JPS62217861A (en) Control system for voltage-type pwm inverter
JPH03261389A (en) Variable speed controller of winding type induction machine
JPS6181184A (en) Rotating direction controller of rotor
JPH06343281A (en) Rotation controller for motor
JPS60187279A (en) Digital control system of induction motor
JPH04200288A (en) Motor controller